
Object-oriented parallelization of explicit structural

dynamics with PVM

Petr Krysl�and Ted Belytschkoy

May 20, 1997

Abstract

Explicit �nite element programs for non-linear dynamics are of rather sim-

ple logical structure. If the inherent characteristics of this logic are exploited

in the design and implementation of a parallel computer program, the result

can be a lucid, extendible, and maintainable code. The design of an explicit,

�nite element, structural dynamics program is discussed to some detail, and it

is demonstrated that the program lends itself easily to parallelization for het-

erogeneous workstation clusters, or massively parallel computers, running the

PVM software. The design is documented by C-language fragments.

Keywords: �nite element method, explicit dynamics, parallelization, PVM

Introduction

As users of �nite element programs try to obtain solutions to larger and larger prob-
lems, they encounter major technical barriers; limitations in memory or in CPU
speed, or both. One of the remedies is parallelization [13]. Conversion of an existing
program to run on a network of workstations is in many cases the least expensive
solution (compare with Baugh and Sharma [2]).

In the present paper, we deal with a non-linear �nite element program for explicit
time integration of the momentum equations in structural dynamics. The program
can be run on a heterogeneous cluster of workstations, and/or nodes of multiprocessor
machines, or on massively parallel machines such as the SP-2 or Paragon. We apply
the usual message-passing parallelization technique based in our case on the message-
passing library PVM, Parallel Virtual Machine; see Geist et al. [17]. One of the
reasons for this choice was that PVM is becoming a de facto standard among message-
passing libraries due to its widespread usage and its support by many major computer
vendors.

�Research Associate, Civil Engineering, Northwestern University
yWalter P. Murphy Professor of Civil and Mechanical Engineering, Northwestern University

1

A network of workstations can be viewed as an MIMD (multiple-instruction,
multiple-data) machine with distributed memory. Parallelization of serial programs
for this type of parallel machine is notoriously di�cult. One of the reasons is that
the parallelization is mostly done manually, by augmenting the serial program con-
trol by message-passing directives. Automatic parallelization tools are currently not
available [13].

In order to preserve the investments in the serial �nite element program, it is
clearly desirable to parallelize the existing code, at the smallest possible cost, and in
such a way that it is possible to maintain both the serial and the parallel versions
of the program. The serial �nite element code parallelized in the present e�ort was
written by the �rst author in an \object-oriented" programming style [10]. We wish
to show how this can lead to a clean implementation of the parallel version of this
program.

The outline of the paper is as follows. First, we review the related research in Sec-
tion 1. We briey discuss domain decomposition and the characteristics of computer
networks with respect to parallelization. Next, in Section 2, we show how the abstract
algorithm of an explicit time-stepping scheme can be transformed into a high-level
representation in terms of programming design and implementation. We construct an
integrator object, which provides the appropriate behavior, while encapsulating the
\knowledge" corresponding to the mathematical algorithm. The implementation of
the serial time-stepping driver is described in Section 3. The parallel time-stepping
algorithm is then formulated in Section 4. It is shown that the star-shaped con�gura-
tion of a central \master" program communicating with a number of \workers" is well
suited to the parallel formulation in the target hardware and software environment.
The implementation of the parallel integrator is then described. It is demonstrated
that the master-worker distinction is cleanly reected in two di�erent implementa-
tions of the integrator, which correspond either to the master (Section 5), or to the
worker (Section 6). Section 7 discusses two algorithms for the computation of the
inertial properties of the structural system, the ghost elements and the exchange al-
gorithm. Since maintainability is considered vital, we implement the parallel version
by minimal modi�cations of the serial program. This is achieved by using the macro-
facilities of the C-language. It is shown that as a result only a single source code
needs to be maintained.

1 Related research

1.1 Domain decomposition

The underlying concept of parallelization in the form considered here, i.e., data decom-

position, is currently a subject of lively research. Data decomposition is represented
by a splitting of the �nite element mesh. The decomposition, or partitioning, can
be dynamic, i.e., it may change during the computation, or it can be static. Since
we are dealing with non-linear problems, it would be advantageous to use dynamic

2

partitioning; the e�ort to compute the internal forces may change dramatically dur-
ing the computation, e.g., because of inelastic constitutive laws. However, dynamic
load balancing is a rather complicated and an evolving issue, for which no simple
solutions exist; see, e.g., Farhat and Lesoinne [16], Ecer et al. [14], Chien et al. [9],
and �Ozturan et al. [26], and Vanderstraeten and Keunings [29]. Moreover, it is not
essential with respect to the goals of the present paper. Therefore, we restrict our
presentation to static domain decomposition.

1.2 Parallelization for computer networks

Let us �rst note that local area networks, which are assumed to be used for execution
of the present program, have certain properties with respect to communication. These
characteristics should be taken into account to devise an e�cient algorithm [2, 13].
The time to send a message through the network can be approximately written as a
linear function [see, e.g., Abeysundara and Kamal [1]]

Tm = Tl + �TbB ; (1)

where Tm is the time needed to communicate a message of B bytes, Tl is the network
latency time (usually several milliseconds), and �Tb is the time needed to transfer one
byte of data. For Ethernet networks, which are the most frequently used network
type for connecting engineering workstations, Tl � 1000 � �Tb. Thus, the larger the
data packets, the better the e�ciency achieved (the goal is to \eliminate" the e�ect
of network latency).

While some researchers have opted for RPC (remote procedure call) based mes-
sage passing [18], or even for direct use of the TCP/IP communications level [2],
we are of the opinion that the programming e�ort is much smaller with a higher-
level communication library. Also, ease of maintenance and portability are enhanced.
The parallelization in our case was supported by the PVM library. The underlying
mechanisms of PVM are described in Geist et al. [17]. PVM enables a collection
of workstations and/or nodes of multiprocessor machines to act as a single parallel
computer. It is a library, which handles the message-passing, data conversions, and
task scheduling. The applications are decomposed into a set of tasks, which execute
in parallel (with occasional synchronization). The programmer has to write the \pro-
totypes" of the tasks as serial programs. The tasks are instantiated on the machines
to be included in the parallel virtual machine by starting up the prototypes. Data
exchanges and communication are explicitly programmed.

Although e�orts to parallelize linear static �nite element analysis have rather
little in common with the present work (the main concern is the solution of large
systems of linear equations), they are of conceptual interest. Hudli and Pidaparti [18]
have dealt with distributed linear static �nite element analysis using the client-server
model. They have used the RPC library together with (non-portable) lightweight
processes to implement their algorithms. The performance issues of the network-
based parallel programs were discussed in Baugh and Sharma [2] on the example

3

of linear statics computation. In order to isolate e�ects, they implemented their
parallel algorithm directly on the TCP/IP layer. They conclude that (as expected)
the parallelization on local area networks should be rather coarse grained, because of
the large communication overhead associated with the relatively slow networks. Also,
they note di�culties associated with dynamic load balancing, because of the widely
di�ering characteristics of the participating computers.

1.3 Non-linear parallel dynamics

For a comprehensive account of parallel non-linear dynamics, the reader is referred
to the review by Fahmy and Namini [15]. Due to the fundamental di�erences in
hardware characteristics, we choose not to discuss implementations of parallel �nite
element algorithms on vector, or shared-memory machines.

Yagawa et al. [30] have investigated non-linear implicit dynamics with domain
decomposition on a network of engineering workstations or supercomputers. Although
aimed at implicit structural dynamics, this paper is of interest here, as it illustrates
the fundamental di�erences between data structures, and algorithms used in implicit
and explicit analysis. The authors have also addressed the issues of dynamic load
balancing through a special processor management.

Namburu et al. [24] have investigated explicit dynamics on a massively parallel
machine. They have used their own variant of an explicit algorithm.

Malone and Johnson [20, 21] have dealt with explicit dynamics of shells on mas-
sively parallel machines (IPSC/i860). They have concentrated on the formulation of
a contact algorithm. The mesh is in their algorithm split between processors, and the
individual interface nodes are assigned uniquely to processors. Thus it is the respon-
sibility of the processors to keep track of which data to send to which processor, and,
more importantly, many small messages need to be sent.

Chandra et al. [8] have investigated an object-oriented methodology as applied
to transient dynamics. They show how to �nd inherent parallelism in the interaction
of a large number of particles, and they establish an object-oriented data structure
for this kind of computation.

2 Explicit integration in time

In this section, we inspect the general properties of the (explicit) central di�erence
formula. We construct an abstraction, which cleanly translates the mathematical
design into the programming language implementation. The resulting serial time-

stepping driver, the integrator, is then reformulated to incorporate parallelism.
Interestingly, there are several alternative formulations of the explicit central dif-

ference integration; see, for instance, Belytschko [3], Hughes and Belytschko [19], Ou
and Fulton [25], Belytschko et al. [4], Dokainish and Subbaraj [12], Simo et al. [28],
and Chung and Lee [11]. In order to be able to exploit fully the potential of the
explicit time stepping scheme, matrix inversions must be avoided. Thus the goal is

4

to obtain the primary unknowns by solving a system with a diagonal system matrix.
When we consider a general damping, the above goal can be achieved only if the
damping terms are not present on the left-hand side. If damping is not present (or if
it is expressed by a diagonal matrix), more specialized forms of the central di�erence
algorithm can be used. The di�culty of the coupling due to the presence of both the
velocity and the acceleration in the equations of motion is then avoided ab initio.

2.1 Central di�erence formulas

The symbols in the below formulas are: M the mass matrix (constant, and diagonal
in all cases), C the damping matrix, which can be in general function of the velocities,
u� , _u� , �u� , the vectors of displacements, velocities, and accelerations, respectively,
f
ext
� the external loads, and f int

t the nodal forces corresponding to the stresses, all at
the time � .

The �rst variant of the central di�erence scheme can be obtained from the New-
mark � implicit algorithm by inserting limit values of the parameters[28]. The New-
mark algorithm is summarized in equations (2){(3).

ut+�t = ut +�t _ut +�t2
��

1

2
� �

�
�ut + � �ut+�t

�
; (2)

_ut+�t = _ut +�t [(1 �)�ut + �ut+�t] : (3)

The algorithm becomes explicit (central di�erence scheme) for = 1

2
and � = 0. Its

central di�erence variant can then be written as in equations (4) to (9).

Variant 1 (Newmark):

1. Calculate velocities at time t:

_ut = _ut��t +
�t

2
(�ut + �ut��t) : (4)

2. Calculate displacements at time t+�t:

ut+�t = ut +�t _ut +
�t2

2
�ut (5)

3. Calculate e�ective loads:

bf t+�t = f
ext
t+�t � f

int
t+�t �C _up

t+�t ; (6)

with either
_up
t+�t = _ut +�t�ut ; (7)

or
_up
t+�t = (ut+�t � ut)=�t (8)

5

4. Solve for accelerations at time t+�t from:

M �ut+�t = bf t+�t : (9)

The second time-stepping formula is the central di�erence algorithm in the form
as presented for example by Park and Underwood [27]. The formulas correspond
to an iterative correction of the velocity present in the equations of motion. The
parameters � and are integration constants, and � is an averaging factor (� = 1,
� = 1, = 0 for a lightly damped structure, � = 1=2, � = 1, = 0 for a heavily
damped structure).

Variant 2:

1. Predict velocity _ut as
_ut = � _uc

t + (1 � �) _up
t ; (10)

with

_uc
t = _ut��t=2 +

�t

2
[� �up

t � (1� �)�ut��t] ; (11)

and
_up
t = _ut��t=2 + �t�ut��t (12)

M �up
t = f

ext
t � f int

t �C _up
t) �up

t : (13)

Then compute the e�ective loads at time t:

bf t = f
ext
t � f int

t �C _ut : (14)

2. Solve for accelerations at time t from:

M �ut = bf t : (15)

3. Evaluate velocities at time t+�t=2, and displacements at time t+�t:

_ut+�t=2 = _ut��t=2 +�t�ut (16)

ut+�t = ut +�t _ut+�t=2 : (17)

The third variant, used for example by Warburton [22], can be obtained by using
a backward di�erence stencil for the velocities _ut = �t�1(ut � ut��t); see equations
(18) to (21).

Variant 3:

1. Calculate e�ective loads at time t:

bf t = f
ext
t � f int

t �C _ut : (18)

2. Solve for accelerations at time t from:

M �ut = bf t : (19)

3. Evaluate displacements and velocities at time t+�t:

ut+�t = �ut��t + 2ut +�t2�ut ; (20)

_ut+�t = �t�1(ut+�t � ut) : (21)

6

2.2 Integrator

Note that the algorithms in equations (4) to (21) were speci�ed without explicitly
de�ning the structure of the vectors of displacements, internal and external forces
(loads), and the mass (damping) matrices of the structure. These objects were de-
�ned by their abstract properties, e.g., the vector of internal forces represents the
stresses within the structure without any mention of �nite element nodes, numerical
integration etc. Further, the algorithms were formulated with a physical domain in
mind, or rather a discrete model of a physical domain. It is therefore possible to
encapsulate the time-stepping algorithms by formulating them at the logical level
of (10) to (9). The algorithms thus \operate" only on the physical domain, and
all representational details concerning the objects f , u etc. are left to the domain.
The domain is free to choose the representation of the mathematical, or computa-
tional objects involved. For instance, the domain may use for the storage of �ut andbf t either two vectors, or only a single vector. There is even wider freedom in their
implementation (single or double precision, static or global, private or public access
etc.).

We are now in a position to describe the integrator object; compare with Fig. 1.
The integrator is created by the model of the physical domain, and consists of data
and callback procedures. The concept of a callback procedure is best explained by an
example from the everyday life1: Person A calls a person B and leaves their phone
number. This enables the person B to call person A when needed, with the purpose of
obtaining or supplying information. A callback procedure is equivalent to the phone
number person A left with person B.

An integrator refers to the model of the physical domain. It also maintains the
current time t and the time step �t. The behavior of the integrator manifests itself
through callback procedures. Note that the callback procedures are not de�ned by
the integrator. Rather, the model of the physical domain de�nes these procedures,
and they reect all the peculiarities of a given domain model. The model allows
the integrator to invoke the callbacks on the domain, i.e., the integrator activates
the callback procedure and passes the reference to the domain as an argument. The
callback procedures required are:

(a) calc_eff_loads(), to compute the e�ective loads,

(b) solve_for(), to solve for the primary unknowns,

(c) update_config(), to update the con�guration (displacements, velocities etc.),
and

(d) change_dt(), to change the time step �t during the time integration.

1The On-line Computing Dictionary (URL http://wombat.doc.ic.ac.uk) de�nes a callback
as \A scheme used in event-driven programs where the program registers a callback handler for a
certain event. The program does not call the handler directly but when the event occurs, the handler
is called, possibly with arguments describing the event."

7

Figure 1

The integrator responds to the following messages (i.e., these procedures can be
invoked on the integrator):

� get_t(), and get_dt() to access the current time and current time step, and

� advance() to advance the integrator in time by �t.

The implementation of the advance() method is documented for the Warbur-
ton and Newmark variants as shown in Fig. 2. Note that the i->calc_eff_loads

is the callback procedure (pointer to a function in the C-language), and
i->calc_eff_loads(i->domain) is an invocation of this procedure. Pursuing fur-
ther the analogy of Section 2.2, i->calc_eff_loads is the phone number, and
i->calc_eff_loads(i->domain) is the call.

Figure 2

3 Serial time-stepping driver

3.1 General remarks

To make the code cleaner (i.e., less cluttered with details which are immaterial to the
goal of describing the parallelization of the code), some code fragments were rewritten
with C preprocessor macros. For instance, the construct ELEM_LOOP(expr) means
that expression expr is executed for each �nite element theELEM, where theELEM is
expanded as d->elements[vindex]. Thus, e.g., the construct

ELEM_LOOP(dt = min(dt, WE_suggested_time_step(theELEM)));

gets expanded as

{

int vindex = 1, vend = d->num_of_elements;

for (; vindex <= vend; vindex++) {

dt = min(dt, WE_suggested_time_step(d->elements[vindex]));

}

}

In this particular case, d is a reference (pointer) to the model of the physical domain,
the references to elements (pointers) are stored in an array called elements, which
is a �eld in the record collecting the data kept by the domain. Similarly for the
constructs LOAD_LOOP, NODE_LOOP etc. The construct

EQN_LOOP(theUPDATE_VECTOR = theEFFECTIVE_LOADS / theMASS_MATRIX);

can be transcribed without the use of macros as

8

for (i = 1; i <= number_of_equations; i++)

update_vector[i] = effective_loads[i] / mass_matrix[i];

with the pointers update_vector etc. being initialized to point at appropriate mem-
ory locations.

3.2 Callbacks

3.2.1 WD integrate

The actual computation is carried out by the domain when the procedure
WD_integrate() is invoked on it. This routine creates the appropriate integrator
(the Newmark integrator has been hardwired into the code in Fig. 3 for simplicity),
and sets up the initial conditions (and other data structures, if necessary). Then
the integrator is advanced in time until the target time is reached. Note, that the
procedure to change the time step, change_dt(), has not been speci�ed (it has been
set to NULL meaning \not de�ned"). To simplify matters, it is not discussed here.

Figure 3

3.2.2 WD compute dt

The initial time increment is computed from the shortest time a wave needs to travel
between two �nite element nodes. The usual estimate based on the highest eigenvi-
bration frequencies of individual elements is used. The function WD_compute_dt()

returning the estimated time step computed element-by-element is given in Fig. 4.
Here, WE_suggested_time_step() is a function invoked for each element to get an
estimate of �t computed on the isolated element.

Figure 4

3.2.3 WD calc e� loads

The routine WD_calc_eff_loads() is the �rst of the procedures used by the integrator
to communicate with the model of the physical domain. It loops over active loads,
elements and nodes to assemble external loads, restoring (internal) and damping
forces, respectively, into the vector of e�ective loads; cf. Fig. 5.

Figure 5

3.2.4 WD solve for

The routine WD_solve_for() of Fig. 6 is very simple: It consists of a single loop over
all the equations, solving for the global unknowns. Note that it is the same for all
variants of the integrator. However, the order in which it is invoked di�ers (cf. Fig. 2).

Figure 6

9

3.2.5 WD update con�g xxx

The physical domain has to de�ne a procedure to update the con�guration for each
variant of the integrator. The procedures in our case delegate the task to the �nite
element nodes, since the nodes maintain the displacement (velocity) data; compare
with Fig. 7.

Figure 7

4 Parallel time-stepping algorithm

The parallelization by data decomposition requires a partitioning of the structure,
which is here assumed to be static. In other words, we assume that a decomposition
of the �nite element mesh is available, and we do not allow it to change during the
computation. This assumption is not necessary (our design remains valid conceptu-
ally), but it simpli�es the discussion by separating issues.

4.1 Parallel algorithm with neighbor-to-neighbor communi-

cation

The partitions are assigned to processors, which operate on them, exchanging infor-
mation with other processors as necessary. The most commonly employed scheme
uses a communication of the forces on the contacts between two partitions directly
between the processors responsible for the two partitions. Such an algorithm has
been reported by Belytschko et al. [7], and Belytschko and Plaskacz [6] for explicit
dynamics on SIMD machines. The communication between neighbors on this type of
machine is rather e�cient, and the message size can be much smaller due to relatively
low overhead latency per message.

Malone and Johnson [20, 21] have used similar communication pattern in their
parallel algorithm for massively parallel machines, i.e., the internal forces at nodes
at the interfaces are exchanged directly between the processors sharing the node.
Again, the hardware targeted by these researchers provides very fast communication
channels.

Let us summarize the characteristics of the described scheme:

� The communication consists of a large number of small-grain messages (typically
only several oating point numbers).

� The processors must do the book-keeping necessary to keep track of which pro-
cessor is responsible for which interface node. Also, note that the number of
processors interested in a given node varies. For example, in a regular hexahe-
dral mesh, an interface node may belong to up to eight di�erent partitions.

10

� The communication of the information between the neighbors can proceed in
some cases concurrently, which requires independent communication paths be-
tween di�erent processors.

4.2 Parallel algorithm with master-worker communication

As discussed in the Section 1.2, parallelization for computer networks requires much
larger messages to ameliorate the e�ects of large latencies. Also parallel communica-
tion between several workstations on the network is not possible (the communication
paths are shared). Thus we chose an alternative communication pattern, which is
based on a star-shaped con�guration of workers, synchronized by a master processor;
see Fig. 8.

Figure 8

4.2.1 Variants with superelements

One possible way to achieve parallelism with the master-worker communication pat-
tern is based on the concept of a superelement with internal degrees of freedom. The
partitions become the superelements, and the nodes which are common to the par-
titions are the only global nodes in the mesh. The nodes which belong to only one
partition are internal to this partition. The global nodes interface nodes are handled
as the only global �nite element nodes present in the mesh. Thus the \master" works
only with these global nodes, and no \regular" �nite elements, only the superele-
ments. The worker operates on the �nite elements of its partition, and communicates
the computed results to the master. While this may seem a natural solution (it is
in fact a pure example of the server-client architecture), it has serious drawbacks: It
makes the coexistence of the serial and the parallel version more di�cult, because
the parallel version requires the implementation of a special \internal" node, and of
a special remote superelement. Additionally, the operations on the interface nodes
create a considerable amount of small-grain communication (recall that the opera-
tions on the global nodes have to be done \remotely", i.e., on the master). For these
reasons this variant is not suitable for a program meeting our speci�cations, and was
not considered further.

4.2.2 Master-workers variant

The basic idea is that the parallel algorithm is (i) synchronized at each time step
by assembling the interface forces, and (ii) dependent on the presence of a driving
program which mediates in the necessary communication. Therefore, it is quite nat-
ural to consider a \star" con�guration of a master program at the center and a set
of worker programs. The master is responsible for starting up the workers, and for
the assembly and distribution of the interface forces. The workers manipulate the
partitions as if they were ordinary serial programs, hiding the few points at which a
communication with the master is necessary in well-protected \parallel" interfaces.

11

The algorithm can be speci�ed as:

� Split the original �nite element mesh and assign the partitions to di�erent pro-
cessors. De�ne interfaces between the partitions as such nodes that are shared
by two or more partitions.

� For each time step:

{ Compute the solution for the partitions in parallel as if they were individual
models.

{ For the nodes at the interfaces, assemble the nodal forces globally on the
master, i.e., sum the forces by which the partitions act on the interface
nodes.

{ Distribute the forces assembled by the master for the interface nodes to
partitions. Note that the interface nodal forces at the workers are over-
written by the forces received from the master.

The implementation of the above parallel algorithm can be done in a very clean
and concise manner based on the preceding high-level description of the serial time
integration. The idea is to create the prototypes of the master and of the workers
by modifying the integrator callbacks to account for the distributed character of the
concurrent computation.

4.2.3 Possible extensions

One further issue deserves mention at this point. All the workers integrate the equa-
tions of motion with the same time step. To achieve a more e�cient algorithm, it
is possible to use di�erent time steps on di�erent partitions; see, e.g., Hughes and
Belytschko [19], Belytschko et al. [4, 5], or Chandra et al. [8]. The synchronization
and communication pattern is not really a�ected, and the design principles presented
here remain valid.

4.3 Implementation remarks

Since one of our goals was to preserve both the serial and the parallel program, and to
have only one code to maintain, the implementation of the parallel version modi�es
the serial code by inserting conditional compilation units. Conditional compilation
is achieved by de�ning preprocessor directives. Thus we are able to generate three
di�erent programs from a single source code: The serial program, and the master's
and the worker's versions of the parallel program.

Code valid for the master is embedded between the directives

#if defined(PVM_WASP_MASTER)

...

#endif

12

INITSEND() pvm initsend(PvmDataDefault)

RECEIVE(tid, tag) pvm recv(tid, tag)

SEND(tid, tag) pvm send(tid, tag)

BCAST(group, tag) pvm bcast(group, tag)

UNPACK(type, item) pvm upk##type(item, 1, 1)

PACK(type, item) pvm pk##type(item, 1, 1)

UNPACK ARRAY(type, array, nitem) pvm upk##type(array, nitem, 1)

PACK ARRAY(type, array, nitem) pvm pk##type(array, nitem, 1)

Table 1: Correspondence between C preprocessor macros and PVM functions

and similarly for the code valid for the worker by exchanging MASTER for WORKER. The
code which needs to be modi�ed for the parallel implementation is con�ned to �ve
�les (700 lines) out of 45 �les (17500 lines of C-language code).

The details of the manipulation of the PVM software were also hidden behind
macros to facilitate maintenance. In particular, the PVM functions return values that
indicate whether the action requested can be performed, and other details. To avoid
clutter, the global variable pvm_status was used to hold the returned information.
In this way it was possible to write

RECEIVE(ANY_TASK, ANY_TAG);

which is expanded by the preprocessor into (assuming the source �le name master.c)

if ((pvm_status.bufid = pvm_recv(ANY_TASK, ANY_TAG)) < 0) {

PVM_err_exit("pvm_recv", "master.c");

};

The macros and the corresponding PVM functions are listed in Table 1. The symbols
mean \paste". Thus, assuming that type is double, the preprocessor expands
pvm_pk##type into pvm_pkdouble.

The message-passing is e�ected in the following way under PVM. Both sending
and receiving of data is done via bu�ers. Thus, to send some data, the programmer
�rst prepares a transmission bu�er with the macro INIT_SEND(), and packs the data
with the macro PACK() (or PACK_ARRAY()). When all data are packed, the bu�er is
routed by SEND(). The data is received by the macro RECEIVE() (blocking operation;
the program waits for the message to arrive). The data is then unpacked by the
macro UNPACK() (or UNPACK_ARRAY()) in the same order and as the same data type
as packed. When sending or receiving, it is possible to cooperate either with a speci�c
task, or with any task. Also, it is possible to work with a message of a particular
type (tag), or with a \typeless" message (denoted by ANY_TAG).

4.4 Input data

The ideal was to preserve not only the structure of the serial program, but also of its
input data. However, there is clearly a need for additional information to be supplied

13

for the parallel case. The input to the serial program is based on input blocks (nodes,
elements, time functions, loads etc.), so it was easy to add another block (parallel-run
control block) of de�nitions needed for the parallel run. It is thus feasible to use the
input data to a worker as input to a serial program, and vice versa. (Correct answers
are obtained only for a single partition, of course.)

The master's parallel-run control block consists of the names of the input �les
to the worker's. The worker's parallel-run control block consists of the speci�cation
of the interfaces between the partitions. Thus the mesh of the domain is split into
submeshes (partitions). For each submesh, the nodes are numbered 1 : : : Nt (Nt being
the total number of nodes in the submesh). Further, the nodes on the interfaces (i.e.
nodes shared by two or more partitions) are numbered 1 : : : Ni (Ni being the total
number of interface nodes).

Figure 9 shows sample �nite element mesh, which has been subdivided into three
partitions. One of the partitions is shown on the left. The �lled dots represent nodes,
�lled rectangles stand for elements. Node numbers on the partition at left are the
local numbers. Numbers on the right are the global interface numbers. Thus the
local-to-interface mapping for the partition depicted is (4; 1)(8; 2) : : : (29; 17)(25; 18),
with (l; i), l 2 1 : : : Nt and i 2 1 : : : Ni.

Figure 9

4.5 Generation of the parallel programs

As already mentioned, the PVM software is based on processes. The programmer
writes one or more prototypes of the programs to become processes, and PVM starts
these programs on demand. In our case, two prototypes are needed, the master and
the worker. Due to our implementation strategy, both programs are generated from
the same source code based on conditional compilation. The C-language preprocessor
presents the compiler with source code, from which those parts which were is not
desired are excluded, and vice versa.

4.6 Master

The master program needs to start up the workers. It �rst enrolls into PVM, and then
spawns the worker processes. Once these operations have been completed, the master
invokes the routine WD_integrate() on its domain (which is empty, the domain
contains neither elements, nor nodes).

4.7 Worker

The worker program reads the problem de�nition and constructs the local-to-global
interface mapping of node numbers. Then, it enrolls into PVM and joins the
WORKER_GROUP group of tasks. Finally, the worker runs WD_integrate() on its par-
tition (submesh).

14

Note that both master and the workers invoke routines of the same name, and
in the same order. The e�ects di�er, however, as the actions are coded di�erently.
In particular, both master and workers invoke advance() on their integrators. The
integrators are, however, parameterized with di�erent callbacks. This polymorphism
seems to contribute to the readability of the source code, as the necessary paralleliza-
tion constructs are well localized.

5 Master's modi�cations

The master's version of the function computing the time step is given in Fig. 10. The
master broadcasts a request to compute the time step to all workers (they all joined
the group WORKER_GROUP). The master then waits for the responses, and computes
the globally shortest time step. This value is then broadcast to the workers.

Figure 10

The master's version of the routine WD_calc_eff_loads() only consists of two
lines; cf. Fig. 11. The routine master_recv() is shown in Fig. 12. It receives for each
worker the number of the interface nodes on the worker's partition and the e�ective
load contributions. These are assembled into the master's bu�er interface_loads.
After the e�ective load contributions have been received from all the workers, the
master sends out the assembled forces in master_send(). For e�ciency reasons, the
master is not required to keep track of which forces to send to which worker, and the
master sends the forces for all the interface nodes to all the workers.

Figure 11

Figure 12

Figure 13

Both the routines WD_solve_for() and WD_update_config() are de�ned as
empty (doing nothing) for the master.

6 Worker's modi�cations

The worker's version of the function computing the time step is given in Fig. 14. It
di�ers from the serial version of Fig. 4 in that the computed time step is sent to the
master and the globally shortest time step is received from it, which is then returned.

Figure 14

The worker's version of the WD_calc_eff_loads() routine is derived from the
serial one by appending at the end the two lines

15

worker_send(d);

worker_recv(d);

The �rst procedure, worker_send(), packs and sends the global numbers of the
interface nodes, and the e�ective nodal loads. The e�ective nodal loads are packed
into arrays of six elements (three components of a 3D force and three components of a
3D moment). Finally, the whole package is sent to the master. When the master has
assembled the e�ective loads from all partitions, it sends them out to the workers,
and this package is received in the worker by worker_recv(). The worker has to
accept the package of all the interface nodes in the whole structure. Therefore, it �rst
(re)allocates a bu�er rb to hold them by realloc_recbuf(). Then it unpacks the
interface e�ective loads (again in 6-element arrays) into the bu�er and then loops over
all interface nodes on its partition and overwrites the entries in the local vector of
e�ective loads by the entries received into the bu�er. The function constr_package()
collects the entries of the vector effective_loads into the vector forces, and the
function unwrap_package() overwrites the entries of the vector effective_loads by
entries of the bu�er array rb[map[i].interface_num].forces. These functions are
de�ned for a node. The reason for this is that only the node (as an \object") has
access to the equation numbers (these are needed to address the entries of the system
vectors).

Figure 15

Figure 16

The worker uses the serial versions of WD_solve_for() and WD_update_config()

without any changes.

7 Mass properties

The partitioning of the original domain leads to the creation of interface nodes. These
nodes are by de�nition connected to several partitions at once. But the workers
\know" only their own partition, so that the lumped mass properties computed for
the interface nodes from only the single partition elements would not be correct. Con-
sequently, the inertial properties of the interface nodes must be computed in a global
manner, similarly to the interface forces. However, if it is assumed that the mass dis-
tribution does not change during the computation (as is often the case), this global
computation needs to be done only once. There are at least two ways to compute the
inertial properties of the interface nodes. The �rst approach is based on a commu-
nication of the local inertial properties, so it is called the exchange algorithm. The
second approach uses duplication of elements which reference the interface nodes in
appropriate workers. This is called the ghost element algorithm. A similar algorithm
was used for slightly di�erent purpose by McGlaun et al. [23].

16

7.1 Exchange algorithm

This algorithm computes the inertial properties locally on the workers using the par-
tition elements. Then a gather is performed to assemble the local information into
the global inertial properties at the master. The global information is then broadcast
to the workers. The advantage of this approach is that no information needs to be
duplicated; the communication becomes more complicated, however. Consider, for
example, the case of structures with rotational degrees of freedom. In order to diago-
nalize the mass matrix, the mass matrix assembly �rst collects the rotational inertias
associated with the nodes in an element-by-element fashion. This is then followed by
a node-by-node computation of the principal directions of the nodal tensor of iner-
tia. Under these circumstances it is clear that additional synchronization is needed,
which rather complicates the program logic, and also requires the data formats to be
extended.

7.2 Ghost-element algorithm

The elements which are connected at the interface nodes of a given partition are all
included in the partition de�nition. However, the elements inside the partition are
the regular elements (which are used in all computations), while the elements that are
outside the partition are the ghost elements, which are used in the computation of the
mass properties, and are ignored otherwise. This approach duplicates information for
all the ghost elements. However, additional communication (and computation on the
master) is totally avoided. Given both the advantages and disadvantages, it seemed
that the ghost-element approach was preferable. However, no rigorous evaluation was
conducted.

8 Additional data exchanges

Explicit �nite element programs need to compute additional information. For in-
stance, the energy balance is a very important indicator of the solution quality. Con-
sequently, a parallel program needs to include additional communication mechanism
to gather this information from the workers at appropriate time instants (it does not
need to be computed every time step).

9 Performance

The performance of any parallel implementation needs to be evaluated with respect
to its scalability, i.e., the dependence of the obtained speed up on the number of
processors used. This is especially true for programs based on message passing, since
the connecting link tends to be slow. However, a thourough scalability evaluation is
outside the scope of this paper, and will not be pursued here. Nevertheless, we feel
it important to verify the basic concept by some timings.

17

The parallel algorithm was evaluated by a simple test measuring the run time
for the serial driver, and for the parallel driver running on three workstations. The
structure was a curved cantilever of elastic material loaded at one end by a step load.
The simulation was geometrically non-linear. Figure 17 shows the deformed structure
during the serial run. The discretization consisted of 6912 hexahedral elements, and
8829 nodes (26244 unknowns). The workstations were Hewlett&Packard HP/9000
computers, (i) series 715 workstation (100 MHz), with 128 MB of memory, (ii) series
730 workstation, with 48 MB of memory, and (iii) series 720 workstation, with 32 MB
of memory. The workstations were connected by a IEEE 802.3 (Ethernet) network.
During the run, the network was not isolated, and the workstations were not loaded by
other jobs (they were in multi-user mode, however). The speeds of the workstations
di�ered in approximate ratios 1 : 0:65 : 0:4.

Figure 17

9.1 Serial run

The equations of motion were integrated in time for 1,000 steps. The wall-clock time
was measured. The serial version needed 2379 seconds to complete the requested
number of steps on the workstation (i).

9.2 Parallel run

The partitions were generated in a far-from-optimal manner in that the number of
interface nodes was not minimized in any way. On the contrary, ragged interfaces
with a large number of nodes were designed to be able to assess the performance of
the algorithm under unfavorable conditions. The partitions were:

Workstation (i): 3718 elements, 5087 nodes, 1282 interface nodes.

Workstation (ii): 3477 elements, 4921 nodes, 1396 interface nodes.

Workstation (iii): 2093 elements, 2742 nodes, 114 interface nodes.

The master program was run on the workstation (i).
The equations of motion were integrated in time for 1,000 steps. The wall-clock

time was measured. The parallel program took 1941 seconds to complete, which is
81.6% of the time needed by the serial driver. As the ideal parallel run time should be
only approx. 2379=(1 + 0:65 + 0:4) = 1160 seconds, the parallel e�ectivity is 59.8 %.
Note that the parallel e�ectivity can be expected to improve once there are more
computations to be done on the elements (for example, when the material laws are
history-dependent), and when the interfaces are optimized to include the smallest
possible number of nodes. These issues are currently under investigation.

Figure 18

18

Conclusions

Careful design of the data structures and of the logic of an explicit �nite element pro-
gram for non-linear dynamics can lead to a remarkably clean parallelization. We had
made this experience when parallelizing a serial �nite element program of \object-
oriented" design (implemented in the C-language) for heterogeneous workstation clus-
ters running the PVM software.

The resulting source code of the parallel program was obtained by an almost trivial
modi�cation of the serial version (the C-language fragments presented above cover,
with the exception of the setup of the PVM software, all the necessary modi�cations).
It is extendible, and maintainable. In case the code needs to be modi�ed, it is
necessary to maintain only one version of the source code, from which both the serial
and the parallel programs can be generated.

Dynamic load balancing, and integration with time step varying across the mesh
partitions were not addressed here. These issues, and their e�ect on the design and
implementation, will be covered by subsequent research.

Acknowledgments

The support of the National Science Foundation, and of the Army Research O�ce is
gratefully acknowledged.

References

[1] B. W. Abeysundara and A. E. Kamal. High-speed local area networks and their
performance: A survey. ACM Computing Surveys, 21:261{322, 1991.

[2] J. W. Baugh and S. K. Sharma. Evaluation of distributed �nite element algo-
rithms on a workstation. Engineering with Computers, 10:45{62, 1995.

[3] T. Belytschko. A survey of numerical methods and computer programs for dy-
namic structural analysis. Nucl. Engng. Design, 37(1):23{34, 1976.

[4] T. Belytschko, B. Engelmann, and W. K. Liu. A review of recent developments
in time integration. In A. K. Noor and J. T. Oden, editors, State-of-the-art
surveys of computational mechanics, New York, 1989. ASME.

[5] T. Belytschko and N. D. Gilbertsen. Implementation of mixed time integration
techniques on a vectorized computer with shared memory. International Journal
of Numerical Methods in Engineering, 35:1803{1828, 1992.

[6] T. Belytschko and E. J. Plaskacz. SIMD implementation of a non-linear tran-
sient shell program with partially structured meshes. International Journal of

Numerical Methods in Engineering, 33:997{1026, 1992.

19

[7] T. Belytschko, E. J. Plaskacz, and H. Y. Chiang. Explicit �nite element method
with contact - impact on SIMD computers. Computer Systems in Engineering,
2:269{276, 1991.

[8] S. Chandra, N. J. Woodman, and D. I. Blockley. An object-oriented structure for
transient dynamics on concurrent computers. Comput. & Structures, 51:437{452,
1994.

[9] Y. P. Chien, A. Ecer, H. U. Akay, F. Carpenter, and R. A. Blech. Dynamic load
balancing on a network of workstations. Computer Methods in Applied Mechanics

and Engineering, 119:17{33, 1994.

[10] R. Chudoba and P. Krysl. Explicit �nite element computations: Object-oriented
approach. In P.J. Pahl and H. Werner, editors, Proc. of the 6th International

Conf. on Computing in Civil and Building Engineering, pages 139{145, Berlin,
1995. Balkema, Rotterdam.

[11] J. Chung and J. M. Lee. A new family of explicit time integration methods for
linear and non-linear structural dynamics. International Journal of Numerical

Methods in Engineering, 37:3961{3976, 1994.

[12] M. A. Dokainish and K. Subbaraj. A survey of direct time integration methods in
computational structural dynamics - i. explicit methods. Comput. & Structures,
32:1371{1386, 1989.

[13] K. Dowd. High performance computing. O'Reilly & Associates, Sebastopol, CA,
1994.

[14] A. Ecer, H. U. Akay, W. B. Kemle, H. Wang, D. Ercoskun, and E. J. Hall.
Parallel computation of uid dynamics problems. Computer Methods in Applied

Mechanics and Engineering, 112:91{108, 1994.

[15] M. W. Fahmy and A. H. Namini. A survey of parallel non-linear dynamic analysis
methodologies. Comput. & Structures, 53:1033{1043, 1994.

[16] C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes
for the parallel solution of problems in computational mechanics. International
Journal of Numerical Methods in Engineering, 36:745{764, 1993.

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine: A users' guide and tutorial for networked par-

allel computing. MIT Press, Cambridge, Mass., 1994.

[18] A. V. Hudli and R. M. V. Pidaparti. Distributed �nite element structural analysis
using the client-server model. Comm. Numer. Meth. Engineering, 11, 1995.

[19] T. J. R. Hughes and T. Belytschko. A pr�ecis of developments in computational
methods for transient analysis. J. Appl. Mech., 50:1033{1041, 1983.

20

[20] J. G. Malone and N. L. Johnson. A parallel �nite element contact/impact algo-
rithm for non-linear explicit transient analysis. Part I. The search algorithm and
contact mechanics. International Journal of Numerical Methods in Engineering,
37:559{590, 1994.

[21] J. G. Malone and N. L. Johnson. A parallel �nite element contact/impact algo-
rithm for non-linear explicit transient analysis. Part II. Parallel implementation.
International Journal of Numerical Methods in Engineering, 37:591{539, 1994.

[22] M. McGlaun, A. Robinson, and J. Peery. Some recent advances in structural
vibrations. In C. A. et al. Brebbia, editor, Vibrations of engineering structures,
Berlin, New York, 1985. Springer-Verlag.

[23] M. McGlaun, A. Robinson, and J. Peery. The development and application
of massively parallel solid mechanics codes. In S. N. Atluri, G. Yagawa, and
T. A. Cruse, editors, Computational mechanics '95, Int. Conf. on Computational

Engineering Science, New York, 1995. Springer.

[24] R. R. Namburu, D. Turner, and K. K. Tamma. An e�ective data parallel self-
starting explicit methodology for computational structural dynamics on the Con-
nection Machine CM-5. International Journal of Numerical Methods in Engineer-

ing, 38:3211{3226, 1995.

[25] R. Ou and R. Fulton. An investigation of parallel integration methods for non-
linear dynamics. Comput. & Structures, 30:403{409, 1988.

[26] C. �Ozturan, H. L. deCougny, M. S. Shephard, and J. E. Flaherty. Parallel
adaptive mesh re�nement and redistribution on distributed memory computers.
Computer Methods in Applied Mechanics and Engineering, 119:123{137, 1994.

[27] K. C. Park and P. G. Underwood. A variable-step central di�erence method for
structural dynamics analysis. Part I. Theoretical aspects. Computer Methods in

Applied Mechanics and Engineering, 22:241{258, 1980.

[28] J. C. Simo, N. Tarnow, and K. K. Wong. Exact energy-momentum conserving
algorithms and symplectic schemes for nonlinear dynamics. Computer Methods

in Applied Mechanics and Engineering, 100:63{116, 1992.

[29] D. Vanderstraeten and R. Keunings. Optimized partitioning of unstructured
�nite element meshes. International Journal of Numerical Methods in Engineer-

ing, 38:433{450, 1995.

[30] G. and Yagawa. A parallel �nite element analysis with supercomputer network.
Comput. & Structures, 47:407{418, 1993.

21

Figure 1: The explicit integrator object in graphic form

Figure 2: Implementation of the advance() method

Figure 3: Central di�erence driver on the highest level (a method de�ned on the
physical domain)

Figure 4: Function WD compute dt() to compute the initial time step

Figure 5: Function WD calc eff loads() to compute the e�ective loads

Figure 6: Function WD solve for() to compute the primary unknowns

Figure 7: Function to update the geometric con�guration for the Newmark integrator

Figure 8: The con�guration of the master and the workers in a \star"

Figure 9: Sample partition of a �nite element mesh

Figure 10: Modi�cation of WD compute dt() for the master version

Figure 11: Modi�cation of WD calc eff loads() for the master

Figure 12: Routine master recv()

Figure 13: Routine master send()

Figure 14: Modi�cation of WD compute dt() for the worker

Figure 15: Function worker send()

Figure 16: Function worker recv()

Figure 17: Deformed structure. Serial model

Figure 18: Parallel model. Partitions

22

F

integrator

calc_eff_loads()
solve_for()
update_config()
change_dt()

current time t time step ∆t

callbacks

domain

Figure 1

23

static void

advance(cd_integrator_t *i) /* WARBURTON */

{

i->calc_eff_loads(i->domain);

i->solve_for(i->domain);

i->update_config(i->domain);

i->t += i->dt;

if (i->change_dt != NULL) i->dt = (*i->change_dt)(i->domain);

}

static void

advance(cd_integrator_t *i) /* NEWMARK */

{

i->update_config(i->domain);

i->calc_eff_loads(i->domain);

i->solve_for(i->domain);

i->t += i->dt;

if (i->change_dt != NULL) i->dt = (*i->change_dt)(i->domain);

}

Figure 2

24

void

WD_integrate(W_domain_t *d, double start_time, double target_time)

{

d->integrator = create_Newmark_integrator(

d, /* domain */

start_time, WD_compute_dt(d), /* t and dt */

WD_calc_eff_loads, /* procedure: (a) */

WD_solve_for, /* (b) */

WD_update_config_Newmark, /* (c) */

NULL /* (d) */

);

setup_initial_conditions(d);

do {

integrator_advance(d->integrator);

} while (integrator_t(d->integrator) < target_time);

}

Figure 3

25

double

WD_compute_dt(W_domain_t *d)

{

double dt = INFINITY;

ELEM_LOOP(dt = min(dt, WE_suggested_time_step(theELEM)));

return dt;

}

Figure 4

26

void

WD_calc_eff_loads(W_domain_t *d)

{

zero_effective_loads(d);

LOAD_LOOP(WL_assemble_load(theLOAD, d));

ELEM_LOOP(WE_assemble_restoring_forces(theELEM));

NODE_LOOP(WN_assemble_damping_forces(theNODE, d));

}

Figure 5

27

void

WD_solve_for(W_domain_t *d)

{

EQN_LOOP(theUPDATE_VECTOR = theEFFECTIVE_LOADS / theMASS_MATRIX);

}

Figure 6

28

void

WD_update_config_Newmark(W_domain_t *d)

{

NODE_LOOP(WN_update_config_Newmark(theNODE, d));

}

Figure 7

29

12

21
F

F
32

23
F

F
32

21
F 23

F,
αβFΣ

F
12

αβFΣ

αβFΣ

F

master

worker 1

worker 2

worker 3

submesh 2

submesh 3
submesh 1

Figure 8

30

25

1
2

3

4

5

6

7

8

33 34 35 36

29

9

5

1 2

6 7 8

43

18

17

16 15 14

13

12

11

10

9

Figure 9

31

double

WD_compute_dt(W_domain_t *d)

{

double dt = INFINITY, sent_dt;

INITSEND();

BCAST(WORKER_GROUP, TIME_STEP_REQUEST_TAG);

WORKER_LOOP(

RECEIVE(theWORKER, TIME_STEP_ANSWER_TAG);

UNPACK(double, &sent_dt);

dt = min(dt, sent_dt);

);

INITSEND();

PACK(double, &dt);

BCAST(WORKER_GROUP, TIME_STEP_ANSWER_TAG);

return dt;

}

Figure 10

32

void

WD_calc_eff_loads(W_domain_t *d)

{

master_recv(d);

master_send(d);

}

Figure 11

33

static void

master_recv(W_domain_t *d)

{

unsigned long num_of_if_nodes, in, i, w;

W_pvm_master_t *m = d->pvm_master;

double forces[6];

zero_interface_loads(d);

WORKER_LOOP(

RECEIVE(ANY_WORKER, EFFLOAD_LOCAL_TAG);

UNPACK(ulong, &num_of_if_nodes);

for (i = 1; i <= num_of_if_nodes; i++) {

UNPACK(ulong, &in);

UNPACK_ARRAY(double, forces, 6);

for (j = 0; j < 6; j++)

interface_loads[in].forces[j] += forces[j];

}

);

}

Figure 12

34

static void

master_send(W_domain_t *d)

{

W_pvm_master_t *m = d->pvm_master;

unsigned long i, num_of_if_nodes = m->num_of_interface_nodes;

INITSEND();

PACK(ulong, &num_of_if_nodes);

for (i = 1; i <= num_of_if_nodes; i++)

PACK_ARRAY(double, interface_loads[i].forces, 6);

BCAST(WORKER_GROUP, EFFLOAD_GLOBAL_TAG);

}

Figure 13

35

double

WD_compute_dt(W_domain_t *d)

{

double dt = INFINITY;

ELEM_LOOP(dt = min(dt, WE_suggested_time_step(theELEM)));

INITSEND();

PACK(double, &dt);

SEND(theMASTER, TIME_STEP_ANSWER_TAG);

RECEIVE(theMASTER, TIME_STEP_ANSWER_TAG);

UNPACK(double, &dt);

return dt;

}

Figure 14

36

static void

worker_send(W_domain_t *d)

{

W_pvm_worker_t *w = d->pvm_worker;

unsigned long i, num_of_if_nodes = w->num_of_interface_nodes

W_local_to_interface_map_t *map = w->map;

double forces[6];

INITSEND();

PACK(ulong, &num_of_if_nodes);

for (i = 1; i <= num_of_if_nodes; i++) {

PACK(ulong, &map[i].interface_num);

constr_package(WD_get_node_by_idx(d, map[i].local_num),

d->effective_loads, forces);

PACK_ARRAY(double, forces, 6);

}

SEND(theMASTER, EFFLOAD_LOCAL_TAG);

}

Figure 15

37

static unsigned long num_of_interface_packages = 0;

static W_interface_package_t *rb = NULL;

static void

worker_recv(W_domain_t *d)

{

unsigned long num_of_if_packages, i;

W_pvm_worker_t *w = d->pvm_worker;

W_local_to_interface_map_t *map = w->map;

RECEIVE(MASTER_TID(w), EFFLOAD_GLOBAL_TAG);

UNPACK(ulong, &num_of_if_packages);

realloc_recbuf(num_of_if_packages);

for (i = 1; i <= num_of_interface_packages; i++)

UNPACK_ARRAY(double, rb[i].forces, 6);

for (i = 1; i <= w->num_of_interface_nodes; i++)

unwrap_package(WD_get_node_by_idx(d, map[i].local_num),

rb[map[i].interface_num].forces,

d->effective_loads);

}

Figure 16

38

Figure 17

39

Figure 18

40

