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triangulation of the input surfaces, but one which is represented as a
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Introduction

Decomposition of arbitrarily complex three-dimensional solids into tetrahe-
dral finite elements (tetrahedrization) is a very important aspect of finite
element simulations. The ideal algorithm should be fast and robust, and the
existence of a “silver bullet” technique suitable for all possible applications
is improbable. Octree-based algorithms proved useful [1, 2, 3], and although
they tend to be rather complicated, and not quite easily parallelizable, some
new developments, such as guaranteed quality [4], make them interesting.
The advancing front technique [5, 6, 7, 8, 9] is a heuristic, and although
some of the features of this approach are very attractive (good quality tetra-
hedra tend to be produced near the external surfaces, arbitrary gradation
is easy to achieve), lack of robustness in three-dimensional geometries is a
serious impediment.

Algorithms based on the Delaunay empty circumsphere property are ham-
pered in three dimensions, in contrast to planar geometries, by the non-
existence of a “constrained triangulation” [10]. (In a constrained Delaunay
triangulation, the circumsphere of any simplex must be either empty, or the
vertex inside the circumsphere must be occluded to any point inside the sim-
plex by some constraining simplex.) A number of attempts to deal with
this difficulty appeared in the literature, the post-processing approaches of
Weatherill [11, 12] and George [13] being prominent among them.

To ellucidate our solution, we suggest to consider the following scenario:
A three-dimensional solid is described by its boundary triangulation. The
task is to find the decomposition of its volume into tetrahedral elements such
that the triangulated boundary surfaces are “reasonably” approximated as
collections of tetrahedral faces. One possibility is to represent the input
constraining surfaces exactly, i.e. each triangular facet on the input surfaces
corresponds to a face of at least one tetrahedron. Another approach becomes
possible when the constraining surfaces are not required to appear exactly:
the constraining surface triangulation may be modified to yield a geometri-
cally and topologically similar triangulation [14], which has a potential to
make the task of volume triangulation much easier. And that is precisely
our point: We make it possible to use ordinary, unconstrained Delaunay tri-
angulation, which is well understood, robust, and efficient, by modifying the
constraining surface triangulations.

The principal idea of this work is actually quite well-aged. Hermeline
seems to have been the first to propose incorporating boundaries of 3-D
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objects into unconstrained Delaunay triangulations [15]: Instead of trying to
extract the missing constraining facets a posteriori from a convex hull mesh,
the input entities are complemented by additional vertices and facets which
make an approximation (tesselation) of the constraining surfaces appear in
the mesh ab initio. It is then easy matter either to construct only those
tetrahedra which are in the region of interest, or to collect those tetrahedra
from the convex hull mesh. Since then the idea re-surfaced in various guises;
consult References [16, 10, 17, 18, 19].

Our approach differs from the preceding work in that we use the varia-
tional framework developed by Rajan [20] to determine if a facet of a con-
straining surface appears in the unconstrained Delaunay triangulation of the
current set of vertices. If the facet is missing, we apply two local modification
operations with the goal of improving sampling of the constraining surfaces.
Decreased distances between surface vertices lead to the appearance of edges
and facets. In difference to previous work we do not restrict the constraining
surfaces in any way, in particular they may be non-planar, with multiple
handles, and small input angles are allowed. However, this lack of restraint
means that the technique currently comes without theoretical guarantees of
termination.

The outline of the paper is as follows. We begin by giving a high-level
view of our algorithm, and by specifying its inputs and outputs in Section 1.
Subsequently, we order the sections according to the top-level algorithmic
steps: Generation of internal vertices (Section 2), securing of non-denegerate
vertex positions (Section 3), determination of presence of a given facet as a
tetrahedron face in the unconstrained Delaunay triangulation of the vertex
set (Section 4). Section 5 presents our (heuristic) algorithm of surface modi-
fication with the goal of making all the surface facets appear as simplices in
the final triangulation, and finally we briefly outline the advancing front De-
launay volume triangulation in Section 6, the removal of slivers (Section 7),
and parallel execution (Section 8). The paper is concluded by illustrating
the present algorithm on number of applications. We also point out some
points worthy of further investigations.

1 Outline of the algorithm

We first give a high-level outline of our algorithm. We resort to pseudo-
code, here and in several other instances where algorithms are specified. The
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notation is meant to be self-explaining.

algorithm TRIANGULATE
Read input and generate internal vertices.
Move vertices into non-degenerate positions.
Determine if all constraining surface facets are represented

by tetrahedron faces.
if (Are there are any non-Delaunay facets?) then

Apply surface Delaunayzation algorithm.
endif
Insert boundary facets into the advancing front and generate tetrahedra.
Remove slivers.

As input, the volume mesher is given a list of vertices and a list of surface
facets. Vertex data comprises a unique integer identifier, coordinates, and
optionally mesh size at the vertex. The surface facets represent boundary or
interface surface triangulations, and are specified by listing the three identi-
fiers of its vertices given counterclockwise when looking against the “outer”
normal of the surface. Each facet is associated with a unique topological
face. Furthermore, the 3D regions on each side of the facet are specified:
The normal of the facet points into region r1; region r0 is on the other side.
If the facet bounds just a single region (region r1 is the semi-infinite space
representing the “outside”), the facet is oriented such that its normal points
out of the solid.

The output of our algorithm is obviously the tetrahedral decomposition
of the volume (tetrahedra and their vertices), but also the modified surface
triangulation (vertices and facets).

2 Generation of Internal Vertices

The mesher has the ability to generate additional vertices “in the volume”
of the solid. We adopt a simple two-stage technique. First, we generate
vertices close to the boundaries, which are offset appropriately inward from
the barycenters of boundary facets. Next, an octree is constructed which
bounds the solid so that its leaves are of size proportional to the desired edge
length at the centroid of the leaf, and the vertices are generated at the center
and at the mid-points of the edges of the leaves so that for a uniform edge
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length specification one obtains arrangement in the form of an face-centered
cubic crystal lattice [21]. The vertices are in both stages generated only if
they do not fall too close to another vertex (which could have been given as
input), and if they do not come too close to the surfaces of the solid. Note
that it is not necessary to perform any expensive in/out tests to determine if
the vertex is actually inside the solid, because the advancing front technique
used to mesh the interior simply disregards vertices outside. The position
of the generated vertices is randomly perturbed by a vector of magnitude of
approximately 1% of the edge length.

A promising alternative approach to the generation of the internal vertices
has been proposed by Fuchs [22] in the context of almost regular Delaunay
triangulations.

3 Random shifting of vertex positions

In order to deal with the ambiguity associated with co-spherical points (de-
generate Delaunay triangulations), we choose to move vertices into general
positions by a small random shift. The default magnitude of the shift is 10−4

of the edge length (mesh size) at the vertex. For very closely spaced surfaces
this could lead to (self-)intersections, but such situations can be avoided by
shifting the vertices in tangent planes (along tangents to surface edges) only.
The random perturbations yield vertex sets with a high probability of general
vertex positions; see Reference [23] for a discussion.

4 Delaunayhood of Boundary Facets

First, some notation, for the sake of brevity. We will denote facets represented
by a tetrahedron face as Delaunay facets, and those that do not coincide with
any face, as non-Delaunay facets. The property of facet b of being Delaunay
or not is called the Delaunayhood of b. Furthermore, Pi(b) denote the vertices

of the facet b, P̂ (b) is the fourth vertex of the tetrahedron T (b) piled up on
a Delaunay facet b, CircS[T ] is the circumsphere of tetrahedron T . The
smallest, or equatorial, circumsphere of facet b is meant by CircS[b].

How to determine if a boundary facet is represented in the unconstrained
Delaunay mesh is crucial to our approach. The empty equatorial sphere cri-
terion used by Miller et al. [17] and Shewchuk [19] is a sufficient, but not a
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necessary condition. Hence, one can hope to introduce less Steiner vertices
with a less restrictive criterion. Our approach is based on the optimality re-
sults for Delaunay triangulations advanced by Rajan [20]: Minimize function
F defined on the convex hull of vertices P i, Conv(P i) ∈ Rn (in our case
n = 3)

F (X,λ) =
∑
i∈Sm

λi(P i −X)2 (1)

subject to the constraints

λi ≥ 0,
n∑
i=1

λi = 1,
∑
i∈Sm

λiP i = X . (2)

The coefficients λi are recognized as the barycentric coordinates of the point
X within the enclosing tetrahedron. The set Sm comprises all input vertices,
in general. However, in order to make the technique computationally efficient,
we build the set Sm adaptively as described below.

In order to determine Delaunayhood of facet b we solve the linear pro-
gramming problem (1) for a certain vertex set, Sm, at a point slightly offset
against the direction of the facet normal (ie. into the solid). The distance is
arbitrarily set at K = 10−3d, where d is the characteristic dimension of the
facet b. The vertex set Sm is initially chosen to include probable candidates
for optimal solution of (1). Later, the set Sm is adjusted depending on the
outcome of the solution of (1); see algorithm TET ON FACET.

The solution of (1) may be unbounded, in which case we assume there is
no tetrahedron whose face represents the facet b. Another possibility is an
infeasible solution (such as when the number of vertices is insufficient, or the
vertices are all co-linear or co-planar). In that case the search region is in-
flated and the solution is re-tried. One can also arrive at a lower-dimensional
solution, which happens when the sampling point X lies on an edge or on a
face. In that case we remove the sampling point further from the facet and
retry. Finally, the solution may give four non-zero lambdas in which case the
circumsphere of the tetrahedron is checked if it is really empty as it should
be (note that the vertex set used in the linear programming problem was
not necessarily complete). If there is any vertex inside CircS[T (b)], it is an
indication that the solution of (1) should be re-tried with an expanded vertex
set Sm.
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algorithm TET ON FACET (Facet b): returns Tetrahedron
Compute facet barycenter C and normal n
Sampling point X ← C − Kn;
Estimate CircS[T (b)];
B ← box enclosing CircS[T (b)];
loop

Solve (1) for S m = vertices inside B
case solution type do
UNBOUNDED:

return NULL
INFEASIBLE:

Increase B and continue
LOWER DIM:
X ← C − Kn; recompute B and continue;

OPTIMAL:
T (b)← tetrahedron from non-zero λi;
if (Is CircS[T (b)] empty?) then

return T
else

if (Solution of (1) yielded T for the second time) then
return NULL;

else Increase B to cover CircS[T (b)] and continue; endif
endif

done case
done loop

The algorithm IS DELAUNAY? deciding Delaunayhood of a given facet
is described next. Note that the algorithm attempts to figure out status of a
facet either after the facet has been created, in which case it does not know
the status of the facet, or after some vertex has been added to the domain,
in which case it needs to check whether the status of a previously Delaunay
facet has changed or not.
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algorithm IS DELAUNAY?(Facet b): returns TRUE or FALSE
if (Was b previously Delaunay?)

if (Is CircS[T (b)] empty?) then return TRUE; endif
endif
if (Is CircS[b] empty?) then return TRUE;
else

foreach vertex P found in CircS[b] do

P̂ (b) ← P ;
if (Is CircS[T (b)] empty?) then return TRUE; endif

done foreach
Solve linear programing problem of Equation (1) → tetrahedron t
if (Does b coincide with one face of tetrahedron t?) then

return TRUE;
endif

endif
return FALSE;

Note that in order to speed up the computations we use in the algorithm
IS DELAUNAY? not only the linear programming formulation (1), which in
itself yields all the information one needs but at a relatively high cost, but
we also perform some less expensive circumsphere tests first, which can save
computational effort by enabling early decisions. In order to be able to use
the circumsphere tests, we save for Delaunay facets the vertex which belongs
to the tetrahedron whose face coincides with the facet.

Another speed optimization related to the solution of equation (1) is
available through posing a limit on the size of the linear programming (LP)
problem that is allowed to be actually solved (largest number of unknowns).
When the size of the LP problem is too large, the results is assumed to be
FALSE (in other words, the facet is non-Delaunay). We show the effect of
this optimization in the Section 9.

5 Surface Delaunayzation

If there are any non-Delaunay facets in the constraining surfaces, the algo-
rithm DELAUNAYZATION attempts to modify the surface meshes to make
all of the constraining facets Delaunay. At the same time, the algorithm
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endeavors to introduce as few additional boundary facets as possible, and to
make the surface mesh as well-shaped as possible.

The introduction of additional vertices into the surface mesh in order
to make all facets Delaunay is in general unavoidable. Unfortunately, each
additional vertex has not only the potential to make some facet(s) Delaunay,
it may also make others non-Delaunay. Hence, it is quite difficult to devise an
algorithm which provably terminates for all possible inputs. Our algorithm
is a heuristic, and we have not been able to provide theoretical guarantees of
termination yet.

5.1 Delaunayzation algorithm

Two primitive surface modification operations are applied to the surface tri-
angulation iteratively: flip of diagonal in a quadrilateral represented by two
adjacent triangles, and split of a common edge by insertion of a new vertex.
The first operation is inspired by the diagonal-swapping 2-D triangulation
algorithm, the second is an attempt to maintain surface triangulation quality
while introducing a Steiner point. The flip does not create any new vertex
which could make other facets non-Delaunay, and is therefore preferable to
split. On the other hand, in certain situations surface triangulations have
been designed to possess some desirable properties such as convexity. Con-
sider for example a coarsely discretized, very strongly curved leading edge of
an airfoil. Concavities introduced by flips would unacceptably distort the air
flow. In this case we could prohibit flips and use only splits which guarantee
preservation of the “shape” of the surface triangulation.

The DELAUNAYZATION algorithm is described next. While there are
any non-Delaunay facets, a pass over all the facets is made, flipping as many
“diagonals” as possible. Next, each still non-Delaunay facet is split along its
longest edge.

algorithm DELAUNAYZATION
while (Is there a non-Delaunay boundary facet?) do

perform FLIPS (NULL)
perform SPLITS

done while

The FLIPS algorithm works on a list of non-Delaunay facet, which can
consist either of facets connected to a newly introduced vertex, or of all facets
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in the surface meshes. The procedure tries to find an adjacent facet with
which flip can be accomplished using the algorithm FLIPPABLE NEIGHBOR.

algorithm FLIPS (Vertex V )
if (Is V NULL?) then List L ← all facets in mesh
else List L ← all facets connected to V
endif
foreach non-Delaunay b ∈ L do

Facet b′ ← FLIPPABLE NEIGHBOR (b)
Flip diagonal in quadrilateral b + b′

done foreach

Figure 1: Prohibited flip leading to a sharp subtended angle. Left-hand side
initial configuration; right-hand side situation resulting from flip.

The algorithm FLIPPABLE NEIGHBOR assesses suitability of a facet
adjacent to the facet b for flipping. Only facets which belong to the same
topological face are considered. A facet b′ is acceptable for flipping only if
all the following holds:

1. Facet b′ belongs to the same topological face as b; (This allows for edges
to be preserved, even if they do not correspond to “true” edges along
sharp folds of the surface.)

2. The quadrilateral composed of the two facets b and b′ is convex as
judged in projection to an average plane using an area-based measure;
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3. The angle subtended by the facets in their flipped connectivity is less
than some user specified limit; (This prevents creation of ugly ridges or
grooves in the modified triangulation. See Figure 1, where the flipped
facets on the right-hand side subtend angle close to π/2; such a flip is
undesirable.)

4. The flip either increases the number of Delaunay facets, or at least
improves the triangle quality measures (e.g. minimal corner angle).

algorithm FLIPPABLE NEIGHBOR (Facet b): returns Facet
L ← Order edges of b longest to shortest;
foreach edge E ∈ L do

Facet b′ ← neighbor across E
if ( Do b and b′ belong to the same topological face?

and Is quadrilateral b + b′ convex?
and Do triangles after flip subtend reasonable angle?
and (Does flip make b and b′ Delaunay?

or Are facets after flip of better triangle quality?)
) then return b′; endif

done foreach
return NULL

The algorithm for facet splitting, SPLITS, introduces a new vertex at the
mid-point of the longest edge. For acute triangles this means increase in the
minimal circumradius, but this is most probably corrected immediately by
flips attempted with all triangles connected to the new vertex.

algorithm SPLITS
List L ← all non-Delaunay facets
foreach b ∈ L do

List L′ ← all facets across the longest edge of b
perform SPLIT FACETS (L′)
update Delaunayhood of all facets affected by the new vertex V
perform FLIPS (V )

done foreach
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The procedure SPLIT FACETS is rather straightforward, the only com-
plication being that non-manifold situations need to be handled as illustrated
in Figure 2.

algorithm SPLIT FACETS (List L′)
Insert new vertex V at the mid-point of edge common to facets in L′

foreach b ∈ L′ do
replace b with new facets b′ and b′′ connected to V

done foreach

V

Figure 2: Splitting of facets sharing an edge.

5.2 Comparison with other published algorithms

Some ideas how to make some surfaces appear as 2-simplices of the un-
constrained Delaunay triangulation have been advanced for some restricted
classes of inputs. For “smooth” surfaces, Amenta and Bern [24] have shown
that sufficiently dense sampling (as measured by the local feature size) makes
the surface to appear in the unconstrained Delaunay tetrahedral mesh con-
structed with the input vertices and the Voronoi poles. The idea is to achieve
“tangency” of the tetrahedron circumsphere to the constraining surface at
surface vertices. Related ideas applied to the construction of shape skeletons
have been advanced by Turkiyyah et al. [25].

For non-smooth surfaces, namely piecewise linear complexes (PLC; all
constraining polytopes – edges and facets, have linear geometry), the sphere
packing algorithm of Miller et al. [17] provably yields a boundary conforming
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Delaunay triangulation. The input angles between any two boundary poly-
topes are restricted to 90o. A variation of this algorithm has re-appeared
in the thesis of Shewchuk [19] in the framework of a Delaunay refinement
algorithm. The principal idea is to make the constraining polytopes appear
by enforcing their minimal circumspheres empty of vertices starting with
vertices (trivial), edges, and finally proceeding to enforce facets. The empty
minimal circumsphere is a sufficient condition for an edge or a face to be
present in the Delaunay triangulation, but it is not a necessary one. The re-
striction to PLC’s is quite crucial to the feasibility of the above algorithms,
since both rely on the fact that the tesselation of the constraining polygon
is a Delaunay triangulation in two dimensions.

The input surface triangulation, which is the input to the present algo-
rithm, could be understood as defining a piecewise linear complex (PLC). In
such a case, the two above algorithms are applicable. However, both algo-
rithms would modify this complex, so the input facets are not reproduced.
Also, consider that all the surface triangulation edges and faces become edges
(faces) of the PLC, and that the above algorithms would try to reproduce
those edges (faces). There are evidently cases when these surface triangula-
tion edges and faces are simply an artifact of the discretization process, and
have no value in itself. In this respect, the ability of the proposed algorithm
to perform flips is highly desirable, at least as an option.

6 Volume triangulation

Once the constraining facets are all made Delaunay, the tetrahedra can be
generated by any unconstrained triangulation algorithm. We have chosen the
advancing-front Delaunay [26, 27, 28, 21]. This technique is closely related to
the original gift-wrapping algorithm [29] (also called incremental construc-
tion). Contrary to the classical advancing front algorithm [30], which gen-
erates nodes at the same time as tetrahedra, uses heuristics to compute the
connectivity, and relies on intersection tests to ensure validity of the mesh,
our implementation of the advancing front is based on the empty circum-
sphere property combined with the assumption of general vertex positions.
The advancing-front Delaunay may not be the fastest serial algorithm, but
it parallelizes easily [31].
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7 Mesh Improvement

As is well known, creation of slivers (kites) cannot be avoided in Delaunay
meshes constructed from pre-existing vertex sets in three dimensions. Since
we use random perturbation of the vertex positions, slivers appear frequently
in the interior. In addition, slivers also appear near the prescribed surfaces
quite naturally. In order to reduce the number of slivers in the mesh, we
modify the topology and geometry of the mesh in a post-processing step.
Figure 3 shows three configurations of slivers with the adjacent tetrahedra.
Slivers on the boundary can be deleted without difficulty (case A). Slivers
in the interior can be deleted by swapping face 4dbe (case B), but are not
removable in the case C (no two adjacent tetrahedra share a face). The
non-removable slivers are opened up (expanded) by shifting slightly one of
their vertices (the shift producing the largest minimal dihedral angle among
all the connected tetrahedra is chosen). Further increase of the smallest
dihedral angle can be achieved by insertion of additional vertices and local
remeshing. This option has not been implemented yet, though.
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Figure 3: Removal of slivers.

8 Triangulation on parallel computers

Preliminary results suggest the present algorithm is amenable to paralleliza-
tion with domain decomposition and message passing. Two major con-
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stituent parts can be identified, the volume meshing itself (unconstrained
Delaunay triangulation), and the surface modification.

No communication is required for the volume triangulation itself, since
once can decompose the vertex set and generate the tetrahedra on each pro-
cessor independently of the others. Implementation of the necessary searches
can be expected to be tricky, though: It is imperative to download to each
processor all the vertices that can affect triangulation on this processor. On
the other hand, search efficiency dictates that only those vertices which ac-
tually participate in the triangulation on a given processor are searched.

The most expensive operation in the surface Delaunayzation is the eval-
uation of the Delaunayhood of affected facets once a new vertex is added
to the current vertex set. The trick is, of course, to figure out which facets
are affected by the vertex addition. Furthermore, communication is required
in this step, since one needs to update the vertex and facet sets on each
processor after each modification.

9 Examples

9.1 Mesh of Bracket

The first example illustrates the ability of the mesher to enforce the bound-
ary constraint for a surface mesh consisting of very badly-shaped facets (Fig-
ure 4). The facets have been produced from a CSG model generated by the
ACIS1 geometry engine for the purpose of rendering with the default refine-
ment settings. Hence the presence of needle-like and obtuse triangles. The
input consisted of 180 vertices and 364 boundary facets (no vertices have
been generated in the interior). The mesher inserted additional 55 vertices,
increased the number of boundary facets to 474, and produced 460 tetrahedra
in approximately 6.7 CPU seconds.2

9.2 Mesh of Wheel

In this example we illustrate the effect of turning off the check relying on the
solution of (1) (Figure 5). In other words, Delaunayhood of a facet is checked

1Trademark of Spatial Technology Inc.
2SGI Octane, with 195MHz R10K CPU. All timings in this section are given for this

platform.
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(a) Input mesh (b) Output mesh

Figure 4: Mesh of a bracket.

simply by the empty minimal circumsphere criterion. The input consisted of
624 points and 1,248 boundary facets (no internal vertices have been gener-
ated). When the full check including the linear programming problem of (1)
was used, no additional vertices have been inserted, and the mesher produced
1,378 tetrahedra (2.8 CPU seconds). When the check via (1) was turned off,
the mesher added 219 surface vertices, 438 boundary facets, and produced
1810 tetrahedra (0.5 CPU seconds). The surface meshes are shown in Figure
5.

9.3 Mesh of A-PRIMED discriminator maze wheel

The maze wheel of the A-PRIMED discriminator3 is representative of typical
complex industrial geometries. Figure 6 shows fairly coarse surface meshes
of the maze wheel (4,283 vertices, 8,618 boundary facets). The volume mesh
of 12,022 tetrahedra was produced in 4.8 seconds (for limit on the size of the
linear programming problem (1) set to 20).

Table 1 summarizes effects of setting a limit on the largest number of
unknowns for which the linear programming (LP) problem of equation (1) is
actually solved. Although the LP software package we have used is perhaps

3Designed by Gil Benavides at Sandia National Laboratories
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(a) Input mesh (b) Output mesh (c) Output mesh for (1)
turned off

Figure 5: Mesh of a wheel.

LP size
limit

Delaunayzation
time [s]

Total of
solved LP’s

Average
number of
unknowns

Total of
added
facets

0 1.03 0 0 150
20 1.10 11 16 150

200 17.56 1,164 100 150
500 152.60 2,664 197 146

Table 1: Comparison of Delaunayzation cost for different limits on size of
the linear programming problem (1).

uncharacteristically inefficient and slow, the trend is clear: Solution of (1) is
costly. Interestingly, this particular mesh is quite insensitive to the availabil-
ity of the LP solution; only when the limit is set at 500 unknowns, a small
reduction in the number of added boundary facets is achieved, and turning
off the solution of (1) completely (setting the limit to zero) does not increase
the number of added facets at all.

9.4 Mesh of Sphere

This example illustrates the effect of using or not using flips during the
Delaunayzation process. Figure 7 shows the input surface triangulation and
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(a) Front view (b) Back view

Figure 6: Mesh of a discriminator mazewheel.

the results of Delaunayzation with and without flips. Although the input
triangulation is just an approximation of a smooth surface, it is reproduced
as if it were a piecewise linear complex (PLC) when the flips are turned off.
The increased size of the tetrahedrization is evident.

Flips allowed?
Triangulation

time [s]
Total of

added facets

Total of
generated
tetrahedra

no 1.08 192 688
yes 0.77 0 297

Table 2: Comparison of meshes of sphere with or without flips.

9.5 Mesh of Hub

In the next example we present timings for a series of uniform meshes for
a mechanical part. The surface meshes have been again produced for ren-
dering purposes and hence are not quite as good as can be expected from
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(a) Input (b) With flips (c) Without flips

Figure 7: Mesh of a sphere.

current finite element surface triangulation packages. Figure 8 shows the
solid for the coarsest discretization (26,722 elements); detail of the fan-like,
acute triangles near the small holes is also included. The timings are given
in Figure 9 with a breakdown into major steps: reading of input, generation
of internal vertices, initial evaluation of Delaunayhood of boundary facets,
Delaunayzation procedure, generation of tetrahedra by the advancing front,
and finally, removal of slivers. The large amount of time spent in the gener-
ation of internal points is noteworthy (about 25% of total time). This step
is costly mainly because of the need to verify that vertices are not generated
too close to each other and to the constraining surfaces. In order to speed
up this step in adaptive analyses with many remeshings, we have devised a
technique that avoids any searches and checks by generating internal vertices
inside existing elements.

Figure 10 summarizes quality indexes for one particular mesh which seems
to be sufficiently fine for strength analysis purposes (with 169,610 tetrahe-
dra). The graph on the left shows the distribution of the radius ratio (in-
scribed sphere radius over circumsphere radius scaled by 3; ideal ratio is one);
the graph on the right documents the distribution of the dihedral angle. The
minimum radius ratio quality was 0.053, the minimal dihedral angle was 2.94
degrees, and the maximum dihedral angle was 173 degrees.
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(a) Input mesh (b) Detail

Figure 8: Mesh of a hub.
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Figure 9: Timing for mesh of hub.
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Figure 10: Mesh of a hub. Quality distribution for mesh with 169,610 ele-
ments.

9.6 Mesh of Airfoil

In the next example we present mesh of an airfoil4. The topology and geom-
etry of the object is rather complex. The input to the mesher consisted of
20,909 vertices and 41,866 boundary facets (see Figure 11(a)). The surface
triangulation was of relatively good quality. Nevertheless, the mesher had to
introduce a number of additional vertices (508) and facets (1,016) during the
Delaunayzation procedure because of the large ratio of the mesh size and the
local feature size (especially near intersections of thin walls). Figure 11(b)
shows the additional vertices as dots on the background of topological edges.
The tetrahedral mesh of 72,881 elements was generated in 59.9 seconds of
which 62% were spent in the Delaunayzation algorithm. As documented
in Figure 11(c), the presence of thin walls caused a number of slivers to ap-
pear (minimal dihedral angle 0.42 degrees, maximal dihedral angle 179.21
degrees). The reason was that our present mesh optimization technique does
not handle slivers with all four vertices bound to two or more constraining
surfaces. One possible cure could be introduction of an additional point at
the barycenter of the sliver followed by Delaunay remeshing of the cavity
remaining after the broken tetrahedra.

Mesh has also been produced with the Delaunayzation procedure based
on empty minimal circumspheres (decisions based on Equation (1) were dis-
abled). As expected, the mesher needed more additional vertices (544), and

4Prototype airfoil geometry courtesy of Howmet Research Corporation.
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more boundary facets (1,088) to arrive at a fully Delaunay surface.

(a) Input mesh (b) Additional vertices (c) Slivers

Figure 11: Mesh of a prototype airfoil.

9.7 Mesh of Cranium and Brain

The approach presented above is applicable not only to external surfaces,
but works equally well for internal surfaces, such as material interfaces or
mathematically-sharp cracks. The only difference is that (in our implemen-
tation) the facets on these surfaces are not added to the initial advancing
front.

One example of a mesh with material interfaces is presented in Figure
12 as an exploded view of the mesh separated into regions. The surface
triangulations are polygonal models of simplified skull and brain (11,158
vertices and 22,322 boundary facets)5

5The surface triangulations have been produced from DXF geometry files purchased
from Viewpoint DataLabs International, Inc. (registered trademark) by feature simpli-
fication, enforcement of topological consistency, and through removal of surface mesh
interference via local geometry modifications.
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There are three regions representing the skull, the cerebrospinal fluid with
the meninges, and the brain. The surface mesh required relatively minor
stitching – 36 additional vertices and 72 facets. The finished mesh consisted
of 15,398 vertices and 82,126 tetrahedra, and took 40 seconds to generate.

Figure 12: Mesh of cranium, cerebrospinal fluid and brain.

9.8 Mesh of Pyramids

One of the open problems is the limited ability of the algorithm to handle sur-
faces which are almost touching (this is actually common to all unconstrained
Delaunay meshers). Consider two bodies very closely spaced. In applications
to mechanics, unless the bodies touch there is no reason to take their proxim-
ity into account by refining the mesh. However, Delaunay mesh constructed
for the ensemble of the two bodies will refine the neighborhood of the “almost
in contact” region as shown in Figure 13, which depicts two pyramids arbi-
trarily offset so that the vertex of one is very close to the base of the other
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(base dimensions 1×1 unit, height 1 unit, offset of the tip of the second pyra-
mid with respect to the center of the bottom one {0.1454, 0.3569, 0.0019}).
The DELAUNAYZATION algorithm enhanced the input mesh consisting of
10 points and 12 facets by additional 14 points and 28 facets. If the two
bodies were meshed separately, this problem would not arise, but frequently
bodies in self-contact or solids with cracks lead to these situations. One pos-
sible way of attack is constrained Delaunay triangulation. While constrained
Delaunay triangulations are in general known not to exist in 3-D, Shewchuk
demonstrates existence of conditions under which so-called conforming con-
strained Delaunay triangulation may be constructed [32].

(a) Input mesh (b) Output mesh (c) Detail

Figure 13: Mesh of two almost touching bodies.

10 Conclusions

We present an approach to the generation of tetrahedrizations in general
three-dimensional volumes bounded by triangulated surfaces. Our method
modifies the surface triangulations so that the constraints appear as collec-
tions of tetrahedron faces once the volume mesh is produced with uncon-
strained Delaunay triangulation of the (enhanced) vertex set. We use the
results of Rajan [20] to re-formulate the construction of a Delaunay trian-
gulation as a linear programming problem to yield a method of checking
whether a given constraining surface facet is represented by a tetrahedron
face in the unconstrained Delaunay triangulation of the current vertex set.
If that is not the case, the surface triangulation is modified using a heuristic
with two primitive operations, flip of diagonal in a pair of constraining facets,
and split of edge common to two or more facets.
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Need for further research is identified in several areas. Firstly, a proof
of termination of the surface modification scheme would be reassuring. Sec-
ondly, a parallel implementation of the algorithm with domain decomposition
and message passing is the subject of on-going research. Thirdly, closely-
spaced surfaces or vertices placed near each other can cause the algorithm
to generate an excessive number of Steiner points. The reason lies in the
properties of the unconstrained Delaunay triangulation itself. Finally, in
some applications it is desirable to be able to exactly preserve the constraint
surface triangulations, for example when selectively re-triangulating some
limited part of an existing triangulation. An algorithm enhancing the vertex
set so that selected constraining facets are preserved in the unconstrained
Delaunay triangulation would be very useful.
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Marie Curie - Paris VI, 1998. Available as report TU-0521 from INRIA.

[10] C. Hazlewood. Approximating constrained tetrahedrizations. Computer
Aided Geometric Design, 10:67–87, 1993.

[11] N. P. Weatherill and O. Hassan. Efficient three-dimensional Delaunay
triangulation with automatic point creation and imposed boundary con-
straints. International Journal for Numerical Methods in Engineering,
37:2005–2039, 1994.

[12] N. P. Weatherill. The reconstruction of boundary contours and surfaces
in arbitrary unstructured triangular and tetrahedral grids. Engineering
Computations, 13(8):66–81, 1996.

[13] P. L. George, F. Hecht, and E. Saltel. Automatic mesh generator with
specified boundary. Computer Methods in Applied Mechanics and En-
gineering, 92:269–288, 1991.

[14] M. S. Shephard and M. K. Georges. Reliability of automatic 3D mesh
generation. Computer Methods in Applied Mechanics and Engineering,
101(1–3):443–462, 1992.

[15] F. Hermeline. Triangulation automatique d’un polyèdre en dimension
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