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Panel 1

Exercise 4-a

List possible combinations of force and displacement boundary conditions
for prestressed cable.

Panel 2

Possible combinations of boundary conditions for the
prestressed cable

At each end it is possible to prescribe either force or displacement. We
have to inspect the particular situation in order to decide which
boundary condition applies.

For instance, consider the vibration of the stay cables of this bridge.

ey -

Perhaps prescribed displacements
would be appropriate.

Fg 2: General Arrangement
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Panel 3

(C) 2008 Petr Krysl

At each end it is possible to prescribe either force or displacement. We

have to inspect the particular situation in order to decide which

boundary condition applies.

A
pb—

The possible combinations are:

A

—«QZ\
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Panel 1

Exercise 4-b

Search the Web of Science for a research article on the equation of motion for
prestressed cables that account for the so-called sag. What is the main difference
between the model introduced 1n class and the model you found?

Panel 2

Equation of motion that accounts of sag

Available online at www.sciencedirect.com ——
senlucl@mnl:rl JOURNAL OF
SOUND AND

ACADEMIC VIBRATION

PRESS Journal of Sound and Vibration 261 (2003) 403-420
orn/locate/jsv

Response characteristics of local vibrations in stay cables on an
existing cable-stayed bridge

Q. Wu, K. Takahashi*, T. Okabayashi, S. Nakamura

(C) 2008 Petr Krysl
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Panel 1

Exercise 4

Derive the force boundary condition at x=0.

Panel 2

derivation of force boundary condition at x=0

fom et = W]

Pors u

— - K = ufdm W /(0)
P\T?m

The angle ol is very small, since the
deflections are also very small
o L< | .‘“_v s = |

gi oA :; +M o
Vertical equilibrium
‘ + / -
b 0
"ax b - 0 \/
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Panel 1

Exercise 5-a

Prestressed cable with piecewise uniform load

Solve analytically for the static deflection of the shown prestressed cable.

%1
T T ]

Tl (1=t )L
e e

PWLSW{M

M D

Panel 2

Solving analytically for the static deflection of the shown prestressed cable
amounts to solving the following boundary value problem:

"F'N“—#%];O h < x <ol

l’wﬁ%-%lzo L€ x < L

o EamaBEREN

A
w(i,) =0 _L <l J,k ({-D{)L 7|

The second derivative 1s in general discontinuous where the load changes
value. The first derivative however must be continuous at that point,
otherwise the second derivative would be infinite (the so-called Dirac Delta
Spike), and the equation of motion (equilibrium equation) could not be
satisfied at that point.
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Panel 3

The solution may be derived by writing a general quadratic polynomial
within each interval, and then enforcing continuity and the zero deflection
at the endpoints. This will provide us with four conditions from which
four constants of integration maybe determined.

D<x<€xt
wix) = At Bx+ 4,0
The quadratic term in the polynomial must be determined so that it
satisfies the equilibrium equation. PWH —+ % =0
wf()(‘ - Bl-o- pi %.C, X

" -9 C
W L P2¢,C +4 =0 =7C="

wle) = A, + B X — %,.’%

2p

Panel 4

Similarly

Now we introduce the boundary conditions and the continuity conditions.
First the boundary conditions:

wlo) = 0wy =0 (Bc)
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Panel 5

Now the continuity conditions: first the deflection

_ (L)t
\N("\L) = P\, ‘*BIDLL - —1? this is the
deflection from the
left of oL
( ] A B oL (D(Ul this 1s the
Al = + - .
w b 2 %7’ 1p deflection from the
right of o L
Next the slope:
/ ~ _ EL_L this is the slope
W ("’LL) =B | %) P from the left of
o L
/ oL this 1s the slope
W ("(L) = Ev?_ T 4. P from the right of
ol

Panel 6
Symbolic solution for the mtegration constants
% Solve for the deflection of a prestressed cable
with piecewise uniform
% distributed load
syms A1l Bl A2 B2 alpha I P gl g2 x real
wl = Q(x) (Al+B1l*x-gl*x*2/(2+P)) ;
dwl = @(x) (B1-ql*x/P) ; Lol oh
[ t‘fmh on
w2 = Q(x) (A24+B2¥*x-q2*x"2/(2%P)) ; S?MN >
dw2 = @(x) (B2-q2*x/P) ;
Now solw fhe system of BCS + wnﬁwﬂa s
Solution =solve([char(wl{(0)) '=0'],...
[char{w2{L)) '=0'1,...
[char (w1l {(alpha*L)) '=' char (w2 (alpha*L))],...
[char (dwl (alpha*L)) '=' char{(dw2 (alpha*L))],...
fAlF[lBlfllAzf’fBzF); L__
Al =Solution.Al; Al: 0 BI == (0614-?—01%]—
Bl =Solution.Bl; 1P 1
A2 =Solution.A2; 1Wc%1*'& %i
B2 =Solution.B2; 4+ 1 )
> o L( 2 _}_d\l ) L%,
= = - = . -
oW lf,f'{ (4, ‘fn) b= o5 F %2
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Plot the deflection curve for some particular problem data

% Take some particular numbers
alpha = 0.5; gl = 4; g2 = -4; L = 100; P = 25;
x= linspace(0,alpha*L, 20);
plot (x,-eval ((Al+Bl*x-ql*x.*2/(2*P))));
hold on
x= linspace(alpha*L,L, 20);
plot (x,-eval ((A24B2*x-q2*x.72/(2*%P))));
Labels =get (gca,'vticklabel');
for i= l:length(Labels)
Labels (i,:) =strrep (Labels (i,:),'-',' ");
end 50

set (gca,'vticklabel', Labels);
xlabel ('x')
ylabel ('w')

5
.Ou
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Panel 1

Exercise 5-b

Solve analytically for the static deflection of the shown prestressed cable. In
addition to the piecewise uniform distributed load consider support

settlement. 1.
%
wawe BN

I AR (1-) L W,
g ;|

Panel 2

Solving analytically for the static deflection of the shown prestressed cable
amounts to solving the following boundary value problem:

"F'N“—#%];O h < x <ol

l’wﬁ%-%lzo L€ x < L

o T T T

A
w(L) = Wp 7L <l e (-t ;l

The loading is in general discontinuous where the load changes value. The
first derivative however must be continuous of that point, otherwise the
second derivative would not be defined, and the equation of motion
(equilibrium equation) could not be satisfied at that point.
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Panel 3

Symbolic solution for the mtegration constants

syms A1 B1 A2 B2 alpha LPql g2 x w0 wL real
wl = @)(AT+B1*x-q1*xA2/{2*P));

dwl = @(x)(B1-q1*x/P);

w2 = @(xX)(AZ2+B2*x-q2*xA2/{2*P));

dw? = @(x)(B2-q2"x/P);

Solution =solve([char(w1(0)) '=" char(w0)],...
[char(w2(L)) '=" char{wLl)],...
[char(w1(alpha®l)) '=" char(w2(alpha®*D))]....
[char(dw1(alpha*®L)) '=" char(dw2(alpha®L))],...
Al !,IB] ','AZ','BZ');
Al =Solution.Al; -
B1 =Solution.B1; Ai Wo P’| = T (%1+20{%|
A2 =Solution.A2;
B2 =Solution.B2; 2ecg, = LG,

+ulg, )
2 W, = w
:J:b"(l(%l'-%],)*WO o OL_ -

2 rLP
Bf%f( '“%*+“% ) Dot

L

Panel 4

/‘?‘riw‘f o the igw\bw'—«'c
£

>> pretty(Solution.Al) clu ke
pretty(simplify(solution.B1l)) o Whionn
pretty(simplify(solution.A2))

pretty(simplify(Solution.B2))
w0

2 2
L (q2 + 2 alpha ql - 2 alpha g2 - alpha ql + alpha gq2) w0 - wL

2 2
L (q2 - alpha ql + alpha ¢q2) w0 - wL
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Panel 5

% Take some particular numbers

alpha = 0.5; gl = 4; g2 = -4; L = 100; P = 25;
wl =-10; wL = 20;

X= 11nspace(0 a1pha*L 20);

Tot (x, eva1((A1+Bl*x ql*x A2/(2*P))));

old on
x= linspace(alpha*L,L, 20);
plot (x, eva1((A2+BZ*x 2*x A2/(2*P)))),

Labels =get (gca, 'yticklabel’
for i= 1: 1ength(Labe1s)

g Labels (1,:) =strrep (Labels (i,:), ' -'," ');
en :
set (gca, 'yvticklabel', Labels);

xlabel ('x") 10

ylabel ('w')

20

a

z

20

40

60D

20 40 60 80 100
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Panel 1

Exercise 5-c

Solve analytically for the static deflection of the shown prestressed cable.

% 1
'ow(o):“ﬂ ,‘&} l l l J( lw ):WL
oL (1-«)L T
¢ 3|

Panel 2

Prestressed cable with piecewise uniform load
and mixed boundary conditions

Solve analytically for the static deflection of the shown prestressed cable.

% 1
'ow(o):“ﬂ ,‘&} l l l J( lw ):WL
oL (1-«)L T
¢ 3|

Fy 3

The deflections at the ends are in general nonzero. This will affect only the
application of the boundary conditions.

W(o) = - % w(l) = w, Fo, W govew
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Panel 3

% solve for the deflection of a prestressed cable with
piecewise uniform

% distributed load

syms Al B1 A2 B2 alpha L P ql g2 x FO wL real

wl = Q00 (AL+BL1*x-ql*xA2/ (2*P));

3 000 DB e A2/ (24PY)

w2 = Q(x) (A2+B2*x-q2*xA2/(2*P)); -

dw2 = @(x) (B2-q2*x/P); é//uﬁk the BC

Solution =solve([char(dwl(0)) '=' char(-FO/P)],...
[char(w2(L)) '=' <char(wL)],...
[char(wl(alpha*L)) '=" char(w2{alpha*L)}))],...
[char({dwl(alpha®*L)) '=" char{(dw? (alpha*L))}],...
'Al','B1','A2",'B2");

Panel 4
rivit ond Ahe symbd ol
o Tt e Ahe sy
SoWh 61n
2 2 2 2 2
35(2 PwL +L g2+ 2F0L-1L alpha ql + L alpha g2 +
2 2
2L alphaql - 2L alpha q2) / (2 P)
FO
b= -
L(2FO+Lg2+ 2L alphaql - 2 L alpha q2)
flim WL # — - oo oo
2P
& FO + L alpha q1 - L alpha q2
2 P
>>
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Panel 5

% Take some particular numbers

alpha = 0.5; ql = 0; q2 = -4; L = 100; P = 25;
FO =0; wL = 20;

200

150

100

50

50
0

20 40 60 80 100
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Panel 1

Exercise 14-a

Solve for the approximate deflection of a simply supported prestressed

cable with uniform load using the Galerkin method. Take as the trial

function basis a single function = < X
g Nr(x) Sin ==

and set the test function M = N |

Compare the midpoint deflection computed analytically and
approximately.

Panel 2

Solve approximately for the deflection using ad hoc

trial/test functions 9 ( )
Bk SR 7 N R IR
TTTT L TT 7 be wih =) = 0
s~ 2

®
b
. OTUX

We lumit ourselves to a single basis function.-/
Therefore also a single test function. The test function N )
will be chosen the same as the basis function (that is ()g = (x
what the Galerkin method does). e I ) I

The trial function is W(X] = N|Lx)

The coefficient &) is the only unknown (which is why we need a single test
function -- to derive a single equation from which to solve for unknown).

The trial function must satisfy all essential boundary conditions

the basis function does:

The selected trial function does since i\l (D] - N (L) S \N(D) ‘WU,)*O
L 1 Y= - B
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Panel 3
Equation (2.15) sumplifies to In
0 N Aas L
-, %Pg%u‘,(ﬂdr +-/u’ megdr =0, j=1,..N N:]
So that we have a single equation
L
/ / -
-S’VL PaNy dx J%r%dx =0
4 0
0
L L
! / =
*T}‘M S% N dx - %S%.M 0
) 0
Panel 4
/ ay\/ . T, X
M= (o) = T
L L >> int((cos (pi*x/L) )A2,0, L)
AR LS S 573 T
S“’““*“’b” L
b 0
L/2
L
- RIS int((sin(pi*x/L) ),0, L)
Sqftld_x - Ssm T:Ay‘ - >> int((sin(pi*x
X ans =
(2*L) /pi
L L
/ / =
~Pa M. N A+ q,gqlm 0
b 0 L % L'L
Y 2L R _ = — | =
E_Pa’(z)(l—/l) + %(,;1_) =0 =4 Topn
_ b gl
0 - ﬂ}__l_)._
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Panel 5
Compare with analytical solution, wﬁx = ﬁj_ X (L - }:)
L
midpoint deflection
2
W(E\ZEE(L_L\:EL%L_ (=
x> ?-’F I3 pA Z_r‘. 4 - _%7[3 - DI)—S —P—
1 L L 2
A e o SN T 4L
W(—L\ :_).[_3F§In(—L—)=K};FNO|l?__
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Panel 1

Exercise 14-b

For the approximate deflection computed in exercise 14-a evaluate the
balance residual.

Panel 2

Solve approximately for the deflection using ad hoc
trial/test functions: compute the residual

- % B alrmn U T’ % =0 (fﬂi’\“)
WT_JT l 1% Ecs wio) =w(t) = 0
E:':(————_ﬂ
et

N (x) = $in i
| = -
We lumit ourselves to a single basis function. /

Therefore also a single test function. The test function
will be chosen the same as the basis function (that 1s

what the Galerkin method does). — 7 WL K) ( )
2
\,\,(K) = a, N‘(x) = 5 %_lg Sin f va ?NWDSWW%)
gl %LL U 7T %
/ _ 1Y KT
\N'(x) = ‘ﬂ—} P L S L
I 4ol /n\t a4 T
W(X):WBFKL) \—-Srw—{:\' f\PSqL
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Panel 3
f
| n _
! = Y %  Tx == <. ™2 g =r
}FN J(_%—FE%—PSW\—E "‘{‘%'—Q -H—/ﬂ!_ ﬁ’ B
v :f( 0 The trial solution does not satisfy the balance
B equation
Analytical deflection, Approximate deflection,
slope, curvature §10pe, curvature
Sin
M . {\/
VoW, / VoW oS
W."
+ W e x !

Panel 4
The balance equation residual 1s not zero
L syms L P xreal
Check that oo Ay =0 % int((cos (pi*x/L) )*2,0, L)
B Y % int((sin(pi*</L) .0, L)
0 B = 1-(4/p1)*sin(pi*x/L.);

int((sin{pi*x/Ly*rB ),0, L)

0V
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Panel 1

Exercise 14-¢

Solve for the approximate deflection of a simply supported prestressed
cable with uniform load using the Galerkin method. Take as the trial 37

- - _ - CTTx . 37X
function basis the two functions Nf (X) = <in }_C , Nz(,\) = <in -

and set the test function 4 | = N L)oM, = N)

Compare the midpoint deflection computed analytically and
approximately.

Panel 2

Solve approximately for the deflection using ad hoc

trial/test functions
b albav e T’ g =0 (strnc)

%
WT]TT_@ be ! wio) =w(t) = 0
T

%

e
Camx

- TUX
We limit ourselves to two basis functions. Nl (X) =5 T ) Nz[x]; S
Therefore two test functions will be needed. n’L | = N| ; " = N )

The trial function 1s

wix) = a N,Lx) + a, Ny(x)

The coefficients & | ; A1 are the unknowns .

The trial function must satisfy all essential boundary conditions

The selected trial function does since ~___ T

the basis function does:
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Panel 3

Equation (2.15) sumplifies to

In fret
_ ("o

N N L
=Lt + : = )| = ) =
|, ae P; o w;(t) de /u njq dx 0, j=1,...N 2

So that we have two equations

L L
_ S anll P (a,ll\llf+ﬂ1|\l;) Ay + S"l,% Ax =0

0 0

L

L
_ g n«L’lP (&,N(-ﬁ ﬁl[\];) Ay + S”li% Ax =0

0

Panel 4

These two equations may be rewritten in matrix form using

. — —

- L

. , ; ! :
—SNI‘:?N'JLX oy EWL‘ FN) Ax Ile -+ ’VLI%A.P( )

Emy S 0~

L K I L K., L L,
-S“[;P|\]|dx no= SWL;FN) AX 5{1 —+ 8“12%34 0

'\?--*' ——— O\/—\/ 0 o

ﬂ’<lt K,, LL
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Panel 5
L p! pa L /

/ L _ 7t ? g ! T
KNHFNM“P\I 231y VPR
0 0
L L )

-, / /o / S (am) L 90 P
hlw,m =0 | 8“11"‘\‘25"‘4(?)1*:1
0 0
. L
2L
pis Ax =z —
Jr g 40 = = g%l% ST
o g 0
- X 0 1 a 2
2 L8
L t o It IQL |2 it
— n
Panel 6
P -J—til > || a =
I - L
L t o I L% AL
~ n
2 2
2 L
o = ?j_‘: }— -, = i %--
J PR P
2
%LZ 2 2 _ 4 %L
4 T R o wR P
So the approximate deflection is
)
W(K),Lf—%l_(ghqj}_i —|— S\ﬂm
i 27 L

Page 3 of 4



12/15/2008 : exercise page 14-c

Panel 7

(C) 2008 Petr Krysl

Compare with analytical solution,

\MQK

I

midpoint deflection

91 02 03 D4 o0s

% gl vy x
o llr) = = )
El = %E:D.!J_S [iB—L—_Z
T ¢p P

L GBLl

This is the difference

)
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Panel 1

Exercise 14-d

Solve for the approximate deflection of a prestressed cable with
uniform load simply supported at x=0 and with force-free boundary
condition at x=L using the Galerkin method. Take as the trial function
basis the two functions | | (;() = x Nz( ,(] - Xl

and set the test function ‘| | = N, ", = N, -

Compare the free-end deflection computed analytically and
approximately.

Panel 2

Solve approximately for the deflection using ad hoc
trial/test functions

%
TTTT L TT 7 )
hﬂq >

%

%L\A— wi(l) =0

e
We limit ourselves to two basis functions. N'(X) = X / N),(%) = X

BVP /‘P\N”«[' % =0
w(o) =0

Therefore two test functions will be needed. n’L | = N| ; ’11 = N )

The trial function 1s

wix) = a N,Lx) + a, Ny(x)

The coefficients & | ; A1 are the unknowns .

The trial function must satisfy all essential boundary conditions
The selected trial function does since the basis function do.
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Panel 3
Equation (2.15) sumplifies to
Lo SN ON; L ‘ :
ni(L)F —‘U a—nggu‘,(t) dz +-/u megder =0, j=1,..N N=’ 2
So that we have two equations (FL: D)
L L
"p(a N +a N g +S'>1 Ax =0
- S "’Ll ( N+ aN, ) A X
o ]
L L
"o (e r N ax o+ 1,4 ax =0
- g ", ( T 1) X 1 %
0 D
/ I
No= 1 Ny =X
Panel 4

These two equations may be rewritten in matrix form using

L L L

oy / / / -
_Swti?N'dx a, - E%FNI Ax JLL -+ S’*l_lfboh( 0

5 — 0 — 0 —

L ku L k‘l L ("

n / / ' -
—Sﬁlim\]'ma' - j"tll’[\ll Ax Ao Sﬂlg%“ 0

3_,, i -~ O\/—\/ 9 [

€2 K3, L,

Page 2 of 3



12/15/2008 : exercise page 14-d

Panel 5

(C) 2008 Petr Krysl

N /
N (N =0

[ 2N ax= L

L L L
-, / 1 ;,N/J\ -FFL"f] J,LFL}
K%;Pr\]l‘b‘:“ | gﬂlll 20N L'f’ I
0 0
L L 3 B
ry 4L
1L I.l - f_ N %L
KRR L SW‘“ S50
o 0
_ 4L
1 L ][ @ 1 5 a’l'?
L L Lle l = Ii %L %
s qL 3 al:'ﬂj
Panel 6
The trial displacement 1s
L 9 L *
w(x) = 5["1_\)( *%Xl:%f(xpz—[’)
V\E")/ \,31 et F
O N Gy Ny

We may suspect that this is actually an exact solution (since it is a second
order polynomial). Let us check it. First the balance equation

Pup"= 7 (f@(x-— Kl))”: ~ 4

P 2L

|7w”+/6 =0 \/

Now the boundary conditions.
L Xy N
o= o W= G0-7) 0=y

The solution 1s in fact the exact deflection curve for this boundary value
problem.

w (%)
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Panel 1

Exercise 15

For the shown finite element mesh express the finite element

basis functions and their derivatives as expressions in the
independent variable x.

)2» /Q‘»L }”3

|
e A jﬁ
X ¢ XA R =X

Panel 2

Lawmyt 'mﬁ,wf o lah o PDWWJ
(%2, *1)

(><, o) LHLX)

X Xy Xy

J(LwowJL Po’m}(s (<1,0) amh (%3, 1)

L(X]:X‘X' = L,(x) =

X=X

= 0

xl'xl-

Xz"Xl _
Ly (%) = X, =% |
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Panel 3

(C) 2008 Petr Krysl

(x,,+1)
/_@\_Aﬂ
X X2 Xy
+MMXL Poimk: (h,-ﬂ) (%3, 0)
% — %3 Ko =Xz
= —_— X -
LJ.},(X) N Xy = Xy ? ng( ) RT3 |
Ly, (%) =255 =0
Panel 4
X =%
N|' X=X N = N, =0
X=X, X=X
N = X, -X% L, = X .y =X
I)(—‘ X3 X — X
N= ——— =
| " B
Ny=0  Ny=0 T
_I
X ;
XI X-)_ X5 Xq
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Panel 5

L
; e ———
D No= —!
NZ- Xy =Xi 2 Xy =%y Ni; 0
} ]; ﬁ
—
N, = =
N‘;:O 3‘ XB-XI I\l; )(3__5(11_
—— i
|_ ) |
) Nog= o=
NH"D Ny =0 cn—— 4
e ——————————— —+
_ X !
X Xy X_,) Xg4
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Panel 1

Exercise 16-a

Interpolate Cuig%-f—; onthe interval 0 < x €L  ona mesh of five
equally-sized L2 finite elements.

o— =Y o Tal = )
X X]_ Xg Xy Xg Xé

sal/5 N
l&

Panel 2

Interpolation is defined by the condition that the interpolating function is
equal to the interpolated function at the nodes.

(oS (')-_EL) 1s the mterpolated function
,Hx) =2 NL[XH:( 1s the interpolating function, where ‘P ¥

are the parameters that we need to determine from the
so-called interpolation conditions

: : e s ‘
The interpolation condition is written as ‘ ‘F

s (2] <)

for all nodes k.

n¢ sh
Xk

Tt is very important to realize that the properties of the finite element basis
functions make the interpolation very easy. Namely, we have that

+1 o L=k
V() = < {
\ 0 ofthevwnse
These 1s the Kronecker delta property
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Panel 3
Therefore, the value of the interpolating function at the node is
Flxe) = 2 N ) £
Because of the Kronecker property, we have
-g (XK) = Z Nl;(”‘n)j[L' =
Nl(XK)‘Fn + Nz(’(a'{'g ot Nk.(XL) 1[[¢ T NK*I(XK)‘FKH =
0 o l o
i
The interpolation condition 1s recalled as ‘F (’(n) = S5 (:—)’E—EE' )
and therefore the parameters of the finite element interpolation function
are g i ( ( \ h (2 Ky
W T X ] = 005 T
Panel 4

The finite element interpolation function 1s therefore written on the given
mesh as
4

£ = Z Nl os ()

L

—
n

For tlus mesh we have
¢ [ 2 2, o ¢ [

X :[O 0.2000 0.4000 0.6000 0.8000 1.0000]
L

Therefore,
\ 2 i 4 ¢ 6

Xy
(OS(IJLI) —).1.0000 0.3090 -0.8090 -0.8090 0.3090 1.0000]
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Panel 5

(C) 2008 Petr Krysl

1)

£(x) = 2 Ni(x)4:

A

+

/%d
D %7 x ' ~ : ' \

1 1

’ N) .

"‘()807 >
M A
—b.g0g X 1 ' ‘
Ne(x)
+ A
0.209 x T f — ' "
4 Ng (x)
. .
l.ovo X : =
Panel 6

L(x) = 2N (x)F:0 =

:N,(*) —
|.ooo x

N

+ ' N, () =+
D-%0 9 % M\
309 N
+ 0-309 % NB("‘) +
—0.807 x %
+ -+ N'f(k)
—0.%09 X
4 L o 8eq Ny 020785 Ne(x)
0.309 x
l.ovd X ?_A

Ng
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Panel 7

1) = TN 0 4

mterpolating function

/\ Interpolated function
X
Ls ()
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Panel 1

Exercise 16-b

Interpolate &X + b onthe interval 0 < x <L ona mesh of three
equally-sized L2 finite elements. Show that the interpolation error is zero. In

other words, shows that the linear function can be interpolated exactly on
the mesh of 1.2 finite elements.

o © ©

X, Xy *3 Xy
WL/

= {

Panel 2

Interpolation is defined by the condition that the interpolating function is
equal to the interpolated function at the nodes.

ax +b

1s the mterpolated function

,Hx) =2 NL[XH:( 1s the interpolating function, where ‘P .
are the parameters that we need to determine from the
so-called interpolation conditions

The interpolation condition is written as

ax, +b .»_,H»(F)
for all nodes k-

The properties of the finite element basis functions make the mterpolation very
easy. Namely, we have that

_ + | l{ =k
N (Xk) <

0 ofhevwnse
Ths 1s the Kronecker delta property
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Panel 3
Therefore, the value of the interpolating function at the node is
FOx) = 2 Nk ) £,
Because of the Kronecker property, we have
J} (XK) =7 NL(XK)U[L' =
MO, N0, + o+ O b+ NG =
N b~ N e
0 0 | o
i
The interpolation condition 1s recalled as ‘F (XK) = AX, + b
and therefore the parameters of the finite element interpolation function
are
‘;k = {'(KK\ = Cl)(k‘i'b
Panel 4

Recall that the finite element basis functions are piecewise linear and there
are non-zero only in the two finite elements that share a node. Therefore,
we have for the interpolating function in the mterval X < x < ¥

J;(x) = NK(XHF " Nkﬂ(kaﬂ

-Fk Nk
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Panel 5

Importantly, we see that in the mterval Xy <x< X, 4 the function ‘F (x)

is some of two linear functions N, Ny 4

Therefore, ‘C (%) 1s a linear function, and as such 1t 1s the umque
linear function passing through two given ponts.

Since the mterpolated function X +b 5o passes through the same
two points, we conclude that the interpolated function is identical to the
interpolating function.

Therefore, we conclude that on a mesh of L2 finmite elements the basis
functions can mterpolate exactly arbitrary linear functions.

(C) 2008 Petr Krysl
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Panel 1

Exercise 16-¢

Tlustrate the error of interpolation of an arbitrary quadratic function when it
1s mterpolated by a fimte element expansion using a mesh of .2 firute
elements.

Plot the interpelation error for both the quadratic function itself and for its
derivative (slope).

Panel 2

[ x*(1-x)/24 0.3%%-0.2

IV\TUPG\AJI.W\ AV OY
7N

LU ey Ll Iﬁ—f—* - —]}o
02

~inferpoladed {.

05}t | ]
0.5 \ ,f i
[
4l -n’wyrolah " -‘FIMC‘HM |
f(x) = INux)4;
1.5 L L L
-1 -0.5 0 0.5 1
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Panel 3

(C) 2008 Petr Krysl

N¢ ()

(x X(- )’
Ki=¥,.=¢ X = >

Slopa o

[l chnlMM’ fw,\mn-’

05¢r

0.5

NoTe -the
d;su»whm

S[ﬁf“
{1

amA so wm

of {(x)
K) = iNl’(le

,f,,y +he P.u_gwlst Winawy

|h'|(',rro\)¢lw3 ’flM'\“h on

-0.5

0 0.5

[
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Panel 1

Exercise 19-a

. 9 TS
Integrate the function flz) =2z + 3 from-1to Ousing
(1) Trapezoidal rule, (2) Simpson's rule. Compare with the analytical
solution.

Panel 2

0 3
The analytical solution is / 222 + % = 7/12 = 0.583333333333333
1

The trapezoidal rule has a table on the standard interval —1 <& < +1|

&k W 10
-1 +1 X
+1 +1 \
0—(—1 1 §
The Jacobian is # =3 -1 +1 >

The two quadrature points map to the ends of the interval.
Therefore, with a trapezoidal rule the integral is approximated as

T=@(x)2*x"2+(x"3)/3,
(1/2)% 1 * (-1 +1*{0))

ans =
0.833333333333333

(C) 2008 Petr Krysl
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Panel 3

The Simpson's rule has a table on the standard interval —1 <& < +1|

gk W/k
-1 +1/3 X

0 +4/3
+1 +1/3 ..~

Therefore, we can express (refer also to the equation on page 19)
Integrated function

2 A=@(x) 2% 2H(x"3)/3;

a=-1; b=0;
g=@(x1)(1/2)*(at+b) +(1/2y*(b-a)y*xi; /

(172)*((1/3 ) g (-1))y+(4/3)* (g (0))+(1/3 ¥ (g (+1)))
ans = \ Integral

0.583333333333333

this 1s (2.24)

Tacobian value of the integral

Note that Simpson's rule gives the exact

(C) 2008 Petr Krysl
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Panel 1

Exercise 19-b

Derive Gaussian quadrature rules using 1, and 2 points on the
standard interval.

Panel 2

We will explain the 1dea behind the Gaussian quadrature first on the
example of a one-point quadrature rule.

The starting point is the idea that the integral of the function f(£)

may be approximated by integrating its interpolating polynomial  L(¢)

nstead.
T

L(&) ¥
~ |
|

The interpolating polynomial passes through the point &1 and given that

the interpolation is through a single point the interpolating polynomial is a
constant polynomial.

(C) 2008 Petr Krysl
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Panel 3

Now we will attempt to make the one-point rule accurate also for a
polynomial p(§) higher than constant. For instance, we may
require that any linear polynomial be integrated exactly by the

one-point rule.

In other words, we would be requiring that
M M
> L)W = LEOWL = p(&e)Wi = p(€1)W1
k=1 k=1
This simply means that the values of the interpolating polynomial L(¢)

P(Sl) = L(ﬁl)

In order for the quadrature rule to give us the exact integral of the
function p(¢) we must then require

+1
] [p(6) — L(€) = 0

—1

and the higher order polynomial p(¢) must agree at the quadrature point.

Panel 4

This tells us that we have to find the location of the quadrature
point &1 so that the polynomial p(¢) — L(g)‘passes through zero
at the quadrature point, and at the same time 1t integrates to equal

to zero

+1
[ [p(€) — L(©)] = 0

—1

For convenience define

F(&) = [p(&) — L(&)]

Here are some candidate polynomials that pass through zero at &1

They can be all written as

AN —
-1 g\ 1 (€ — &1)a(8)

where the first term makes sure
the product becomes zero at &1

Sy
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Panel 5

(C) 2008 Petr Krysl

So we are trying to satisfy this condition.

+1 +1
ﬂ@z[_@—&MQZD

-1 1
Consider as an example ¢(¢) = (AS + B)

Then the condition will actually split into two parts each of which

needs to be satisfied separately (since the two terms are linearly
independent).

+1 +1 +1
f ¢-ene+ By = [ le-eag+ [ e-enp=o
1 J—=1 .

-1

However we cannot satisfy both equations, since we have only one
parameter, &

We can satisfy one condition, which means we can take ¢(§) = B

It immediately follows that the solutionis  § =0

Panel 6

The weight for the one-point (Gaussian rule needs to be determined so
that the L.agrange interpolation polynomial itself 1s integrated exactly.

Since here the Lagrange interpolation polynomial is a constant, the
weight follows as 1/, = 2

It follows from our derivation that the one-point Gaussian rule will be

able to integrate exactly linear polynomials.
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Panel 7

Now let us look at a two-point Gaussian rule. First we will determine the
locations of the quadrature points

We have to find the location of the quadrature pointsé1. &2 so that
the polynomial p(¢) — L(¢) ‘ passes through zero at the quadrature
point, and at the same time it integrates to equal to zero

+1
[ wo -z -o
For convenience define
F(&) = [p(&) — L(&)]

Here are some candidate polynomials that pass through zero at  £;,&

\ §2 They can be all written as
-1 g\ 11 (€ — &€ —&2)q(8)

where the first two terms makes sure
the product becomes zero at &1, &2

Panel 8

Now it will be possible to take ¢(£) = (A{ + B)

The integral

+1 +1 +1
f (5—51)(5—52)(A5+B)=f :(&—s-zms-snAz;‘1+] (6~ &)E—&)B =0
—1 1 —1

splits into

+1 +1
] (€~ &)(6— £1)Ag] = 0, [ (€ - &)(E—)B =0

-1

which can be solved for the locations of the quadrature points to give
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Panel 9

syms xi xil xi2 real

int((xi-xil)*(xi-xi2),-1,+1),

int(xi*(xi-xil)*(xi-xi2),-1,+1)

solution =solve('2/3+2*xil *xi2=0","-2/3*xil-2/3*xi2=0","xil","xi2")
solution.xil

solution.xi2

ans =
-1/3*3~(1/2)
1/3*34(1/2)
The locati { the t drat ints tobe ¢ ! 13 L
¢ 10Callons o S WO quadrature poiriLs are seern 1o be -, = r—
q P 1 73 2 V3
Panel 10

The weights of the quadrature points are determined so that an arbitrary linear
polynomial (the Lagrange interpolation polynomial through two points) 1s integrated
exactly

+1
/ (A¢+ B) =2B

-1

The quadrature formula gives

M
1 1 ,
A& + BYW, = A(——W; + —=Wy) + (W7 + W) B
kz::l( & + B)Wy (\/§ 15 )+ (W1 2)

Evidently, the exact integral is obtained if W1 =1, W2 =1
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Panel 11

Number of points, n Points, xj Weights, wj
1 0 2
2 +4/1/3 1

%

’ :l:\/?,/is 0
+/(3-2/6/5) /7 158
i\/(3+2\/6/_5)/7 18—50

128&25

0
; +14/5 —2,/10/7 2LI/D

+1\/54+2,/10/7 2/

11
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Panel 1

Exercise 19-¢

Derive Gaussian 3-point quadrature rule on the standard interval.

Panel 2

First we will determine the locations of the quadrature points

We have to find the location of the quadrature points &1, 52753‘ SO
that the polynomial P(€) — L(£)|passes through zero at the
quadrature point, and at the same time it integrates to equal to zero

+1
[ @ - e =0
For convenience define
F(&) = [p(&) — L(&)]

The candidate polynomials that pass through zero at  &;,&s, :Eg‘

{3 &2 They can be all written as

-1 e\ +1 (€ — &) — &)(E — &a)a(d) |
where the first three terms makes sure
the product becomes zero at ¢, ¢, gs‘

e
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Panel 3
In order to obtain three equations we take  ¢(§) = (A° + BE+C)
where 4,B,C are arbitrary real numbers.
+1
The integral f (E-&)(¢—&)(E-&G)AEL +BE+0)=0
-1
]_t . t +1
splitsinto [ e g6 - (e — gn)agt) =0
+1
|- ee— e - e =0
+1
| -ane-ane-eno =0
This constitutes a system of three equations can be solved for the locations
of the quadrature points to give
Panel 4

syms xi xil xi2 xi3 real

int((xi-xi1)*(xi-xi2)*{xi-x13),-1,+1),

int(xi*(xi-xi1)*{xi-xi2)*(xi-x13),-1,+1)

int(xi~2*(xi-xil)*(xi-xi2)*{x1i-xi3),-1,+1)

solution =solve('-2/3%xil-2/3%x12-2/3*%x13-2%x11*xi2*x13=0",...
'2/542/3%x11%xi2-2/3%(-xil-x12 ) *xi3=0",...
'-2/5%xil1-2/5%xi2-2/5%xi3-2/3*xi1*x12*xi3=0", "xil", "xi2"', 'xi3")

solution.xil

solution.xi2

solution.xi3

ans =

1/5%15~(1/2)
-1/5%157(1/2)
1/5%15~(1/2)
-1/5%157(1/2)
0

0

The locations of the quadrature points are seen to be

1= —1/5%15Y2,6 = 0,65 = 1/5%15"2

(C) 2008 Petr Krysl
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Panel 5

The weights of the quadrature points are determined so that an arbitrary quadratic
polynomial (the Lagrange interpolation polynomial through three points) is
integrated exactly 4 1

LO = [ @ +be+e) = /342

—1 -1

The quadrature formula gives

3
> (a8} + bl + )Wy =
k=1
(a€f + bE) + )W + (all + bls + c)Wa + (al + bés + )W
= a(W1€] + Watd + Waed) + b(Wiéy + Waly + Waks) + (W1 + Wa + Ws)

Evidently, the exact integral is obtained if

(W1€3 + Wil + W3éd) = 2/3, (Wiéy + Waby + Wals) = 0, (W) + Wo + W3) =2

Hence, we obtain Wi =5/9, Wy = 8/9,W; = 5/9

Panel 6

Since the integral of the difference between P(¢) — L(¢)]

mtegrates to zero

+1
f (€= £1)(E — £2)(¢ — Ea)(AE + BE+C) = 0

—1

we may conclude that fifth order polynomials (and lower order) will be
mtegrated exactly by the three-pont Gaussian rule.
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Panel 1

Exercise 20-a

Compute the first row of the mass matrix using Gaussian 1-point
quadrature for the mesh shown below. Mass density 1s constant
across the mesh.

i
o 5 5 1 2
2 1
3 4

Use the Galerkin method (test function = basis function).

Panel 2

By definition the mass matrix elements are computed from
oL
M;; = / njuN; dz . (2.17)
JO

Because we are using the Galerkin method, m =M
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Panel 3

[a—
o
e

We can see that functions V1, Vs

are never both different from zero at any given location. Therefore,
the mass matrix element My =0

Panel 4

The mass matrix element M11 is evaluated from integration on the first
finite element only, since the first basis function is identically zero on the
second finite element.

T2

Thus, we need to compute M1 = / Nip de = /»5/ N{ dzx
Ty T

1

The basis function may be expressed as the Lagrange interpolation

polynomial
r—Io

Ni(z) =

T — T2

Analytical integration yields A7y, = Mf : Nide = p(zy — 21)/3
@y
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Panel 5

(GGaussian one-point integration is according to (2.26) written as

M = pN1(§ = 0)* x (z2 —21)/2 X 2

/o VN

Integrand Jacobian Weight

Note that the basis function at the midpoint of the interval assumes the value

of one half
Ni(§=0)=1/2

We have for the mass matrix element computed with Gaussian one-point
quadrature

f'l/fl]_ - }Lf\rl(f = 0)2 X (332 — :171),:"2 X 2= ,LL(SCQ — :131)/4

Panel 6

The mass matrix element M;, 1s evaluated from integration on the first
finite element only, since the first basis function is identically zero on the
second finite element.

T2

Thus, we need to compute M, = f h NiNop dx = ;:,f NN, dx
T T

1

The basis functions may be expressed on the first finite element as
the Lagrange interpolation polynomials

T — €T9 & — Iy

Nl(ﬂl): NQ(ZB)*

75132—5!?1

1 — Iy

T2
Analytical integration yields M, — /,;f NNy dz = p(xs — 21)/6
T

(C) 2008 Petr Krysl
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Panel 7
(GGaussian one-point integration is according to (2.26) written as
ﬂ/flg = le(f = U)l\rg(é" = Oj X (3_?2 — 331)/2 X 2
Integrand Jacobian Weight
Note that the basis function at the midpoint of the interval assumes the value
of one half
Ni(§=0)=1/2 Np(§=0)=1/2
We have for the mass matrix element computed with Gaussian one-point
quadrature
ﬂfflg = pj\'rl(g = O)Ng(f = 0) x (:Cg — $1)/2 X 2= ‘U.(HSZ — 11)/4
Panel 8

Comparison of the first row of the mass matrix

M My, M

Analytical: w(xg —1)/3 wlzg —21)/6 0

Numerical (one-point Gaussian quadrature):

Wz —z1)/4 @y —x1)/4 0

(C) 2008 Petr Krysl
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Panel 1

Exercise 20-b

Verify formula (2.28) for the derivatives of the basis functions.

Panel 2

The basis functions on the finite element iy may be written in terms of the
physical coordinate x using the Lagrange interpolation polynomials as

L (x—xj) i,gﬂ:u
N =y VO

|-

Consequently, the derivatives of the basis functions on this element may
be written as

i 7

1 1
Ni= —— N = ———
The same results would be obtained from the geometrical picture: the slope of
either straight line is rise over run. Rise is either -1 or +1, run is the length of the
element, (z; — x;)
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Panel 3

In parametric coordinates on the standard interval —1<¢ < +1

the basis functions are expressed as shown in equation (2.27). Brietly, the
basis functions on the standard interval are Lagrange interpolation
functions in terms of the —1 < £ < +1 variable.

Ni(g) = ((é—_z)) N (e = (£ — &)

(& — &)

Here we write & = —1 for the left-hand side of the standard interval

which mapsto z; and &; =41 for the right hand side of the standard
interval which maps to #;

Panel 4

We have this picture

Ni(z) = (z—z5)
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Panel 5
The derivatives of the basis functions in the parametric coordinates
(£-§) (£ &)
Ni(§) = N(6) = =50
(& — &) i(©) (& — &)
with respectto ¢ are readily calculated as
ON; 1 1 IN; 1 1
a¢ (& — &) 2 aE & —&) 2
The map (2.24) is easily inverted: ¢ — @ a=x4b=1;
— a
L 2 :
Therefore, the derivative Fr follows, and we can write
T Tj— T;
for the derivatives of the basis functions with respect to x
oON; _oN;o¢ 1 2 1 ON; ON;0¢ 1 2 1

Eia_fﬁi_§33j*1’z‘ Tj — T Az 9 %_5:5‘?-—3:5 Tj— T

These are the same expressions we obtained previously by directly
differentiating the Lagrange interpolation polynomials with the respect to x;
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Panel 1

Exercise 20-¢

Compute the first row of the mass matrix using Gaussian 2-point
quadrature for the mesh shown below. Mass density 1s constant
across the mesh.

i
o 5 5 1 2
2 1
3 4

Use the Galerkin method (test function = basis function).

Panel 2

By definition the mass matrix elements are computed from
oL
M;; = / njuN; dz . (2.17)
JO

Because we are using the Galerkin method, m =M

Page 1 of 4



12/15/2008 : exercise page 20-c (C) 2008 Petr Krysl

Panel 3

[a—
o
e

We can see that functions V1, Vs

are never both different from zero at any given location. Therefore,
the mass matrix element My =0

Panel 4

The mass matrix element M11 is evaluated from integration on the first
finite element only, since the first basis function is identically zero on the
second finite element.

T2

Thus, we need to compute M1 = / Nip de = /»5/ N{ dzx
Ty T

1

The basis function may be expressed as the Lagrange interpolation

polynomial
r—Io

Ni(z) =

T — T2

Analytical integration yields A7y, = Mf : Nide = p(zy — 21)/3
@y
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Panel 5

(Gaussian 2-point integration is according to (2.26) written as
11411 = ,uNl(ﬁ = lj‘r\/g)z X (:E'Q — Ll)/‘z x 1
+uN1(E = —1/V3)? x (z2 — 21)/2 x 1

VAR AN

Integrand Jacobian Weight
The basis function assumes at the quadrature points values of
Ni(€ = _1/\/5) = 0.788675134594813 Ni(£ = 1/\/§) = 0.211324865405187

We have for the mass matrix element computed with Gaussian 2-point
quadrature

My = (0.2113248654051872 + 0.788675134504813%) X (22 — 21)/2 X 1 = prws — 21)/3

We can see that the numerical result agrees with the analytical integration.

Panel 6

The mass matrix element M;, 1s evaluated from integration on the first
finite element only, since the first basis function is identically zero on the
second finite element.

T2

Thus, we need to compute M, = f h NiNop dx = ;:,f NN, dx
T T

1

The basis functions may be expressed on the first finite element as
the Lagrange interpolation polynomials

T — €T9 & — Iy

Na(z) = Ty — 1

Ni(z) =

1 — Iy

T2
Analytical integration yields M, — /,;f NNy dz = p(xs — 21)/6
T
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Panel 7

Gaussian 2-point integration is according to (2.26) written as
My = pN1(€ = 1;’\/§)Ng(§ = 1/\'@) X (mg — 21)/2 X 1‘
+uN1(€ = —1/V3)Na(é = —1/V3) x (z2 — z1)/2 x 1

/ \ A

Integrand Jacobian Weight
The basis function assumes at the quadrature points values of

Ni(€ = —1/v/3) = 0.788675134504813  N1(¢ = 1/v/3) = 0.211324865405187
No(€ = —1/v/3) = 0.211324865405187  Ny(& = 1/v/3) = 0.788675134594813

We have for the mass matrix element computed with Gaussian 2-point

quadrature
My = (2 % 0.211324865405187 # 0.788675134594813) x (w9 — x1)/2 x 1 = p(xg — x1)/6

Again, the two-point Gaussian quadrature integrates the mass matrix element

exactly.

(C) 2008 Petr Krysl
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Panel 1

Exercise 28-a

Compute the solution to the problem described in section 3.2 by
hand.

Panel 2

The basis functions (= test
functions)

The locations of the nodes

i oxi
10
2 L2
. 3 L
r— I r— I3
= Ns(z) =
Na(x) p— 2(z) P
1@/2\%

By convention we draw the function above the x-axis when it is
positive.

(C) 2008 Petr Krysl
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Panel 3

The first task is to construct the equations to be solved for the unknown

displacements. This means computing the elements of the stiffness matrix
and the elements of the load vector.

L
L)F; —leﬂu /“ Njgdz=0, j=2,..N, (3.1)

1=l

which may be arranged in matrix form as
Kd=1L, (3.2)

where K is a square (N —1) x (N —1) matrix collecting K;;.i.j = 2,.... N.
The column matrix d collects the degrees of freedom dp = wr.,. k =

1....N — 1. The column matrix L is the load vector, with components
oL
Lk = .\';\-_] (L)f‘L - 1\-,\-_1‘1!!.'1 - / -\'k—Lq dl‘ =0, JIL =1...N=1.
Jo
(3.3)

[¥3]

Panel 4

First the load vector, Note that Fi — 0‘ wl =0

1,...N = 1. The column matrix L is the load vector, with components

'Ak_wv/ hegdzr =0, k=1,..N=1.

(3.3)

_.H

Note that the use of the Simpson's rule means that all the integrals
will be evaluated exactly since they are at most linear
polynomials. Therefore we can evaluate the integrals here
analytically, and the result will be identical to that computed with
a finite element program in section 3.2.

So for the load vector we obtain

L
Ly :/ gNa(z) de = g(zs — x1)/2 = qL /2
0

L
Lo ](; gN;z(z) de = g(zg — x9)/2 = gL /4

4
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Panel 5
For the stiffness matrix coefficients we have
K= [ 2mpdNi g (2.16)
Y= b O9r  Ox -
L
Koy = / Ni(z)PNy(z) dz =
0
Lz 1 R | 1
/ P dx + ] P dr =
0 To—X1 Tz — I Lj2 T2 — T3 T2 — T3
Note that the integral splits into two integrals over each element
since the expression for the basis function is different from
element to element.
Lj2 L
~ o1 1 1 1 2P 2P 4P
/ —P——dz + —P—de=— 4+ — = —
o L/2° L/2 12 L/2° L)2 L L L
Panel 6

L
Kos = f N!(z)PN}(z) dz :‘
0

Lz 1 L 1
/ 0P dx +/ P dx =
0 T3 — T2 Lj2 T2 —Z3 T3 — T2

L1 1 2P

— P dz=
v D72 L)2 L

Note that we have the symmetry Kz = Kss

L
Kas = [ Ni(z) PNi(z) do :‘
0

L/2 L 1 1 L
/ OPOdm+/ P d:c:] Lt 2P
0 L/2 T3 — Ty T3 — T3 L/2 Lj2" L2 L

(C) 2008 Petr Krysl
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Panel 7
Now we can write down the matrix equations
P 4 -2 wy \ _ f qL/2
L\ -2 2 ws / \ g¢gL/4
with the solution
wy \ _ ¢L® ( 3/8
Wa B P 1/2
Panel 8

The solution 1s displayed on the mesh to mimic the shape of the cable. The
deflection function is constructed as

w(z) = Na(z)we + N3(z)ws

—
~———p

0.05
01
0.15
02
025
03
035
04

0.45

0s
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Panel 1

Exercise 28-b

Compute the solution to the problem described in section 3.2 by
hand. Use the numbering of equations and element-by-element
assembly technique.

Panel 2

First we will introduce an organizing principle into the definition of
the mesh. All elements will be defined by the pair
(left-hand side node, right hand side node)

Element Nodes
1 1.2
2 2.3

Second, we will assign a numbering to the nodal displacements. We
start with the displacements that are unknown (sometimes we say free),
and then we follow with the displacements that are known {sometimes
we say prescribed).

Node Unknown # The numbers of the unknowns
1 3 will determine the numbering
2 1 Ni(z) of the basis functions.

3 2 \ /.Nz(m)

There are two actual unknowns, the deflection at the
left-hand side is known to be zero.

(C) 2008 Petr Krysl
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Panel 3
The basis functions (= test The locations of the nodes
functions) i x
10
2 L2
3 L
By convention we draw the function above the x-axis when it is
positive.
Panel 4

Now the load vector components will be computed element-by-
element.

L w2 03
Ly = / N1 (z) da = / N1 (z) dz + f (N(@) da
0 x x

1 2

The contribution from these integrals is going to be nonzero only if
the nodes of the element are associated with the unknown 1,
otherwise the contribution 1s zero.

This suggests that rather than computing the load vector elements
as

Loop over load vector components f
Loop over elements e
Add contribution to component j from element ¢
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Panel 5
we could switch the loops and compute the components of the load
vector which are associated with the nodes of the element by
looping
Loop over elements e
Add contribution to component i associated with first node
from element e
Add contribution to component j associated with second node
from element e
r— I
Element 1: Ny(z) = —— .
T2 — 1 Only one test function is
1 nonzero over this
element. LHS node is
associated with
The contribution to Iy prescribed displacement.
TR
/ gN1(z) dx Ty =T1,TR = T3
TL
Panel 6
TR
f gNi(z)dx| = q(zg — 1) /2 = q(zg — x1)/2 = qL /4
TL
Element 2: Tp =X, TR = T3 Ni(@) = x— a3
Tg — X3
_ 2 3
The contribution to Iy
TR
[ i) o=
TL

glzrp —xp)/2 = q(zs — z2)/2 = qL/tl‘

The contribution to I

f gNy(z) dz =g = 3]

xr
glep —xp)/2 = q(xg — x2)/2 :qL/ﬁl‘

(C) 2008 Petr Krysl
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Panel 7

Now all the contributions from the elements to the load vector
components will be added up to yield

Element 1 Element 2

\/

v ()= (i)

Element 2

Panel 8

The components of the stiffness matrix are computed in much the
same manner.

Loop over elements e
Add contribution to component #37,j7, of the stiffness matrix
from element e

Element 1: Ty =T1,Trp = I3

r—=Iry

Ni(z) =
1

T2 — 1 Only one test function is
nonzero over this
element. LHS node 1s
assoclated with

The contribution to K11 prescribed displacement.

o T 1 P 2P
N{(z)PN!(z) d :/ P dz|= — -
fasl, (E) PR ) d v TR—TL TR—ap (L/2) (L/2)* L

bt
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Panel 9

(C) 2008 Petr Krysl

There is no contribution to components 12, 22 since the
second basis function 1s zero over element 1.

Element 2; T — X9, Tgp — ¥3

The contribution to K71

or . e 1
/ Ni(z)PNi(z) dz —/ P dz
T

xy TR T Tgp—TL

P 2P
~IEEE s T

The contribution to K5 = Koy

T 1 1

P —2P

wa N{(z)PN}(z) dz f P de = (L/2) =3

@, TL— TR Tp—TL

—(L/2)?

Panel 10

The contribution to ~ Kas

]ERNQ(J;)PN;(;B) dx:f” L p_ 1! — dz = (L/2)

L rp—x;, Tp—=&k

10
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Panel 11
Now all the contributions from the elements to the stiffhess matrix
components will be added up to yield
Element 1 Element 2
/ e
oF L 9F 9P
_ L L T
(Tt
Element 2
So you can see that the stiffness matrix and the load vector have the same
components as before. The solution has the same values for the
deflections at the nodes, except that they are numbered wi,ws
Panel 12

We can do more to streamline the computational procedure. The key
1s to compute the so-called elementwise stiffness matrix and load
vector, and then use the so-called assembly procedure.

To compute the elementwise quantities, we shall consider a generic
element with nodes at locations #x:*M

Ni(z) = _x’;*_”“’;‘”;
The element load vector 1s defined as
(€) _ fl qN_K (z) dz 5 M
L = ( fx 'ne () dz
Nu(a) = —— 2K
. . Tr — LF
For uniform load this works out to i
K M
L(E) — f qNK( ) d‘r q('ﬂ'l/[ _mK)/Q ]-
fx gNpr(z) da . 1
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Panel 13
The element stiffhess matrix i1s defined as
o (S Nie@)PNi@) da [ Nie(o) PNj(2) d
-\ LoD Ny (@) PNj(z)de [ Nj(w) PNjy () da
We compute o
Nic(z) = u
TN P T — LM
[ Nl PNye) do = ———
@K Ty — Tx
TpT -
f N’ (z)PN', (z) do = ——2— K M
- Ty — TR ‘
. _ . Nu(z) = TTETK
and so the elementwise stiffness matrix is Tpr — Mﬁf@
ge___F 1 -1 K M
Ty —xg \ 1 1
Panel 14

To compute the stiffness matrix for the third time, we will loop over
the elements, compute the element stiffness matrix, and assemble it
into the global stiffness matrix for the entire structure.

Initially, the global stiffness matrix 1s empty (zero matrix).
0 0
“=(50)
T = T1,TM — $2|

2P/ 1 1
O
K _L(l 1)

The elements of the elementwise stiffhess matrix are assembled
using the equation numbers associated with the nodes.

P 3 ! 3
2 1 —1 e
(e} —
K _L(l 1)1

Element 1: TMm — TK = (L/Q)‘

Equation numbers
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Panel 15
“— .
3 1 Equation numbers
K _ 2P 1 —1\3_
ST\ -1 1)1
Now assemble 1t
2P 00
ko(£0) e xo(D0)
0 0
Panel 16
Element 2: %K = %2,%M = 23] Ty — g = (L/Q)‘
2P 1 -1
(e} — 27
K= (—1 1)

The elements of the elementwise stiffness matrix are assembled
using the equation numbers associated with the nodes.

1 2 ;
) 2P ( - ) 1‘L/Equatlon numbers
TL\ -1 12
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Panel 17
— .
12 1 Equation numbers
K(e) _ g 1 =1 «
L 1 1 /2
Now assemble 1
2P 4 2p | _2p 0
K = L ’p s K= ( L )
—£ = 0 0
Panel 18

To compute the load vector, we will loop over the elements, compute
the element load vector, and assemble it into the global load vector for

the entire structure.

Initially, the global load vector 1s empty (zero matrix).
0
L= ( 0 )

TR = X1, T — $2|

@_9ab (1
w-2 (1)

The elements of the elementwise stiffness matrix are assembled
using the equation numbers associated with the nodes.

Lo _ g( 1 )‘ S/Equatlon numbers
4\ 1 1

Element 1: TMm — TK = (L/Q)‘
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Panel 19
] Equation numbers
L(e)_ﬁ( ! ) 3.1
1 1
Now assemble it
L 0
I = 1 «— [ =
(%) (0)
Panel 20

Element 2; %K = %2,%m = 3] 2y — Tk = (L/Q)‘

@_9db (1
-2 (1)

The elements of the elementwise stiffness matrix are assembled
using the equation numbers associated with the nodes.
B aL ( 1 ) 1 /Equatlon numbers

(e)
L 4 1 2
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Panel 21

(C) 2008 Petr Krysl

Equation numbers
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Panel 1

Exercise 28-c

Extend the problem described in section 3.2 by prescribed support
settlement at the left-hand side pin. Solve by hand using the
technique of partitioned global system.

Panel 2

Here 1s the definition of the mesh.

Element Nodes
1 1.2
2 2.3

We will assign the following numbering to the nodal displacements.
We start with the displacements that are unknown (sometimes we say
free), and then we follow with the displacements that are known
(sometimes we say prescribed).

Node Unknown # The numbers of the unknowns
1 3 will determine the numbering
2 1 of the basis functions.

3 2
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Panel 3
The basis functions (= test The locations of the nodes
functions) i ox
1 0
2 L2
3 L
Note that we are including
the third basis function
so that we can compute
the load and stiffness.
By convention we draw the function above the x-axis when it is
positive.
Panel 4
Element 1 5 3 1(’/;’ Equation numbers
e (3 4)i

L
Equation numbers
L(EJ:qL<1> 3 -4

ée";— Equation numbers
) e
2

1
Element 2 K — 2p ( :

Equation numbers
o _ (@) 1.7
1\@/| 2
Global stiffness and load vector Displacement
—2
P @ w
Kzf(sdz ) L=( 3) d=| w
& 0 2 % + FO w3
4
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Panel 5
The global system of equations is written as
L
4 —2| -2 wy &
%(_2 2‘0\(1@) —( %)
— LI
20 | 2/ s Tt = unknown
As the partitioning by the red lines indicates, the global system may
be broken up into two parts:
The first part can be used to solve for the unknown displacements
() () (3
T\ -2 2 . ) = - T ws+ | gt )
Support settlement load Distributed
load
while the second part can be used to solve for the reactions
P w1
b = =(-20 2) (wg) gL
L 4
w3
Panel 6

The displacement due to the distributed load of only was already
obtained in exercise 28-a...

wy ql? [ 3 /8 ws

Wo B P 1/2 N Ws \
...to which we add the contribution of the support settlement
The reaction at x=0 is easily obtained as

Fo= %(-2) (g(s,%) + wg) +
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Panel 1

Exercise 28-d

Extend the problem described in section 3.2 by prescribed support
settlement at the left-hand side pin. Solve by hand using the
technique of elementwise support-settlement loads.

Panel 2

Here 1s the definition of the mesh.

Element Nodes
1 1.2
2 2.3

We will assign the following numbering to the nodal displacements.
We start with the displacements that are unknown (sometimes we say
free), and then we follow with the displacements that are known
(sometimes we say prescribed).

Node Unknown # The numbers of the unknowns
1 3 will determine the numbering
2 1 of the basis functions.

3 2
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Panel 3
The basis functions (= test The locations of the nodes
functions) i ox
1 0
2 L2
3 L
Note that we are including
the third basis function
so that we can compute
the load and stiffness.
By convention we draw the function above the x-axis when it is
positive.
Panel 4

The global stiffness matrix 1s assembled as an exercise 28-b from
elementwise stiffness matrices.

Element 1: Tk = 1,%p = 22| Ty — Ik :(L/'Z)‘

The elements of the elementwise stiffness matrix are assembled
using the equation numbers associated with the nodes.

— .

3 1 Equation numbers

K — g ( L=l ) 3.~
- 1

L\ -1 1
Element 2: %K = %2,%M = T3] Ty — Tx = (L/Q)‘
2P 1 -1
() — 22
K= ( -1 1)

The elements of the elementwise stiffness matrix are assembled
using the equation numbers associated with the nodes.

1 2

e/: Equation numbers
K — 2_P 1 -1 'd
S L\ -1 1 )2
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Panel 5

The Elementwise loads due to the distributed load are also assembled as
before.
Element 1: Tg =T1, Ty = o Ty — K :(L/Q)‘

The elements of the elementwise stiffness matrix are assembled
using the equation numbers associated with the nodes.
4L ( 1 ) ‘ 3 /Equatlon numbers

{e)
L 4 1 1

Element 2: %K =%2,%M = T3] 2y —Tx = (L/Q)‘

The elements of the elementwise stiffness matrix are assembled
using the equation numbers associated with the nodes.
L ( 1 ) 1 /Equauon numbers

(e)
L 4 1 2

Panel 6

The support-settlement loads are the novelty here. From exercise 28-¢
we see that the prescribed displacements multiply columns of the
global stiffness matrix which are moved on to the right-hand side as
loads. Therefore, we note that we can do this multiplication directly
on the element stiffness matrices, and assemble the resulting load
vectors.

Element1: %K =%1,Zm = T2|  Tm — Tk = (L/Q)‘

The elementwise stiffness matrix is multiplied by w1 as an
unknown displacement, and by ws as a prescribed

displacements.
w3
— -
op 3 1 3 Equation numbers
K(B) _=r 1 -1 e
L -1 1 /1

(C) 2008 Petr Krysl
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Panel 7

The first column will become the load (with a negative sign -- we are

moving it onto the right hand side)
w3

3 1‘:’/ Equation numbers
K(e) _ 2P 1 —J. 3/
T L1 1)1

1 _2r ( 1 ) s 3L/Equa‘uon numbers

Element 2: No displacement on element 2 1s prescribed -- there is no
support settlement load generated on this element.

Panel 8

In this way we arrive at the same global system of equations as in
exercise 28-b

| )
7 N

Support settlement load Distributed load

&
TN
\
(SR
\
B b2
——
TN
g &
[
—
Il
1
v
TN
|
O b
SN’
&
0
+
TN
EREE

(C) 2008 Petr Krysl
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Panel 1

Exercise 28-¢

Formulate the boundary value problem for the prestressed cable so
that it would allow for intermediate concentrated forces.

F

oo

D=

Panel 2

The reason we need to modify the deformation of the boundary
value problem is that under a concentrated force the second
derivative of the deflection (that 1s the curvature of the cable) 1s
infinite.

We can easily convince ourselves that this 1s the case if we consider
the concentrated force to be the limit of an infinitely narrow
distributed load, whose magnitude 1s adjusted to generate a given
nonzero force.

Pw”" +4¢=0
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Panel 3

Therefore, since we must avoid taking the second derivative at the
location of the concentrated force, we will assume that the equation
of the equilibrium holds everywhere in between concentrated
forces. Consequently, the length of the cable needs to be divided
nto segments in between the locations of the concentrated forces.
For simplicity we assume there is only one concentrated force
present, but the derivation will be applicable also for a different
number of concentrated forces.

The Differential equilibrium equation holds in the two intervals
P'w”-}-q:O‘ 0<z<ap

q zp<z<L

o0

Panel 4

The point © = ZF 1s then as special as the boundaries of the cable. As with
the boundary of the cable, the differential equation of equilibrium does not
hold at that point, and additional equations are required in order to
construct a solution of the boundary value problem.

Since we've broken up the original cable length into two pieces,
each of which has the boundary consisting of two points, we would
expect to have to write down to equations at the additional
"boundary point" =z =zp

The obvious equation is the continuity of the deflection.

w(zp) = w(z})
Hereby  a% we mean H g

immediately to , l
the left of *F D o

T we mean °{

x ) : X

F immediately to | )l

theright of 2p I
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Panel 5

Continuity of slope does not hold, however. The reason is the

presence of the concentrated force which needs to balance with tensile

forces in the cable.

Writing that equilibrium of an infinitesimally small segment including

the point of application of the concentrated force gives

Pu'(zf) + F — Pu'(z5) =0

Note that this equation very much

resembles the natural boundary

condition (1.3). There is nothing 7

accidental about this resemblance, and g

intermediate forces are treated exactly , l

as boundary conditions in the finite D.___, g[

element model. | x |

rp Fr

Panel 6

The boundary value problem 1s defined as:
The differential equilibrium equation holds in the two intervals

q rp<z<L

e :

|

g

b
We have the two boundary conditions

w(0) = 0 Fy — Pw'(L) = 0|
and the two continuity conditions

w(zy) = w(z}) Pw'(z}) + F — Puw'(zp) = O‘

(C) 2008 Petr Krysl
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Panel 1

Exercise 28-f

Solve by hand the boundary value problem for the prestressed cable

using a mesh of two L2 finite elements.

F

—_—
| i | L2 £
l Fr

Panel 2

We change a little bit the mesh with the respect to the exercise 28-b.

The locations of the nodes Element Nodes
i xi 1 2.3
1 L 2 3,1
2 0
3 L2
Node Equation #
1 1
2 3
N 3 2

o]
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Panel 3
The global stiffness matrix is assembled from elementwise stiffness
matrices as
Element 1 3 2 Element 2 2 1
2P/ 1 —11\3 2P 1 —1\2
() = 22 (e) _ 22
® L(l 1)2 K_L(l 1)1
Global stiffness matrix
Py 2 2
K=1 ( -2 4 )‘
The global load vector is assembled directly from the applied forces.
Force Fp isapplied tonode 1 (equation #1), force F 1s applied
to node 3 (equation #2).
_( FL
e=(%F)
Panel 4

The displacement is  d = ( 3; ) — % ( Fj/gi;j; )

It will be instructive to consider the results in terms of a
superposition.

First consider FL=0F=0

Next, consider Fr =0,F #0

Wy

(C) 2008 Petr Krysl
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Panel 5

(C) 2008 Petr Krysl

Check the vertical equilibrium:
FL 7= 07 F=0

"

(w1 — W3y

P17

Check the vertical equilibrium:

FL=0F =0
(wy —w3(=0)) ws
P L)2 a PL_/z F

(wy —wy)
gy !

2

Fy,

2 3

— F

F

<
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Panel 1

Exercise 30-a

Demonstrate the sparseness of the stiffness matnix constructed for a
mesh of seven L2 finite elements.

Panel 2

The global stiffness matrix is assembled from elementwise stiffness
matrices as

Element 1 3 2 Element 2 2 1
2P I —1\3 2P I —1\2
(e) _ = (e) _ 24
K L(1 1)2 K —L(1 1)1

Global stiffness matrix

Pi 2 -2
K_E(4 4M

The global load vector is assembled directly from the applied forces.
Force Fp isapplied tonode 1 (equation #1), force F 1s applied
to node 3 (equation #2).
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Panel 3

First we will use a random numbering up the nodes. The equation
numbers will be taken the same as the numbers of the nodes. (Note
that we are ignoring the boundary conditions: if there were prescribed
displacements at the ends of the cable, we would number those nodes
last.)

-o—6—0
6

The element stiffhess matrix 1s for all elements the same

P11 -1
() = =
K _h(l 1)

Here £ is the element length, which is the same for all elements.

Panel 4

The elements are 0, ,® 0 0 0,0,
indicated by color.
Their 2x2 stiffness 74 1 3 8 2 56
matrices are 1 2 3 4 5 6 7 8
assembled using the () [ )
equation numbers.

o @] [ ]
Note that the stiffness
matrix is very sparse: ° oo o
wherever a box is
empty it holds a zero. o [

® o

@ ®
] ] o0

(C) 2008 Petr Krysl
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Panel 5

(C) 2008 Petr Krysl

Now we are going to
switch to a natural
numbering, left-to-
right.

Here the structure of
the stiffness matrix 1s
as good as it gets (tri-
diagonal).

Matrices of this
nature are called
banded since the non-
zeros occur only in a
band along the
diagonal.

1

2 3 4 5

5

6 7

8
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Panel 1

Exercise 32-a

Compute the elementwise mass matrix for the .2 finite element
using one-point Gaussian quadrature.

—

7
M

=

Panel 2

The mass matrix elements that

represent the elementwise interactions Nk (z) Ny ()

of the test function and the trial basis

functions are represented by this

matrix: ;
K M

TE

&fj\,f i{]\rf
f Nuyg(2)uNg(z) da f Nug(2) o Ny (2) dz

K TR

M) =

For simplicity we can assume here that the mass density 1s constant
on each finite element.

(C) 2008 Petr Krysl
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Panel 3

The quadrature formula (2.26) for the one-point Gaussian quadrature
uses the following table

For instance, we have
Integrand Weight
~ . e

| NaraVie(a) do e 3 (Vas Nc(6) { g ) O]

k
Jacobian

C'JM—?JK)Z_ T — TR

- /2072 (245 -

The elementwise mass matrix obtained from one-point Gaussian quadrature

() — M —2x (1]
M = p— (11

(C) 2008 Petr Krysl
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Panel 1

Exercise 32-b

Compute the elementwise mass matrix for the .2 finite element
using Simpson's quadrature.

—

7
M

=

Panel 2

The mass matrix elements that

represent the elementwise interactions Nk (z) Ny ()

of the test function and the trial basis

functions are represented by this

matrix: ;
K M

/mM Ny (x)pNg(x) dz ]‘mM Ny (x)uNpy (z) dz

g £
f Ny (2)pNg (z) dz f Nug(2) o Ny (2) dz

K TR

M) =

For simplicity we can assume here that the mass density 1s constant
on each finite element.

(C) 2008 Petr Krysl
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Panel 3
The quadrature formula (2.26) for the Simpson's quadrature uses the
following table
k &k Wy
1 -1 1/3
2 0 4/3
3 +1 1/3
We have
Integrand Weight
e N Ty — TE 7
| Nurladic(o) o 3 (Nar(epVie) (25 ) 0045
TR k
Jacobian
Note that for k=1 and k=3 we have one of the basis functions in the
product be equal to zero. Therefore, for this case the quadrature
formula gives ,
— (1/2)u(1/2) (:LMQ;M) 4/3 = Mw
Panel 4

For the diagonal elements we have for instance

LA
/ N;((:c);d\’;((m) dr =
TK

mmn(ﬂ%ﬁf)uswuwmum(ﬂgﬁﬁ)wsummm(ﬂ%;ﬂ)US

Ty —TK
3

and the same result is obtained for / Nyt (z)uNp (z) dz

As aresult, the elementwise mass matrix 1s obtained as

() _  Tm—Tx (2 1
M = p— (1 2

Since the product of two piecewise linear basis functions is a
quadratic function, the Simpson's rule will be able to give us an exact
integration, so this mass matrix coincides with the analytically
integrated answer.

(C) 2008 Petr Krysl
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Panel 1

Exercise 32-c

Compute the elementwise mass matrix for the .2 finite element
using trapezoidal-rule quadrature.

—

7
M

=

Panel 2

The mass matrix elements that

represent the elementwise interactions Nk (z) Ny ()

of the test function and the trial basis

functions are represented by this

matrix: ;
K M

/mM Ny (x)pNg(x) dz ]‘mM Ny (x)uNpy (z) dz

g £
f Ny (2)pNg (z) dz f Nug(2) o Ny (2) dz

K TR

M) =

For simplicity we can assume here that the mass density 1s constant
on each finite element.

(C) 2008 Petr Krysl
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Panel 3
The quadrature formula (2.26) for the Simpson's quadrature uses the
following table
k &k Wy
1 -1 1
+1 1
We have
Integrand Weight
e N Ty — TE 7
| Nurladic(o) o 3 (Nar(epVie) (25 ) 0045
TR k
Jacobian
Note that for both £=1 and k=2 we have one of the basis functions
in the product be equal to zero. Therefore, for this case the
quadrature formula gives
=0
Panel 4

For the diagonal elements we have

LA
/ 17\![((1')[1,17\1[((1‘) dr =
T

= () (2 ) 1 o) () 1 = R

and the same result is obtained for /x Ny (z)pNu (z) d

Ag aresult, the elementwise mass matrix 1s obtained as

()  Tm—2zx {1 0
M= (01

Note that the elementwise mass matrix is diagonal. Assembling
diagonal mass matrices into the global mass matrix will make also the
global mass matrix diagonal. Some solution techniques derive their

efficiency from the mass matrix being diagonal (the so-called explicit
time-stepping).
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Panel 1

Exercise 33-a

Find analytically the free vibration modes and frequencies for a
simply supported cable with uniform mass density.

P u

Panel 2

The Initial Boundary Value Problem (IBVP) is written as
Puw" = pw w(0) =0,w(L) =0

We will use the technique of separation: the displacement function
will be sought as a product that separates space and time

w(e,t) = $a)b(t)

The first function describes the shape of the cable, the second function
gives it a variation in time.

Substituting, we obtain

Po"(z)d(t) = pd(a)d(t)
When this is rewritten as

(P/m)¢" (x)/$(x) = ¥ (1) /% (t)

we realize that the ratios of the functions on either side must be
constants since on the left-hand side we have a function of the space
coordinate, while on the right-hand side we have a function of the time.
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Panel 3

Functions whose second derivatives are proportional to themselves are
the exponentials. Therefore we shall assume

¢(z) = Aexp(Az) ¥ (t) = Bexp(ft)

where the constants may be in general complex. (But the functions
themselves must come out real;, we will use this fact presently.)

Upon substitution into

(P/)¢" (x)/ $(z) = b(t)/9(t)
we obtain the following relationship between the constants

(P/p)\* = °
Using the Euler identity exp(Az) = exp(ReAz) (cos(ImAz) + isin(ImAx))

we can write for the function that describes the shape of the cable

d(z) = Aexp(Az) = (ReA + ilmA) exp(Redz) (cos(ImAz) + isin(ImAz))

Panel 4

which simplifies to

¢(z) = exp(ReAz) (ReA cos(ImAz) — ImA sin(lmz\:v))‘

since the resulting function must be real.

By inspection of the boundary conditions it is clear that only the sine
function is admissible. It satisfies the boundary condition at x= 0, and it
can also satisty the boundary condition at x=L 1f

sin(ImAL) =0

from where it follows
ImA =kn/L £=1,23,...

(We discount the possibility of k=@: the cable would not deflect at
all)

(C) 2008 Petr Krysl
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Panel 5

This result is substituted into (P/u)A2 = B2
to yield
(P/p)A* = (P/p) (ReX)? — (ImA)® + 2iReAlmA) =

. ‘ (*)
3 = ((Ref)® — (ImB)® + 2iRefImp)

At this point we realize that the time-dependence function (%)
should represent harmonic (sinusoidal) motion. Therefore we must
require that

Ref =10

Going back to the (*) equation, it immediately follows that
ReA = 0|

so that finally we conclude
(P/p)(ImA)* = (ImB)°

Panel 6

As 1s the convention, we shall call

ImfA=w
In this way we arrive at the relationship that defines the natural frequencies
of vibration
k
w:% P/u k=1,2.3,..

Remark: In order to solve the initial boundary value problem completely,
we could consider initial conditions in order to determine all the constants
involved. Since we are interested in the so-called steady-state free harmonic

motion, we do not need the precise time dependence, and for instance
taking a cosine time variation 1s adequate.
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Panel 7
Selected mode shapes
o S Pl
— Wy = —
Wy = E _P/p, L I
0 -1 -1 -1
0.2 05 05 05
304 g 0 g 0 0
06
0 05 0s s
"o 07 04 06 03 1 "0z 04 06 or 1 ‘"oz o4 0e 05 1 ‘ooz 04 08 08 1
27 P Am
we =V Ek ws =7V E/u
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Panel 1

Exercise 33-b

Find analytically the free vibration modes and frequencies for a
simply-supported/roller cable with uniform mass density.

P p
s g

Panel 2

The Initial Boundary Value Problem (IBVP) is written as
Puw" = pip w(0) = 0,w'(L) = 0|

In the same way as an exercise 33-a we will construct the solution for
the displacement as

w(e, ) = d(a)h(t)

The next few steps are identical to those of exercise 33-a.

We arrive at
d(x) = exp(ReAx) (ReA cos(ImAz) — ImA sin(lmx\:v))‘

as before. The boundary conditions are different, however.

As before, the sine function is admissible as it satisfies the boundary
condition at x= 0, and it can also satisfy the boundary condition at x=L
if

w'(L) = ¢' (L) = exp(ReAL)ImA cos(ImAL) = O‘ — cos(ImAL) =10
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Panel 3

Tt follows that

k=1,23,...

Panel 4

This result 1s substituted into (P/u)A% = B
and as before we find
Ref =0 ReA = 0

and
(P/1)(ImA)? = (ImB)?

As before, we shall call

Imf=w

and we arrive at the relationship that defines the natural frequencies of
vibration

k-1
o= L”WMPM k=1,2.3 ..
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Panel 5

Selected Mode Shapes

37 5im
— 2 _ "2
w1 =</ FP/p wy = ——/P/p
L , L
0 -1 -1 -1
0.2 05 0.5 0.5
04
» 0 3 0 B0
0.6
08 0.5 05 05
Yooz 04 06 08 1 o 52 04 88 03 Yoz 04 08 0% ‘o0z 04 06 08 1
x ® x x
3ix 71
_ Y2 T
wz—TVP/# uqz% P/u
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Panel 1

Exercise 33-c

Find the free vibration modes and frequencies for a simply supported
cable with uniform mass density using a mesh of five L2 finite
elements. Use the trapezoidal integration rule.

P u

oy o P P
~ e \—y by g

Panel 2

We shall design the mesh as follows (as an example: we could have chosen
a different numbering). Note that we have made sure the nodes associated
with supports are a numbered last.

Py
= S © © =
5 1 2 3 4 6

The element length is A=L/5

The elementwise stiffness matrix is evaluated exactly with the trapezoidal

rule.
P 1 1
(e) — 2
K h(—l 1)

The elementwise mass matrix is diagonal with the trapezoidal rule. (See

exercise 32-c.)
() _ #h (10
M= 2 (0 1
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Panel 3
The structure of the global stiffness matrix is easily established by
graphically assembling the elementwise stiffness matrix. Each red
dot corresponds to (+/-)P/h.
The block corresponding to actual
unknowns is indicated in blue.
Panel 4

Similarly for the structure of the mass matrix. Each red dot corresponds
to muth/2.

The block corresponding to actual
unknowns is indicated in blue.

(C) 2008 Petr Krysl
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Panel 5
With the mass and stiffhess matrix at hand, we can solve the eigenvalue
problem
Ko =uw’Mo
We can solve the eigenvalue problem without specifying the tensile
force, the length of the cable and the mass density if we use the
following trick: defining the matrices
»>>Kt=[2,-1, 0, 0;
-1,2,-1, 0,
0,-1,2,-1;
0,0,-1,2];
Mt =diag( [2,2,2.2] );
we can write
_ P
K¢ =w’Mo 5 Kt ¢ = ﬁ; w? Mt ¢
which means that we can solve the eigenvalue problem
h? 2 2
Kt ¢ = %w“MtGﬁ: po Mt @
Panel 6

This 1s easily done with Matlabh:

== Kt=2,-1, 0, 0;
-1,2,-1,0;
0,-1,2,-1;
0,0,-1,2];

Mt =diag( [2,2,2,2] )
[V.D] =eig(Kt,Mt)

V=
0.262865556059567 -0.425325404176020 -0.425325404176020 -0.262865556059567
0.425325404176020 -0.262865556059567 0.262865556059567 0.425325404176020
0.425325404176020 0.262865556059567 0.262865556059567 -0.425325404176020
0.262865556059567 0.425325404176020 -0.425325404176020 0.262865556059567

D=
0.190983005625053 0 0

0 0.690983005625053 0

0 0 1.309016994374947

0 0 0 1.80901699437494

-l o o o
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Panel 7
This leads to the prediction of the first frequency of free vibration
w? = Q—PE 0.19098300562505
ph
— : : . 562505. 3.
w= V2x25x10 11098300 62005?m: 3 [;90\/%
This may be compared with the analytical prediction
m
W = T vV P/u
Panel 8

The first mode of vibration is the first column of the matrix V.
The meaning of those numbers 1s elements of the first
eigenvector 1

which may be visualized by forming the linear combination
> N;(@)(n);
g

By (¢,);we mean the j-th component of the eigenvector ¢,

A
9
ra
J

0.262865556059567

0.4253254041 76020

(1) = 0.4253254041 76020 o ] inear
0.262863556059567 interpolation
0
0
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Panel 9

The finite element results may be compared with the analytical mode
shape and frequency
™
Wi = 7V Plu
Ej — /2 x 25 x 0.190983005625053 3.090
* 06 w 7, VP/#:TVP/#
LEl 02 04 . 06 08 1 o O O )
0.262865556059567 %
0.425325404176020 .
(1) = 0.425325404176020 o= | inear
0.262865556059567 interpolation
0
0
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Panel 1

Exercise 56-a

Formulate the boundary conditions for a control volume for heat
conduction through the thickness of a wall of large extent (away
from the edges).

Panel 2

Consider a wall which is large in extent compared to its thickness.
Away from the edges of the wall, we can make the observation that
the heat flows essentially in the direction of the thickness. For
definiteness, take for instance a wall with given heat flux on one
side (solar rays), and transfer into ambient air on the other side.

| Surface temperature

T / Ambient air
Heat /

flux
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Panel 3

(C) 2008 Petr Krysl

Since the heat energy flows
through the thickness,
drawing a closed curve on

the observation that the ~ one face and projecting 1t

heat flows essentially in towards .the other face
the direction of the perpendicularly to the plane
of the wall creates a kind of

imagined "pipe" through
which the heat flows.

Away from the edges of
the wall, we can make

thickness.

Y
A
~

//\7’
\7 1.
D

The heat enters one
potato-shaped cross-
section, travels
through the "pipe",
and exits the other
potato-shaped cross-
section. No heat
enters or leaves
through the cylinder
wall (highlighted in
green).

Panel 4

wall.

The heat energy flux may be very different around the edges of the
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Panel 5

Here are the boundary conditions on the imaginary "pipe". Note
that in the present scenario we consider some specific boundary
conditions on the front and back potato shaped cross-section. These
would very from case to case. The boundary condition indicated in
green would stay the same.

Zero heat flux boundary
condition of the form (5.20)
n-q=0

In the present scenario,
surface heats transfer
boundary condition
(5.21)

In the present scenario,
surface heat flux

boundary condition
(5.20)

(C) 2008 Petr Krysl
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Panel 1

Exercise 59-a

Formulate a one-independent-coordinate (Galerkin model for heat
conduction through the thickness of a wall of large extent (away
from the edges).

Panel 2

The boundary conditions on the imaginary "pipe". Note that in the
present scenaric we consider some specific boundary conditions on
the front and back potato shaped cross-section. These would very
from case to case. The boundary condition indicated in green
would stay the same.

Zero heat flux boundary
condition of the form (5.20)
n.q=0

In the present scenario,
surface heats transfer
boundary condition
(5.21)

In the present scenario,
surface heat flux

boundary condition
(5.20)

(C) 2008 Petr Krysl
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Panel 3

Boundary condition to
be discussed later

The boundary conditions on the imaginary "pipe" -- the cylindrical
control volume through which the heat flows -- have been discussed
n exercise 56-a. Note that the through the thickness coordinate is
x, and the coordinates in the plane of the wall are y,z.

Zero heat flux boundary
condition of the form (5.20)
n-q=0

Boundary condition to
be discussed later

Panel 4

We will derive the Galerkin model so that it operates with x as the
only space coordinate. In other words, everything in the Galerkin
weighted residual will be independent of y and z.

In order to achieve this, we will have to require that the boundary
conditions on the faces of the wall and the initial conditions
throughout the region be independent of the coordinates y and z.
For instance, let us assume that at x=0 the temperature is
prescribed as a function of time.

T(z = 0,¢) = T(x = 0,t)|

(C) 2008 Petr Krysl
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Panel 5

As follows from our physical observation that the heat energy flows
only through the thickness of the wall, we must conclude that the
temperature field is independent of the coordinates y and z. A

consequence is that the gradient components of the temperature in the
plane of the wall are identically zero

or ar

Dy i 0 everywhere

The constitutive equation links the temperature gradients to the heat
fluxes. Also the constitutive equation must not depend on y and z. It
may depend on the through-the-thickness coordinate. Composite or
layered panels may be of this nature.

Since only the x- component should be nonzero, the constitutive
equation must also satisfy

dy = Oer =0

Panel 6

o7 T
As we have Iy = ~Kyz 5 — Ky — Ry

7ero
A S
QZ - ZT am ZY \ ZZ 6
Zero

the material must satisfy  Kyo = 0,620 =0

All isotropic materials (metals, polymers, concrete and such) satisfy this
condition, and many orthotropic materials such as composites or layered
structures where the layers are parallel to the plane yz would also satisfy
this condition.
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Panel 7

The two cross sectional areas at x=0 and x=L (the thickness of the
wall is denoted L) may be associated with any type of boundary
condition, prescribed temperature, heat flux, or surface heat transfer.
For simplicity we will include all three possible boundary conditions,
even though there are only two surfaces on which they may be
applied. This means that if one type of boundary condition 1s not
present, it should be ignored in the formulation.

The starting point for the actual formulation of the Galerkin weighted
residual is equation (6.9)

/ nc-.'g dV + [ (gradn) k(gradT)? dV — / n@Q dvV
J, " o Jy ’
+f 1nGq,dS +[ nh(T -T,)dS=0, nlz)=0forxzes .

Sg S.’i

(6.9)

Panel 8

dV

: . : oT
Let us take up the first-term: it is a volume integral / ney o
v

We talked about the thermal conductivity not being a function of y
and z The same goes for ¢v

If we define the test function to be independent of y and z, nothing in the

above integral will in fact depend on y and z Therefore, the integrand 1s
constant with the respect to y and z and we can write

/ncp—dV—/ Sf ncv—dv},_b/ ncvﬂdr
where S=the cross-sectional area of the cylindrical control volume.

As only the x-component of the gradients 1s nonzero, we can also write

/ (gradn) k(gradT)™ dV = S/ on — K —— or dz
Jv 0

oz Oz

Page 4 of 5



12/16/2008 : exercise page 59-a

Panel 9

Clearly, the same reasoning may be applied to the surface integrals as well.
For instance

f 0T, dS = Snls, @)ls,
Sz

Here  1|s,,(g,)|s, are the test functien in the prescribed value of the
heat flux on the cross-section where the boundary conditions (5.20) is
being prescribed.

The Galerkin formulation using a single independent space coordinate is
therefore written as

L orT Loy 0T L
S/o nchde—l—Sh/'o gamadx—:?/o nQ dx+

Sn|5'2 (qn)\sa + Sn‘sa h(Tf Td)|53 - O: Ns; — 0

Hereby 7|s, =0 we mean that the test function must vanish in the cross-
section where the temperature is prescribed.

Panel 10

Note that we still keep the cross-section area S in the weighted
residual expression, even though we could have canceled it. The
reason is that it allows us to keep in mind that the equation still
models the flow of heat energy through a three-dimensional body.
Keeping track of the units is also easier with the cross-sectional area
in place (all the expressions are in watts!).

(C) 2008 Petr Krysl
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Panel 1

Exercise 59-b

Compare the Galerkin models for the vibrating cable and the one-
independent-coordinate model of heat conduction.

Panel 2
The Galerkin formulation of heat conduction using a single independent
space coordinate is written as
L : L
oT an  oT
S —dz+ S — Ky — dz — ds
/Oncvat x—l—_/'oabﬂﬂa @ /OnQ’H—
5?’?\52 (@n)IS’z + Sn|53 AT — Ta)‘sa =0, T7|51 =0
Rewriting equation (2.11) (mainly changing the signs, and writing
the boundary conditions as at points 57 Sz in order to allow
for supports at either end) yields
L
f mxwoﬂHf P—d / ng dz —n|s, Fls, =0,
0 Jo
??\Sl =0
pf ,flt| ‘Df { |3> 1 ‘?'I
Sh Sy S S g S

el
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Panel 3

Now we can compare the two formulations term by term:

L oT Lon aT L
S]O nchdm—l—Sh/{; %ﬁmﬁdm—Si nQ dr+

5??\52 (@n)[sz + Sn|53 h(T_ Tct)‘sa =0, "7|S1 =0

L L L
.. an  dw
f npw dm+f a—zpa dx — ng dz — s, Fls, =0,
0 0 L
??|5'1 =0

Capacity ~ Mass Temperature ~ Deflection
Temperature gradient ~ Slope

Conductivity ~ Stiffness Heat flux ~ Transverse force

@D 1eat generation ~ Transverse load
Heat flux BC ~ Force BC

Panel 4

Importantly, the term with the derivatives is second-order for
the cable, but first order for the heat conduction problem.

Therefore, the heat conduction problem leads to real-
exponential like solutions (decay), and the cable problem leads
to vibration {oscillations).

For statics (all time derivatives are zero), the two models are very
similar, but the heat-conduction model 1s quite a bit richer in that it
allows for the thermal conductivity to be a function of x. For the cable
the prestress force is a constant.
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Panel 1

Exercise 59-c

Develop the analogy of the heat surface-transfer boundary condition
for the Galerkin model for the vibrating cable.

Panel 2

G 1icat generation ~ Transverse load

In exercise 59-b we have compared the two formulations term by term:

L
S/ ncv—dm+5j —fcm d:n— ‘ N dz+

Sn|52 (qn)lsz + SU‘SB h(T_ Ta)|53 =0, T]|51 =0

L L
f s daz—l—/ anPaw dz ng dz —n|s, Fls, =0,
0 aaa» |

Capacity ~ Mass Temperature ~ Deflection
Temperature gradient ~ Slope

Conduetivity ~ Stiffness Heat flux ~ Transverse force

- Heat flux BC ~ Force BC

Clearly one term from the heat conduction problem was not matched

2

(C) 2008 Petr Krysl
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Panel 3
The meaning of these two terms
Lo Y- is the same: it is the product of a
nondimensional test function
’ with (area times heat flux).
S?]f~, h _Iu)“a
¥
515, (7))

\ These two terms corresponds to
each other in the two models, so
we conclude that (-area times
heat flux) corresponds to force.

s, -
Panel 4

Therefore, we must conclude that S (T — T4)|s.

must correspond to a force in the boundary condition we are searching for
for the cable model.

Furthermore, we know that in the two models we have the
correspondence of temperature and deflection. Therefore,

corresponds to a spring constant.

Sh

Thus we finally conclude that the boundary conditions we are looking
for is a spring support:

Force in the spring= Fls, = —k(w — w,)|s,
/% /5
> |
<i w|5'3
<
u]a.|;‘3'3
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Panel 5

The weighted residual equation for the cable model including the
spring-support boundary condition may be written as

Lo Lon _ow L
[ s o [ SAPZE dn [ g de— nls, s, + ol kw — wals, = 0
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Panel 1

Exercise 59-d

Formulate the finite element expressions for the Galerkin model of
heat conduction with one spatial coordinate using the L2 finite

elements.
G><

P Y

Panel 2

In exercise 59-a we have formulated the Galerkin model of heat
conduction using one spatial coordinate:

LT Lom oT L
Sfo nchdpL—l—S_/'o %ﬂmadx—S/O e dr+

Sn|5'2 (qn)lsz + Sn|53 h(T — Ta)|5'3 =0, ’7‘51 =0

In order to develop the finite element formulation, we shall start with
writing down the finite element expansions of the trial function and the
test functions.
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Panel 3

The trial function describes the variation of the temperature along the
thickness of the wall as a linear combination of though finite element basis
functions where the coefficients of the linear combination are functions of
time. (Exactly parallel to the cable model.)

T(xt) = 3 Nu(@Tk(0)

| 1Ty (0)
| N;u(x,') |
& o

The test functions are all those basis functions which vanish at
the point where the essential boundary conditions are prescribed

Nk($)|5'1 =0

which practically translates into all basis functions except those at
nodes where the temperature 1s prescribed.

Panel 4

Substituting the finite element expansions for the trial function and the
test function leads to the analogy of (2.15) for the cable model:

L _ L
S / Nj(z)ey Z Ni(2)Ti(t) dx + Sf Ni(#)Kze Z N (2)Tx (1) dz
JO % 0 A
L
-3 [O N;(@)Q dz + SN;(@)|s, @) |ss + SN;(@)|ss A Ne(@)Ti(t) — Ta)|s. =0
. k

N;(z)|s, =0

The resulting matrix equations consist of {in the order given above):
capacity matrix times rates of temperatures, conductivity matrix times
temperatures, load due to heat generation, load due to applied heat flux, load
due to surface heat transfer.
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Panel 5

We can also note that the same assembly techniques used for the
cable (and in fact for all the finite element methods discussed in this
book) are applicable: compute elementswise matrices and vectors,
and then assemble them into the global matrices/vectors.

Capacity elementwise matrix ><\)
O
K

CV7RZEIEQ‘ M

L
(C(E))KM = S/ fV;((Iﬁ)CVNM (:E) dx
Q

Panel 6

Conductivity elementwise matrix ><)

JJ
C )'H:’.f ?
K Vo fvpe Q‘ M

L
(K gers = 8 / N (@) ke Ny () d
(0]

Elementwise heat-generation loads

L
(L) = § / Ny (#)Q de
0
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Panel 7
For applied heat flux ><)
add load ~ }
. K CV)K’.'EC!JQ‘ M
(L); = =8(F,)ls.
where node j 1s located on the boundary §, with
prescribed heat flux
For heat surface-transfer boundary condition
add load
(L); = ShT,|s,
where node j is located on the boundary §; with
prescribed heat surface-transfer boundary condition
add to the heat-surface-transfer matrix
(H);; = —5Sh
Panel 8

When all the element contributions (and the contributions from the

boundary conditions) are assembled, the resulting system of linear

differential equations reads

> Culyr > KT+ Y HuTi= L

free 1 free i free 1
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Panel 1

Exercise 59-¢

Develop the view of the spring-support boundary condition as a
penalty enforcement of the prescribed displacement in the Galerkin
model for the vibrating cable.

Panel 2

In exercise 59-b we have compared the two formulations term by term:

L
Sf ncv—d:i:+5'/ —&m d:c— ‘ N dz+

Sn|52 (qn)lsz + SW‘SB h(T_ Ta)|53 =0, ??|51 =0

L L
0
nls, =0

Capacity ~ Mass Temperature ~ Deflection
Temperature gradient ~ Slope

Conduetivity ~ Stiffness Heat flux ~ Transverse force

G 1icat generation ~ Transverse load
Heat flux BC ~ Force BC

Clearly one term from the heat conduction problem was not matched
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Panel 3
Force in the spring= Fls, = —k(w — w,)|s,
/> /%
>
w|5'3
Wa|Sg
Panel 4

The weighted residual equation for the cable model including the
spring-support boundary condition may be written as

Lo Lon _ow L
[ s o [ SAPZE dn [ g de— nls, s, + ol kw — wals, = 0
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Panel 1

Exercise 60-a

Solve the steady-state heat conduction problem below with a one-
coordinate Galerkin model using two L2 finite elements. The
ambient temperature 1s given on either side of a homogeneous wall.
The heat-surface transfer coefficients are different on the two faces.

] |

[

L
Tal Ta2
Ry ha
Panel 2
Finite element mesh:
Elements Nodes Equation #'s = Node #'s
1 1.2
2 2.3
| | 1
I |
T, L/2 L2 T
hl W hz
| N
1 z 2 3
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Panel 3

The weighted residual simplifies in this case to

53:0

L
s . /0 N (x)kze ; N/ (2)Tx () dz + SN;(z)]s. h(; Ny ()T (1) — To)

Note that S5 consists in this case of two points, x=0, and x=L..

The elementwise conductivity matrix can in the present case be
evaluated (analytically) as

Sk 1 —1
(e) — 2wz -
K= — (1 | ) h=L/2|

Tt is worthwhile to note the resemblance to the stiffness matrices for

the cable elements, the only thing that changed are the constants in
front.

Panel 4

The global conductivity matrix 1s assembled from the two elementwise
conductivity matrices as

1 —1 0
K:QSE‘”“’ 12
0 -1 1

Note that this matrix 1s singular:
>>rank([1,-1,0;-1,2,-1;0,-1,1])

ans =

2
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Panel 5

As outlined in exercise 59-d, for the heat surface-transter boundary

condition terms needs to be added to both the heat load and to the heat
surface transfer matrix.

add load
(L)j = ShTa‘Eé
add to the heat-surface-transfer matrix

(H);; = —5Sh

The heat surface transfer matrix is then found as

—Shy 0 0
H = 0 0 0
0 0 —Shy

and the heat surface transfer load is

ShiTa
L= 0
ShyTan

Panel 6

The solution is easily found with Matlab's symbolic algebra:
28K 1e
L Shl Shg Tal Tag

syms ksl s2 tal ta2 real

K=k*[1,-1,0;-1,2,-1;0,-1,1]
H=[-s1,0,0;0,0,0;0,0,-s2]
L= [s1*tal,0,s2*ta2]'
{K+H)\L

ans =

-{k*s1*tal+k*s2*ta2-2*s2*s1*tal)/{k*s1+k*s52-2%5]1*52)
-(k*s1*tal+k*s2*ta2-s1*s2*ta2-s2*sl*tal)/(k*s1l+k*s2-2%s1%*52)
-{k*s1*tal+k*s2*ta2-2*s1*s2%ta2)/(k¥*s1+k*s52-2%5]1*52)

This may be simplified to give
 —(k/s2xtal + k/slxta2 — 2 xtal)

I k/s2+k/sl—2
T, — —(k/s2xtal + k/sl xta2 — ta2 — tal)
*T k/s2+k/sl—2
T —(k/s2xtal + k/sl xta2 — 2 * ta2)
3 =

kis2+k/sl—2
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Panel 7
It may be instructive to consider the solution for the heat surface transfer
coefficients very large (much larger than the conductivity coefficient):
The expressions
P T —(k/s2xtal + k/sl xta2 — 2 xtal)
P k/s2 + k/sl — 2
T, —(k/s2xtal + k/sl xta2 — ta2 — tal)
: k/s2 + k/sl — 2
T. _ —(k/s2 xtal +k/sl xta2 — 2 % ta2)
5 k/s2 + k/sl —2
would tend to
Ty =To1,To = (Ta1 + T02)/2,T3 = Ty
Panel 8

For finite values of the heat surface transfer coefficients, the distribution
of temperature would in general look like

Tui T.o

i O —— |,
—
x

Note the jumps in the temperature at the surfaces of the wall: the
larger the heat surface transfer coefficient, the smaller the jump.

For vanishingly small heat surface transfer coefficients, hi — 0,hs — U‘

the solution for the temperatures will cease to have a unique solution:
the matrix A will become a zero matrix, and X+H will be singular.
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Panel 1
Exercise 60-b
Solve the steady-state heat conduction problem below with a one-
coordinate Galerkin model using two L2 finite elements. The wall is
loaded by heat fluxes on either side.
l |
! 3 ]
q’nO an
T
Panel 2
Finite element mesh:
Elements Nodes Equation #'s = Node #'s
1 1,2
2 2.3
| | 1
! [
L2 L2
Tal Ta?
hl W hz
F—
1 z 2 3
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Panel 3

The weighted residual simplifies in this case to

L
S [ Nj@ree Y NU@T(0) do + SN (0)]s. (@,)]s: =0
0 k

Note that S consists in this case of two points, x=0, and x=L.

The elementwise conductivity matrix can in the present case be

evaluated (analytically) as

Sk 1 =1
(e) _ Ohax _
K= — (1 1) h=L/2|

Panel 4

The global conductivity matrix 1s assembled from the two elementwise
conductivity matrices as

1 -1 0
K = 252‘““’ 12 -1
0 -1 1
Note that this matrix 1s singular:
>>rank([1,-1,0;-1,2,-1;0,-1,1])

ans =

2

(C) 2008 Petr Krysl
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Panel 5
The heat loads are assembled as follows:
Theterm SN;(z)|s,(7,)|s, needs to be evaluated at two points, x=0,
and x=L. Only one basis function is nonzero at either point. Hence,
Fl - _i«g]\'rl(x - O)qﬂlo - _i\_:rqmo
and
Fy = —SN3(z = L)q,, = 5T,
The global load vector is therefore
73??10
L = 0
_San
Panel 6

Thus, the system of linear equations to be solved 1s

. I —1 0 T —5T,0
252’” 12 -1 T, | = 0

We have noted before that the system matrix was singular. Does a
solution to this system exist under these conditions?

First, we make use of the fact that the second equation may be written
as

(—T1 +To) +(Ty —T35) =0

We see these differences (with opposite signs) in the first and last
equation. Substituting, we obtain that both the first and the last
equations may be true (and therefore a solution does exist) provided

an = 7671,[;
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Panel 7

The physical explanation 1s that the weighted residual expresses a
balance of heat energy. Since there are no heat loads generated
inside the wall, in the steady state what ever amount of energy enters
the wall at one face must leave the wall at the other face.

Therefore, the condition G0 = T,z

simply states that no heat energy accumulates inside the wall. Under
these conditions a distribution of temperature exists to support such
state of affairs.

However, we see that the distribution of temperature is definitely
not determined uniquely by the equations. We show that easily by
recognizing that the system matrix is singular and therefore a
nonzero solution exists for zero right hand side:

KT=0
Another way of saying this is by writing

KT=0xT

Panel 8

The equation

KT=0xT

is of course an eigenvalue problem. We know that the two statements
"the matrix is singular”" and "the matrix has eigenvalue zero" are
equivalent.

So we know that the system leads to a nonzero sclution
KT =1L
provided the right-hand side is of the form

73?:;0
L = 0
+Sqn0

(C) 2008 Petr Krysl

Page 4 of 5



12/17/2008 : exercise page 60-b (C) 2008 Petr Krysl
Panel 9
We can add together the two equations
so that we see that -
KT=0
1s also a solution: -
K(T+T) =1
This explains our claim that the solution was not unique.
The Matlab eig() function can illustrate these observations:
> [V!d] =Eig([1,'1,0}'1,2,-1;0,'1,1])
Y =
-0.577350269189626 -0.707106781186547 0.408248290463863
-0.577350269189626 0.000000800000000 -0.816496580927726 :
[0/577350269189626 0.707106761186547 0.408248290463663  L1SenVectors
d=
0.000000000000000 0 0
0 1.000000000000000 0 _
0 0 3.000000000000000 Eigenvalues
Panel 10

The first eigenvalue is equal to zero. The eigenvector gives the
components of 7T and we see that the corresponding solution is
"uniform temperature”.

The second eigenvector corresponds to applied heat fluxes at x=0,
and x=L. The third eigenvector is not useful, because it would
correspond to a situation in which heat flux would be applied at the
interior node 2: this 1s not a realistic scenario.
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Panel 1

Exercise 62-a

Consider a general triangle in the xy plane. Construct the expression
for the basis function Ni(x,y) directly from the interpolation
conditions.

TL

LK

Panel 2

Z = NL(-I,?})

zy
Ty

z = NK(:C?y)
Ty |

mML T \ +1

T Tar TR
This figure represents the T
e =N
planes that visualize the i m(®,y)
three basis functions |
nonzero over the triangle AK LM :
L

(C) 2008 Petr Krysl
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Panel 3
To construct the first basis function, we write it as an equation of a
plane
Np(z,y) =arz+bry +cr
where a;,bp,c; are constants to be determined
The constants may be computed from the _N
condition that the plane representing the » = Ni(z,y)
basis function must pass through three
points in the xyz coordinates
(‘(HL’ yr,+ J-) ‘
Ty TK
(e, ynm, 0)
(zk,yx, )
We see
Ny (wx, yx)|
and so on.
Panel 4

So we arrive at these three conditions (the so-called interpolating
conditions ):

Np(zg,yx) =0
Np(zg,yr) =+1

Np(zar,ym) =0

Substituting we obtain a system of three equations for three
unknowns @r,br,cL

aprg +bryx +cp =0

apxy +bryr +cp = +1

arpxy +brym +ep =0

(C) 2008 Petr Krysl
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Panel 5

This may be written in matrix form

T yr 1 ar, 0
rr, yr 1 br, =1 1
Ty ym 1 cr, 0

The relationship may be easily inverted, for instance with symbolic

Matlab
symsx K y KxL ylLxM y Mreal
inv([x Ky K1;

x Lyl 1;
x M y M 1]) \
The coefficients are the second column of this matrix

rd
ar, —(?,'K - ’.l!M)
by = (ZKYL — THRYM — TLYK + TLYM + TamUK — $MEIL)_1 (Tr — =ar)
ey —(TrYm — Tmyk)

|
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Panel 1

Exercise 62-b

Consider a general triangle in the xy plane. Construct all the basis
functions directly from the interpolation conditions. Formulate the
solution as a matrix expression.

TL

LK

Panel 2

Z = NL(-I,?})

zy
Ty

z = NK(:C?y)
Ty |

mML T \ +1

T Tar TR
This figure represents the T
e =N
planes that visualize the i m(®,y)
three basis functions |
nonzero over the triangle AK LM :
L

(C) 2008 Petr Krysl
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Panel 3

To construct the first basis function, we write it as an equation of a

plane
Nip(z,y) =arz +bry +cr

where a;,bp,c; are constants to be determined

Similarly for the other basis functions.
Ni(z,y) =agx +bgy +cx
Ny (z,y) = amz +byy + cm

In order to determine the functional expressions for all three basis
functions, we need to compute the nine coefficients.

In exercise 62-a we have shown how to use the interpolation
conditions to set up a system of equations from which the coefficients

may be determined.

Panel 4

For instance for Ny, (z, y)‘ we arrive at these three conditions (the so-called

interpolating conditions):
Np(zw,yx) =0 Np(zp,yr) = +1 Np(war,yp) =0

Repeating this for the other two basis functions we arrive at the three
sets of three equations for the nine coefficients.

NI{(rKayI{) —agTy + be.K +ecp = +1
Ni(zp,yr) = axzp +bryr +cp =0
Ni(xp,yn) = axep +bryp +cp =0

Ni(zr,yx) = arzx +bryx +cp, =0

Np(zp,yp) = aper + bpyp +cp = +1

Ni(za,ynm) = apxpr + by +cL =0
LTy + 0Ly +cp =U

Nul(zg,yx) = amzr +buyx +c, =0
Ny(zp,yr) = apxp +bpyp +cp =10
Nug(®ar, yng) = aneng + basyne +cp = +1

(C) 2008 Petr Krysl
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Panel 5
This suggests to write the nine equations as a matrix equation, where
the right-hand side is an identity matrix
rx  yx 1 Gg ap GaMm 1 0 0
€y, Yr, 1 bK bL bﬂd = 0 1 0
Tp Ym 1 Cr Cy, Car 0 0 1
X A 1
Therefore, the solution 1s
A = x!
The elements of the matrix A  are the coefficients to define the linear
expressions for the three basis functions.
Panel 6

The algebra may be easily carried out with symbolic Matlab

X y L xM y_Mreal

K

1;
11)

syms x_K ¥

K L
A=inv( [x K ¥y 1

_L
M

W

x_L
x_M

(C) 2008 Petr Krysl
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Panel 1

Exercise 62-c

Consider a general triangle in the xy plane. Compute the derivatives
of all the basis functions established in exercise 62-b.

L

T g

Panel 2

We have the following expressions for the basis functions

Np(z,y) =arz+bry +cr
*NK(xay) :aKT+be+CK (*)
Nug(z,y) = apx + by + cpg

where the coefficients are the solution of

T Yy 1 Grg QL G 1 0 0
Tr YL bg by by =10 1 0 ()
Ty Ym 1 Cx €L CM 0 01

The derivatives are easily established by directly differentiating (*)

—

where the coefficients are obtained from (%)
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Panel 1

Exercise 62-d

Verify that the basis functions (6.12-14) in terms of the parametric
coordinates give upon substitution of x,3 for the parametric
coordinates from (6.17) the same expressions as the basis functions

established in exercise 62-b.
xy,

LK
T

Panel 2

The direct expressions for the basis functions established in exercise
62-b are
Np(z,y) =arz+bry +cr

*NK(xay) :aKT+be+CK (*)
Nug(z,y) = apx + by + cpg

where the coefficients are the solution of

T Yk 1 Grg QL G 1 0 0
xry, Yyr 1 bK bL b_,w = 0 1 0 (**)
Tar Ym 1 Cx Cr Cum 0 0 1
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Panel 3

The equations (6.12-14) write the basis functions in terms of the
parametric coordinates &7

The parametric coordinates £,7 are linked to the physical coordinates
x,y through the map (6.16), which can be further developed into (6.17).

The goal 1s to verify here that the basis functions expressed in terms of
x,y from the direct expressions are the same as the basis functions in
terms of the parametric coordinates (6.12-14) when we substitute from
(6.17) for the parametric coordinates.

First we will express the parametric coordinates §,7  from (6.17) in terms
of x,y.

syms x y x K y K
p=inv([x_L-x_K

a yL xM yMreal
X .
\ y_L-yK yM

&n We are writing x K for x1, x_L for x2, and so on.

Panel 4

The variable p now holds the parametric coordinates as expressions
in x,v. Now we will substitute the parametric coordinates into the
definitions (6.12-14) and verify that they are the same expressions in
%,y as given in ()

A=inv( [x K y K 1 ;
x L yL 1;
XM y M 11) These are (%)
NK =A(1,1)*x+A(2,1)*y +A(3,1);
NL =A(1,2)*x+A(2,2)*y +A(3,2);
NM =A(1,3)*x+A(2,3)*y +A(3,3);
simplify(NK-(1-p(1)-p(2)))
simplify(NL-(p(1))) These are (6.12-14)
simplify(NM-{p(2)))

Since the output of the last three lines is zero, we conclude that the
expressions are identical, QED.

(C) 2008 Petr Krysl
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Panel 1

Exercise 64

Interpolate the function f(&,7) =1— (1 —£/2)(1 —n*) + 7?‘
on the standard triangle.

Panel 2

Interpolation means approximating a given function

from a set of discrete values. The term comes from n

inter meaning between and pole, in the sense of ®

points or nodes. Calculating a new point between

two existing data points is therefore interpolation. 1 %

Here we mean that the data points are at the vertices ¢
of the triangle, and interpolation refers to the F~>—0

calculation of intermediate values anywhere within
the triangle. In the finite element setting the basic
shape of the interpolating function is determined by
the basis functions, since the interpolation is written
down as a linear combination of the basis functions:

a(&m = > Ny n)fs

71=1:3

We say the functiong(¢,n) approximates f(&,7) by interpolation,
since we determine the function (£, 7)by enforcing the interpolation

conditions
Q’(t_’r 773 f(fj ) 7?3)
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Panel 3
In words, the interpolation conditions say that the interpolated
function and the interpolating finite element function are equal to
each other at the nodes
9(&5.m5) = £(&.mj)
Interpolation in the finite element setting is really easy because
of the properties of the basis functions:
Ni(&5,m5) = Or;
For instance, we have that
Ni(€1,m) =1, Ni(&2,m2) =0, Ni(§s,m3) = O‘
This means that in order to determine the coefficients of the linear
combination f; we just compute
f5 = F& )
Panel 4

And the interpolation conditions ¢(&;,n;) = f(&;,n;) will be satisfied
automatically.

Ji

In our case we have

(61:771) = (O* 0)7 (62:"72) = (150)7 (‘53:7?3) = (011) 1 %

A brief Matlab code gives us £
2 f=@)(xieta)1-(1-xi/2)% 1 -eta® 2)+ eta @ ;“/l__'—@
(0,0

f(1,0)

fio,1)

f=
@i, eta)1-(1-xi/2/%1-eta”2)+eta

ans =

0 «— N

ans =
0.500000000000000 «— fg

ans =

2 e f3
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Panel 5

So the interpolation 1s

g(&,m) = N1(&,n) x (0) + Na(&,m) x (0.5) + N3(&,n) x (2)

The original function 1s a nonlinear polynomial. We are approximating it
by interpolation with a linear function: Since all the basis functions are
linear in &,n , the interpolation itself is linear in  &,7.

(C) 2008 Petr Krysl
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Panel 1

Exercise 75

Compute the Jacobian matrix of the TL
triangle KIAf shown on the right at the

points of the quadrature rules from Table

6.1.

LM

Panel 2

The basis functions are (6.12-14).
Therefore, the matrix of gradients of the
basis functions with respectto &7
(equation 6.43) is

[ ONg ONg 7
o T oy 1. 1
oN, ANy | | Ty o= (-1,-2) =(2,-3/2)
o’ on N _ ’
Ny 0Ny 0, 1
| 8¢ an

We see that the basis function gradient matrix is constant.
Therefore, the Jacobian matrix will also not depend on the
parametric coordinates &7 . In other words, the Jacobian matrix

1s constant and the same for all the quadrature points for all the rules
in Table 6.1.
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Panel 3

(C) 2008 Petr Krysl

The matrix of coordinates of the nodes of the triangle is

0,
r=| —1,

| 2
=

0
—2

—3/2 J

The Jacobian matrix is obtained then as (formula 6.40, 6.41)

[0 o
-1 -2
2 -3/2 1'*[-1 -1
1 o
0 11
ans =

-1.000000000000000

] ——
-2.000000000000000

2.000000000000000
-1.500000000000000
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Panel 1

Exercise 76

Compute the moments of ertia of the triangle KTAS with the respect
to x,3 using the quadrature rules from table 6.1.

y TR = (2a*2)
Ty, Ty = (0'» O)
& Tpm = (_1:_2)
T, T K
Panel 2
The moments of inertia are defined as
TR = (27_2)
&y = (0, 0)
T — (*1:72)
The numerical quadrature formulas of Y zL
Table 6.1 approximate the moments of > X
mertia by the sums
M
Lo~ 3 (G me) det [ (6 m)| W ML zK

k=1

M
Iy~ " (e, me)? det [ (6, me)) Wi
k=1
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Panel 3

The Jacobian for the three-node triangle is constant. We
could use (6.39). For illustration purposes we will use the
cross product formula of (6.47).

or 1 [ e
DE J
det [J(&,m) { ]J W
Dy %y
L] Loy
We have for the coordinates the interpolation (6.16):
3

3
z =Y Ni&mws, y = Nl&,n)w

i=1 i=1

Substituting for the basis functions from (6.12-14), we obtain

e =(1—&—nag +E&xp+nza, y=(1—&—nyx +&yr +nym

Panel 4

We therefore compute immediately the components of the vectors of
the derivatives with respect to the parametric coordinates

- am -
dy YL — YK 2
L g¢ ]
- 03: -
Dy YM — YK 0

L oy

The Jacobian follows has the cross product of the above vectors (which is

a number) as _
det [ (g, )] = 6
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Panel 5
The tedious part 1s the evaluation of x,y at a quadrature point. In
order to expedite the calculation of the we used a simple Matlab
code.
x = [2;9;-11; : ;
y = [-2;8;-21; . The.:se. are given coord.mates
N =@(xi,eta) [1l-xi-eta;xi;eta] ® This is a simple function to
calculate a vector of bases function
values at the quadrature point
% and this is the application of the one-point rule
(N{1/3,1/3) "*x)"2*6*(1/2)
(N{1/3,1/3) **y)"2*6*(1/2)
ans = N
©.333333333333334
ans = Integrand Jacoblan
5.333333333333334 2 [ / /Nejght
(N(1/3,1/3) "*y)*2%6*(1/2)
3
y =3 Ni(&n)y:
i=1
Panel 6

The answer 1s substantially in error with one-point quadrature rule.
The three-point rule already gives the moments of inertia exactly:

x = [2;0;-1];
y = [-2;8;-2];
N =@(xi,eta) [1l-xi-eta;x1i;etal

% three-point quadrature rule from Table 6.1
(N(2/3,1/6) "*x)"2*6*(1/6)+(N{1/6,2/3) "*x)"~2*6*(1/6)
+{N(1/6,1/6)"*x)"~2*6*(1/6)

(N{2/3,1/6) " *y)"2*6*(1/6)+(N(1/6,2/3) '*y)"2*6*(1/6)
+(N(1/6,1/6) '*y)~2*6*(1/6)
ans =

1.500000000000000
ans = > Exact
6

Therefore, we omit here the application of the six-point rule since we
already got the answer as accurate as possible.
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Panel 1

Exercise 77-a

Determine the rank and discuss the eigenvectors of the elementwise
conductivity matrix of the triangular finite element KA from
exercise 77. zx = (2,-2)

Ty, $L:(0>O)

Panel 2

The elementwise conductivity matrix was determined in exercise 77
as

0.1389 -0.0833 -0.0556
K® — kA28.1-0.0833 0.2500 -0.1667
|-0.0556 -0.1667 0.2222 |

The coefficients in front are known (given) and nonzero. Can't
therefore, the properties of the conductivity matrix are going to be
determined by the eigenvalues and eigenvectors of the numerical
matrix.

>> [V,D] =eig{gradi*gradiN"')

\,' =
0.5774 0.8105 09,0988
0.5774 -0.3197 -0.7513
0.5774 -0.4908 0.6525 y
D = Note the zero
0.0000 0 0 cigenvalue.
0 0.2054 0
0 0 0.4057
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Panel 3

As 1s common for elementwise stiffness (conductivity,...) matrices,
also this matrix is singular (note the zero eigenvalue).

The corresponding eigenvector has all components identical: this 1s
all part of the same story:

_ K g singular 1s equivalent to saying that the

eigenvalue problem KO _ yqie)

has an eigenvalue A=10

- K is singular if the system  pe(e)(e) _ 0

has a nonzero solution (and vice versa).

In our case, when the temperature 1s the same at all nodes, there 1s no heat
flow, hence the right-hand side is zero.

Kleple) _ g
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Panel 1

Exercise 77-b

Compute the capacity matrix of the triangular finite element KA
Assume isotropic homogeneous material. Use a sufficiently accurate
quadrature rule to evaluate the matrix exactly.

T = (27_2)
Iy, €Try = (O?O)

zy = (—1,-2)

y

e

Panel 2

The single-element capacity matrix is computed from formula
(6.21). We realize that for a single element mesh, the capacity
matrix links together three basis functions which are known zero
over the element.

iz

cle) = ] Njey N; Az dS
Se

Therefore, the elementwise capacity matrix will be 3 x 3. The
basis functions are piecewise linear and the Jacobian for the
three-node triangle are constant. Therefore we need to
integrate quadratic polynomials. By inspection of Table 6.1
we estimate that the three-point rule 1s going to be adequate.
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Panel 3

For convenience we will carry out the integration for the entire
capacity matrix rather than with the individual components. Hence
we introduce the matrix of basis functions

N n) = | Npu&mn)

With these matrices, the capacity elementwise matrix is defined as

cle) = / ey NNT Az dS
S

which is approximated with numerical quadrature as

M

cr=3" (C_V (&, 1) N (G, i) N (€ 1) A_Z) det [ (Ex, )] Wi

k=1

Here cy (&, m,) isactually constant, asis Az . The Jacobian

has been previously determined (exercise 76)
det [J(fki’]k)] =6

Panel 4

With a bit of Matlab we get
=> N =@(xi,eta) [1-xi-eta;xi;etal;
(N(2/3,1/6)*N(2/3,1/6)"}*6*{1/6)+(N(1/6,2/3)*N(1/6,2/3)")*6*(1/6)+
(N{(1/6,1/6)*N(1/6,1/6)"')*6*(1/6)

ans =
0.5000 0.2500 0.2500

0.2500 0.5000 0.2500
0.2500 0.2500 0.5000

M

clr =3 (CV (& ) N (G i) N T (S5 1) AZ) det [ (&, k)] V“k

k=1

The elementwise capacity matrix is therefore obtained as

_ 0.5000 0.25300 0.2500
c® = cyAz | 02500 0.5000 0.2500
0.2500 0.2500 0.5000
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Panel 1

Exercise 77-c

Compute the heat surface transfer matrix of the .2 finite element X7
Assume constant surface transfer coefficient. Use a sufficiently
accurate quadrature rule to evaluate the matrix exactly.

T = (27_2)

y
Ty, mL:(O?O)

Panel 2

The surface heat transfer matrix results from integration along the
contour of the two dimensional domain. If the two dimensional
domain 1s discretized with triangles T3 or quadrlaterals Q4, the
boundary (the contour) 1s discretized with two node elements [.2.

Since the discretized two dimensional domain has a thickness, and
therefore represents three-dimensional volume, the discretized
contour of the two dimensional domain represents surface.

=

('{'. 5]

Crr'. 1
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Panel 3

(C) 2008 Petr Krysl

The single-element surface-transfer matrix is computed from
formula (6.29). We realize that for a single element mesh, the
capacity matrix links together two basis functions which are non
zero over the element.

Hy = / N; hN; Az dC
JCesa

Therefore, for the L2 element the elementwise surface
transfer matrix will be 2 x 2. The basis functions are
piecewise linear and the Jacobian for the two-node element
are constant. Therefore we need to integrate quadratic
polynomials. By inspection of Table 6.1 we estimate that the
two-point rule would be adequate. Instead of using numerical
quadrature, we will evaluate the integrals analytically: we
will use formulas that are well worth remembering. See next

page.

Panel 4

+1

1/ N/ . 1/4

NN, Parabolic arc,
7 area uncfrneath = 2/3%1/4* [ =] /6

N? Parabolic arc,
L area uncterneath =1/3*[L=[3

Page 2 of 3



12/21/2008 : exercise page 77-c (C) 2008 Petr Krysl

Panel 5

Consequently, we have for the elements of the heat surface transfer
matrix

HK;(—/ NK' hJV;( Ade‘:hAzLe/S

Ls

HKM = HMK =f jVM hNK AZ dC = hAZLe/G
L’a

Hyra :/ Nus hNy Az dC = hAz L. /3
L.

where [, = 2v/2 is the length of the element
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Panel 1

(C) 2008 Petr Krysl

Exercise 77

Compute the conductivity matrix of the triangular finite element
KLM. Assume isotropic homogeneous material.

y T — (2’72)
Ty, Ty = (0>0)
x zyr = (—1,-2)
T, T K

Panel 2

The single-element conductivity matrix is computed from formula

This 1s the same principle as used before for the cable model to
compute elementwise matrices.

K = / (gradN;) w(gradN;)" Az dS

e

The basis function gradients and the Jacobian for the three-
node triangle are constant. Therefore a one-point rule is
going to be adequate.

basis functions, the thermal conductivity, the slice thickness.
Therefore the one-point rule becomes

(6.51), where the sum collapses to a single term (just one element).

All the terms in the integrand are in fact constants: the gradients of the

K}(:) = / (gradN;) k(gradN;)T Az dS = (gradN;) s(gradN;)T AzS,
Se
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Panel 3
where Se isthe element area.
It remains to compute the basis functions gradients. We could use
the general formulas of section 6.6. For ad hoc computation
methodology developed in exercises 62-b,c may also be used. For
pedagogical purposes that's what we do here:
We have the following expressions for the basis functions
Np(z,y)=apz +bry +cy,
*
Ng(z,y) = agz + by + cx )
Ny (z,y) = apx +byy + cm
where the coefficients are the solution of
v yx 1 g ap OMm 1 00
rr yr 1 b by by =1 0 1 0 ()
Tpr Ym 1 Cr Cy, Crr 0 0 1
Panel 4
y
. . . xry,
A quick computation gives X
x = [2;0;-1];
y = [-2;0;-2];
inv([x,y,[1;1;1]1]) T as
ans =
0.333333333333333 0 -0.333333333333333
-0.166666666666667 0.500000000000000 -0.333333333333333
0 1.000000000000000 0

As explained in exercise 62-c, the components of the basis function

gradients are contained in the first two rows of the above matrix.
Thus we have

x = [2;0;-1];

y = [-2;0;-2];

A =inv([x,y,[1;1;1]])

g:gg: :A(1=2,=) grad Ny

0.333333333333333 -0.166666666666667 gradNL‘
<

0 0.500000000000000

-0.333333333333333 -0.333333333333333<—__ grad Ny,

(C) 2008 Petr Krysl
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Panel 5

Thus for instance we have

K, = (gradNg) sgradNy )" AzS, = —0.08333333333kA 2.5,

The entire elementwise conductivity matrix may be computed in

one matrix operation using
=> gradi*gradi’

ans =

0.138888888888889 -0.083333333333333 -0.055555555555556
-0.083333333333333 0.250000000000000 -0.166666666666667
-0.055555555555556 -0.166666666666667 0.222222222222222

to give

0.1389 -0.0833 -0.0556
K = kAzS.|-0.0833 0.2500 -0.1667
|-0.0556 -0.1667 0.2222
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Panel 1

Exercise 86-a

Solve the steady state temperature distribution using the four finite
elements to model 1/8 of the square domain using symmetry. The
temperature around the circumference is prescribed as 20 degree
Celsius. Heat is generated in the interior at the rate of 15 Watts per
meter cubed. Assume homogeneous isotropic material.

o
| I I
| : I
L A !
[ |
| 2
I \\
| d

O a
L | a |

Panel 2
Boundary conditions: note the zero heat flux on the symmetry
planes
i Tl
| | . Zero heat flux BC
Zero heat flux BC ! !
|
|

|

L L 4

| I

| \ | 4
| I

Prescribed temperature
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Panel 3

(C) 2008 Petr Krysl

The finite element mesh can be numbered so that the required work
is minimized. In particular only a single conductivity elementwise

matrix needs to be computed 1f we are clever about it.

3

Element
1

2
3
4

Node #'s
4.5.1
5,6,2
1,2.3
2.1.5

Note that all elements have

the same shape and their nodes
are numbered so that a simple
translation or rotation of the

4 a 5 4 ¢ element makes them coincide.
| | Therefore, all the elements

will have the same elementwise

conductivity matrix.

Note: equation #'s are the same as the node #'s. There are three free
degrees of freedom, and three prescribed degrees of freedom.

Panel 4

Conductivity matrix of element 3

Note that we can arbitrarily choose the origin of the coordinate
system since nothing in the expression for the connectivity matrix

depends on the coordinates directly.

The matrix of gradients of the basis functions with respect to

parametric coordinates (6.43):
Nder =[-1,-1; 1,0; 0,1];

The matrix of the nodal coordinates (6.42):
syms a real
x= [0,0; a,0; 0,a];

The Jacobian matrix (6.41):

»> J=x"*Nder

J:
[ a, 0]
[ 0, al;
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Panel 5

The Jacobian:

>> det(J)

ans =

a2
The gradient of the basis functions with respect to x,y:
>> Ndersp =Nder*inv{J)
Ndersp =
[ -1/a, -1/a]
[ l/a, o]
[ 0, 1l/a]

Panel 6

The conductivity matrix integrated with one-point rule:
compute the product of the basis function gradient matrices and

multiply with the area of the element, thermal conductivity, and
slice thickness.

K = / k[gradN][gradN|T Az dS
Js.

>> Ndersp*Ndersp'*det(J)*(1/2)

ans =

[ 1, -1/2, -1/2]
[ -1/2, 1/2, 0]
[ -1/2, 8, 1/2]

[ 1, -1/2, -1/2]
K@ =  gAxI[ -2, 172, o]
[ '1/21 0: 1/2]
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Panel 7
As advertised, this is the only elementwise conductivity matrix we
need. It 1s just needs to be assembled four times (into different
locations in a global matrix, that is understood).
4 5 1
[ 1: '1/2: '1/2]
K= kAzI[ -1/2, 172, 0]
[ -1/2, o, 1/2]
5 6 2
KO~ Al { _1/;' iﬁ 'UE} K =[1+1/2+1/2, -1/2-1/2, -1/2;
- [ _1/2' 0' 1/2] =1/2-1/2, 1/2+1/2+1, 0;
' ' -1/2, 0, 1/2]
1 2 3
[ 1, -1/2, -1/2]
K'Y= kAz[ -2, 1/2, 0] K =
[ -1/2, o, 1/2]
2.0000 -1.0000 -0,5000
2 1 5 KAz |-1.0000 2.0000 0
[ 1, -1/2, -1/2] _-0.5000 (0] 0.5000
K® =  gAzl -1/2, 1/2, @]
[ -1/2, 0, 1/2] T
The global conductivity
matrix
Panel 8
Now the thermal loads due to nonzero essential boundary
conditions (6.32):
T, =Ts =T = 20°C
4 5 1
[ 1, -1/2, -1/2]
K® =  gAzl -2, _1/2, 6]
[ =172, 6, 1/2]
5 6 2
[ 1, -1/2, -1/2]
K© =  gAzl =12, 172, @]
[ =1/2) 0, 1/2]
1 2 3 -1/2+0+0
[ 1, -1/2, -1/2] = A
K© — kAl -1/2, 172, o] L= Az E'm'm x20
[ -1/2, 0, 1/2]
2 1 s
[ 1, -1/2, (=1/2]
K =  gkAzI -1/2, 172, U]
[ -1/2, 0, 1/2]
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Panel 9
At this point we ean verify that the matrices are computed correctly: if the
only load is due to the prescribed temperature, we would expect the
solution to be everywhere the same temperature (20° Celsius):
>> L= [1/2;1;01%20
L =
10
20
0
»> K\L
ans =
20,0000
20.0000
20,0000
And that is indeed what we get
Panel 10

Finally, we will compute and assemble the thermal loads due to
internal heat generation (6.26). The elementwise load vector will
be for each element

Equation numbers

17 4 s€n €2
L =Qs.Az3| 1| 5 6@2 @1
1 10208 =

where Se = ag/g‘ is the area of each finite element.

1+1+1
L= @SAz/3 |1+1+]
1

Global thermal load due to internal
heat generation

Page 5 of 6



12/22/2008 : exercise page 86-a

(C) 2008 Petr Krysl

Panel 11
The global equations are
2.0000 -1.0000 -0.5000 Ty
Az [-1,0000 2.0000 0 T =
|-0.5000 @  0.5000 Ty
-1/2+0+0 1+1+1
—KAz lg.1/2-172 |20 +  QS.Az/3 |1+1+1
9 1
The solution is
Ty 20.0000 Qa? 5.5000
Iy | =120.0000 + 4.2500
T3 20.0000 7.5000 2
For the set of constants: kappa=1.8,Q=15,a=1; /
11
Panel 12

Page 6 of 6



	exercise page 4-a.pdf
	exercise page 4-b.pdf
	exercise page 4.pdf
	exercise page 5-a.pdf
	exercise page 5-b.pdf
	exercise page 5-c.pdf
	exercise page 14-a.pdf
	exercise page 14-b.pdf
	exercise page 14-c.pdf
	exercise page 14-d.pdf
	exercise page 15.pdf
	exercise page 16-a.pdf
	exercise page 16-b.pdf
	exercise page 16-c.pdf
	exercise page 19-a.pdf
	exercise page 19-b.pdf
	exercise page 19-c.pdf
	exercise page 20-a.pdf
	exercise page 20-b.pdf
	exercise page 20-c.pdf
	exercise page 28-a.pdf
	exercise page 28-b.pdf
	exercise page 28-c.pdf
	exercise page 28-d.pdf
	exercise page 28-e.pdf
	exercise page 28-f.pdf
	exercise page 30-a.pdf
	exercise page 32-a.pdf
	exercise page 32-b.pdf
	exercise page 32-c.pdf
	exercise page 33-a.pdf
	exercise page 33-b.pdf
	exercise page 33-c.pdf
	exercise page 56-a.pdf
	exercise page 59-a.pdf
	exercise page 59-b.pdf
	exercise page 59-c.pdf
	exercise page 59-d.pdf
	exercise page 59-e.pdf
	exercise page 60-a.pdf
	exercise page 60-b.pdf
	exercise page 62-a.pdf
	exercise page 62-b.pdf
	exercise page 62-c.pdf
	exercise page 62-d.pdf
	exercise page 64.pdf
	exercise page 75.pdf
	exercise page 76.pdf
	exercise page 77-a.pdf
	exercise page 77-b.pdf
	exercise page 77-c.pdf
	exercise page 77.pdf
	exercise page 86-a.pdf

