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Abstract

Parallelization of explicit finite element dynamics based on domain
decomposition and message passing may utilize one of two partition-
ing cuts, namely cut led through the nodes and element edges or
faces (node cut), or cut led across elements, avoiding nodes (element
cut). The cost of serial explicit finite element dynamics (without con-
siderations of mechanical contact) is almost wholly associated with
elements (internal force evaluation and material updates). Sharing of
nodes among processors leads to very little duplication of computing
effort, and the node-cut partitioning has been used exclusively in the
past.

The dual nature of the element-cut partitioning, and in particular
the fact that the nodes are assigned uniquely to partitions, means that
communication requirements may be in some situations quite differ-
ent compared to the node-cut partitioning. Hence, the question sug-
gests itself whether using element-cut partitioning would make certain
algorithms, such as for instance subcycling and mechanical contact,
simpler, more efficient, or plainly possible. Seeking an answer to this
question makes sense only if the larger overhead associated with the
duplication of elements does not prevent the element-cut partitioning
from being scalable as the number of processors increases, especially
in fixed-partition-size situations. We show here that the element-cut
partitioning strategy does scale, and hence presents a viable alterna-
tive to the tradiotional node-cut approach.
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We document not only the high-level algorithms but also the rel-
evant communication code fragments of the message passing imple-
mentation using the MPI library, so as to empower the reader to fully
verify our numerical experiments.

Introduction

Parallel execution of explicit finite element solid dynamics simulations on
distributed memory computers with domain decomposition and explicit mes-
sage passing is an enabling technology for bigger computing runs completed
in shorter time. The high-level algorithm of explicit time stepping in finite
element solid dynamics is relatively straightforward, and parallelization of
finite element programs has been reported for both research and commercial
codes; see, for example, References [1, 2, 3]. Complications arise especially
due to the need to enforce mechanical contact conditions [4, 5, 6, 7, 8, 9],
for coupled field problems (implicit/explicit procedures), or for variants of
the explicit time stepping with some form of step subcycling (employment of
multiple time steps) [10, 11].

The finite element domain may be partitioned among the co-operating
processors by either duplicating nodes (in other words, the cut is led through
the finite element edges and faces), or by duplicating the elements. We
call the former strategy the node cut, and the latter the element cut. It is
well known that the cost of serial explicit finite element dynamics (without
contact) is almost wholly associated with elements (internal force evaluation
and material updates). Duplication of nodes leads therefore to very little
duplication of computing effort, and so it is perhaps not surprising that the
node-cut partitioning has been used exclusively in the past, and that the
element-cut partitioning has been rarely mentioned as an alternative, if at
all.

However, if we consider the dual nature of the partitioning cuts, and
in particular the fact that either the nodes or the elements are assigned
uniquely to partitions, which means that communication requirements may
be quite different in different situations, a question suggests itself whether
using element-cut partitioning would make certain algorithms, such as for
instance subcycling [10, 11] and mechanical contact [4, 5, 6, 7, 8, 9], simpler,
more efficient, or plainly possible. We do not propose to answer this ques-
tion here. Rather, we seek to ascertain whether this further investigation is
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justified by asking “Does element-cut partitioning scale as the number of pro-
cessors grows?” We believe that this paper provides sufficient data proving
that despite its higher overhead the element-cut partitioning strategy does
scale, and hence constitutes a viable alternative to the node-cut partitioning.

The literature dealing specifically with element-cut partitioning is not nu-
merous. The authors are aware of publications dealing with a similar subject
in fluid dynamics by Farhat and Lanteri [12] and Lanteri [13, 14], who dis-
cuss use of overlapping and non-overlapping triangle and tetrahedral grids
for mixed finite element/finite volume Navier-Stokes computations [14]. A
partitioning approach which on the surface looks as if it could fit into our
classification has been proposed by Masters et al. [15]. However, the authors
of Reference [15] are apparently unaware of the possibility of exploiting the
duality of partitioning cuts (their approach is based instead a node-cut parti-
tioning with duplication of a row of elements on each side of the partitioning
cut), and do not explore scalability in much detail.

Although it is widely believed that the domain-decomposition paralleliza-
tion of explicit solid dynamics with message passing is by now completely
understood, we venture to disagree. Message-passing communication consists
of layers of algorithmic complexity: descending from the high-level algorithm,
to the message-passing library, and then to further layers of software closer
to the communication hardware. While some of the deeper layers are encap-
sulated, and are not exposed to the application programmer, the commu-
nication library (MPI, in our case) constitutes the application programmer
interface (API), which represents standardized means of implementing algo-
rithms in arbitrary, non-standardized ways. In other words, a given high-level
algorithm may be (and often is) implemented at the API level in distinct
codes in different ways, not all of them equally efficient and robust.

The API-level communication algorithm affects strongly the robustness
and the parallel efficiency and scalability of the high-level algorithm, and yet
it is rarely described in papers in sufficient detail to allow for unambiguous
assessment and verification of the results. Furthermore, some interesting
questions concerning the API-level communication have not been asked yet,
much less answered: “Should the communication start by receives or by
sends, or should the receives and sends be posted at the same time, and in
fact does it matter which is first?” and “When is it best to synchronize?”
(Compare the various solutions in the present paper and References [15, 16,
17].)

Therefore, given the above, we feel justified in describing in detail how
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both node- and element-cut partitioning can be robustly and efficiently im-
plemented in a single finite element program with minimum duplication of
source code. Our communication algorithm uses the MPI library, relying on
application buffering and non-blocking communication primitives for robust-
ness and efficiency. We believe that by presenting the crucial fragments of the
communication code we provide the reader with all the necessary knowledge
so that our results can be completely and unambiguously verified.

1 Central difference time-stepping

The solid mechanics finite element codes solve the momentum equations dis-
cretized both in the spatial domain (finite elements), and in the time domain
(finite differences). The most commonly used explicit time integration tech-
nique is the central differences algorithm. One of its variants is the explicit
Newmark beta method, which is summarized as

u̇t = u̇t−∆t + (∆t/2) (üt + üt−∆t) (1)

ut+∆t = ut + ∆tu̇t + (∆t2/2)üt (2)

f̂ t+∆t = f extt+∆t − f intt+∆t −Cu̇pt+∆t (3)

with u̇pt+∆t = u̇t + ∆tüt or u̇pt+∆t = (ut+∆t − ut)/∆t (4)

Müt+∆t = f̂ t+∆t (5)

In (1)–(5) and in what follows, M denotes the mass matrix (constant, di-
agonal), C is the damping matrix, which can be function of the velocities,
uτ , u̇τ , üτ are the vectors of displacements, velocities, and accelerations,
respectively, u̇pt+∆t is the predicted velocity for damping force computation,
and f extτ are the external loads. The internal nodal forces f intτ are generated
by the stresses. All quantitities are written at time τ .

The algorithm of equations (1)–(5) can be written in the symbolic form
as shown in Figure 1. The cost of steps (i) and (iii) is minor compared with
step (ii), which involves element-wise computations of stresses with material
state update. All of the steps can be parallelized to a large degree by domain
decomposition as will be the subject of following sections.
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while not finished loop
(i) Update configuration [equations (1), (2)];
(ii) Compute effective nodal forces [equations (3), (4)];
(iii) Compute acceleration [equation (5)];
(iv) Finalize step (compute stable time step, ...);
(v) Increment time: t = t + ∆ t.

endloop

Figure 1: Central difference time-stepping algorithm.

2 Node- and element-cut partitioning

For reasons of expediency we restrict ourselves to static domain decompo-
sition, also with the view that dynamic load balancing adds an additional
layer of complexity, but otherwise does not compromise our conclusions.

2.1 Load balancing

A sine qua non condition of achieving acceptable parallel speedups is load
balance. Each time step in the algorithm of Figure 1 constitutes a natural
synchronization point, because in order to proceed at time t+ ∆t, the state
of all the nodal and elemental quantities must be known at time t. The load
balancing should therefore allow all the processing units to finish their por-
tion of work at the same time, at the next global synchronization point. In
an explicit solid dynamics finite element code the majority of the CPU time
is proportional to the number of elements – update of material state at the
integration points being the main consumer of cycles; see for example the re-
view of Fahmy and Namini [1]. Hence, partitioning balanced on the number
of elements per partition is indicated. However, the domain decomposition
software has not only the task of balancing the computation load, but also to
minimize the communication requirements (we provide some formulas below
to support this statement). Since optimal decomposition problem is unsolv-
able in general, heuristics are used. The domain decompositions in our case
have been obtained with the partitioning software METIS [18].
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2.2 Node-cut partitioning

The obvious way of partitioning the finite element mesh is to lead the dividing
line (surface) through the element edges (faces); see Figure 2. The elements
are assigned uniquely to partitions (there are two partitions in Figure 2). The
nodes through which the cut is led are shared by the partitions (filled squares
in Figure 2). The other nodes are private to each partition, so the momentum
equations are solved at these nodes without change. However, at the shared
nodes one is confronted with the necessity to assemble contributions from
two or more partitions.

cut

shared node
private node

Figure 2: Node-cut partitioning.

In order to implement the node-cut partitioning, one can modify the
Newmark central difference scheme of Figure 1 to include an exchange of
nodal forces assembled by each domain from only the elements constituting
the given partition (Figure 3). In other words, each partition sends the forces
it assembled for the shared nodes to all the incident partitions, and in this
way every partition gathers for each shared node contributions from all the
elements incident to it. (Danielson and Namburu have recently proposed an
interesting variation on the algorithm in Figure 3, which allows for additional
overlapping of communication and computation [16].)

One remark is in order here. Since the partitioned domains contain only
those elements which have been assigned to it, the correct mass matrix needs
to be established before the time stepping starts by an operation analogous
to the exchange of forces. As a matter of fact, as we will show later on, the
exchange code differs only in the packing and unpacking of the information
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while not finished loop
(i) Update configuration [equations (1), (2)];
(ii) Compute effective nodal forces [equations (3), (4)];

Exchange forces for shared nodes.
(iii) Compute acceleration [equation (5)];
(iv) Finalize step (compute stable time step, ...);
(v) Increment time: t = t + ∆ t.

endloop

Figure 3: Central difference time-stepping algorithm. The node-cut strategy.

to be exchanged, hence most of the communication code can be re-used.

2.3 Element-cut partitioning

An alternative to the “node-cut” strategy is the “element-cut” strategy. The
partitioting cut is for this approach led across the edges (faces); see Figure 4.
The nodes are assigned uniquely to partitions, and the elements which have
been cut are duplicated for each partition adjacent to the cut. It should
be noted that a partition gets to work not only with its proper nodes, but
also with nodes incident on the shared elements which are “owned” by other
partitions. We call these nodes “remote node copies” (RNC), for reasons to
be clarified instantly.

cut

remote node copy

private nodeprivate node

shared (duplicated) element

Figure 4: Element-cut partitioning.

The same approach to parallelization as in Figure 3 could now be adopted,
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while not finished loop
(i) Update configuration [equations (1), (2)];
(ii) Compute effective nodal forces [equations (3), (4)];
(iii) Compute acceleration [equation (5)];

Exchange accelerations for remote node copies.
(iv) Finalize step (compute stable time step, ...);
(v) Increment time: t = t + ∆ t.

endloop

Figure 5: Central difference time-stepping algorithm. The element-cut strat-
egy.

ie. the forces for the RNCs could be exchanged. However, that is obviously
inefficient, since we would have to exchange forces for all nodes of the shared
elements. We approach the problem differently, and handle the RNCs not
as true nodes, but as “shadows” of nodes. We do not bother to compute
their mass or assemble the nodal forces for them. Instead, to perform a
time step we choose to exchange accelerations for the RNCs as shown in
Figure 5: the accelerations are computed from (5) only for nodes owned by
the given partition. For the RNCs the accelerations are received from the
partition owning the remote node. The final effect is, of course, the same
as if the accelerations had been computed for the node locally from forces.
(Equivalently, we could also exchange forces as for node-cut partitioning;
however, the force acting on the RNC would override the locally computed
force instead of being summed with the local force.)

To summarize the preceding developments, let us note here a duality in
the node- and element-cut partitioning strategies; see Table 1.

Cut through Assigns uniquely Duplicates
Nodes Elements Nodes

Elements Nodes Elements

Table 1: Duality of cut strategies
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3 Implementation of the exchanges

The natural computing paradigm is in our case the Single Program Multiple
Data (SPMD) approach. We adopt the MPI library [19] for the message-
passing implementation of the exchange algorithm. We have been able to
obtain the needed communication functionality by using only 11 MPI func-
tions:

• Communication setup: MPI Init, MPI Get processor name,
MPI Comm rank, MPI Comm size, MPI Bcast, MPI Finalize;

• Computation of stable time step: MPI Allreduce;

• Exchanges: MPI Barrier, MPI Isend, MPI Irecv, and MPI Waitany;

3.1 Data structures

The attributes of a partition mesh are collectively grouped in an entity called
the domain. The distributed nature of the mesh is reflected in the data struc-
ture W mpi process t of Figure 6 which is also an attribute of the domain.
(Note that Figure 6 shows pseudo-code; declaring dynamic arrays as shown
is not possible. We want to stress the function of the fields. The same re-
mark applies also in Figure 7.) There are two important constituents of the
W mpi process t data structure: a node-partition map, and communication
buffers.

typedef struct W_mpi_process_t {
W_domain_t *domain; /* domain on the processor */
int size; /* # of collaborating processes */
int rank; /* rank of process */
MPI_Request recv_requests[size]; /* MPI request handles */
W_mpi_npmap_t node_part_map; /* node/partition map */
W_mpi_comm_buff_t comm_buffs[size]; /* communication buffers */

} W_mpi_process_t;

Figure 6: MPI process data structure.

The node-partition map is the basis of all communication; all the com-
munication structures are derived from it. It can be understood as a global
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dictionary keyed by the node identifier (say a globally unique integer num-
ber). The implementation optimizes access to the node by storing the pointer
to the node data instead of this integer identifier; see Figure 7. Note that
num pairs equals to the number of globally unique nodes. The value stored
in the dictionary is a list of partition numbers for node-cut partitions, or
simply the number of the owning partition (element-cut partitions). It bears
emphasis that the node-partition map is a distributed data structure in the
sense that if a partition does not refer to a given node, the node key reads
“undefined” (NULL in our C-language implementation) meaning no value is
stored for the partition list on a given processor.

typedef struct W_mpi_npmap_pair_t {
W_node_t *n; /* node */
W_mpi_rank_t ranks_dim; /* dim of below array */
W_mpi_rank_t *ranks; /* partition numbers */

} W_mpi_npmap_pair_t;

typedef struct W_mpi_npmap_t {
W_index_t num_pairs; /* number of pairs */
W_mpi_npmap_pair_t pairs[num_pairs]; /* array of pairs */

} W_mpi_npmap_t;

Figure 7: Node-partition map data structure.

The node-partition map is computed by our front-end to the METIS
library from the graph partitioning METIS produces, and is read from a file
by the finite element program.

The communication buffers play two roles (Figure 8). The first consists
of providing readily available information about with which neighbor a given
partition should communicate, and the second is to provide buffers for data
being sent or received. Each given partition defines an array of communi-
cation buffers, one for each partition (even for itself, but no communication
with itself is ever performed, of course).

It bears emphasis that the messages being sent or received are buffered by
the finite element program, not by the message-passing library. For the sake
of readability and maintainability we pack and unpack data from the commu-
nication buffers, but one could also envisage using the communication buffers
directly in the computations, which could save the packing/ unpacking time.
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typedef struct W_mpi_comm_buff_t {
int rank; /* rank (partition number) */
int num_to_send; /* # of nodes to send */
int num_to_recv; /* # of nodes to receive */
W_node_t **to_send; /* array of pointers to nodes to send

of num_to_send size */
W_node_t **to_recv; /* array of pointers to nodes to receive

of num_to_recv size */
int count; /* number of doubles in buffer */
int sbuf_dim; /* send buffer dimension */
double *sbuf; /* send-buffer; array of sbuf_dim size */
int rbuf_dim; /* receive buffer dimension */
double *rbuf; /* receive-buffer; array of rbuf_dim size */

} W_mpi_comm_buff_t;

Figure 8: Communication buffer. (Node-cut partitioning.)

3.2 Common communication code

When looking at Figures 3 and 5, one should immediately notice that there
is common ground and that the duality of the partitioning cuts is manifest:
In both cases communication is required for the update of shared entities.
To “update” a node, one needs to compute the accelerations from (5), and
an element is “updated” during the computation of the internal force f intt+∆t

of equation (3). The requisite information is nodal force (update of node),
and node configuration (ut, u̇t, üt) for the update of element. Futhermore,
nodal vectors (scalars) are being exchanged (i) between pairs of adjacent par-
titions; (ii) in both directions. Finally, an important aspect is efficiency, and
in that respect we should note that there is no need for fine-grained commu-
nications between nodes themselves. On the contrary, the communication
can be carried out in batches (node groups).

We have pursued this reasoning in our implementation, and the result
is a single communication routine which works for both node-cut (exchange
of mass and forces), and element-cut strategies (exchange of accelerations).
The differences have been concentrated into callbacks1 which pack the data

1The On-line Computing Dictionary (URL http://wombat.doc.ic.ac.uk) defines a
callback as “A scheme used in event-driven programs where the program registers a call-
back handler for a certain event. The program does not call the handler directly but when
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for transmission and unpack it after it has been delivered.
The communication routine is described in Figure 9. Two main consider-

ations were followed in its design. Firstly, one needs to avoid communication
deadlocks, which can easily occur when blocking communication primitives
are used for the unstructured, irregular communication patterns that need
to be dealt with. (Consider, for example, two processes which both enter a
mutual unbuffered blocking send or receive at the same time.) Our second
goal is communication efficiency through overlapping of computation and
communication. Both goals, robustness and efficiency, can be met by using
non-blocking communication primitives.

We start by packing the data to be sent into the communication buffers,
and initializing non-blocking sends (Figure 10). Also, we initialize receive
operations by non-blocking receives (Figure 11). The communication sub-
system (which could be operated by a communication processor separate
from the CPU) is then free to go ahead with the message transfer and with
the copying of the message from MPI buffers to the receive buffer provided
as argument to MPI Irecv.

Finally, we wait until all receive operations have completed by repeat-
edly calling MPI Waitany and unpacking the data from the communication
buffer’s storage (Figure 12). The exchange algorithm concludes by explicit
synchronization by calling MPI Barrier. The reason for this is that we do not
have any means of finding out whether data sent by a process has reached
its destination. (Explicit acknowledgement is a possibility, but that would
add significantly to the message traffic. We have not explored this avenue
in detail, though.) To understand the need for synchronization, consider
the following example: We have a mesh split into two partitions. (There is
a one-to-one correspondence between partitions and processes.) Process 0
sends data to process 1, but then is suspended because of increased activity
of another process running on the same CPU, and does not manage to re-
ceive from process 1. Process 1 sends data to, and receives from, process 0.
Without synchronization at the end of the time step, process 1 could now
run ahead, and arrive at the next exchange phase before the process 0 was
able to receive from process 1. At that point, process 1 could overwrite its
communication buffer for sending, rendering contents of message delivered
to process 0 undefined.

the event occurs, the handler is called, possibly with arguments describing the event.”

12



void

W_mpi_exchange (W_domain_t *d, /* IN: domain */
int nvpn, /* IN: number of doubles per node */
W_mpi_pack_func pack, /* IN: pack function */
W_mpi_unpack_func unpack, /* IN: unpack function */
int tag /* IN: message tag */)

{
W_mpi_process_t *p = &d->mpi_process; /* MPI process */
int i;

FOR (i, p->size) {
isend (p, i, nvpn, tag, pack); /* initialize sends */
irecv (p, i, nvpn, tag); /* initialize receives */

}
wait_all (p, unpack); /* wait for receives to complete */

}

Figure 9: Implementation of the exchange algorithm (common to both node-
and element-cut strategies).

static void

isend (W_mpi_process_t *p, /* IN: process */
int to, /* IN: destination partition */
int num_vals_per_node, /* IN: number of values per node */
int tag, /* IN: message tag */
W_mpi_pack_func pack /* IN: pack function */)

{
W_mpi_comm_buff_t *cb = &p->comm_buffs[to];

if (cb->num_to_send > 0) { /* Anything to send? */
MPI_Request req;

cb->count = num_vals_per_node * cb->num_to_send;

W_mpi_realloc_sbuf (cb); /* re-size */
pack (p, cb); /* pack into buffer */
MPI_Isend (cb->sbuf, cb->count, MPI_DOUBLE,

cb->rank, tag, MPI_COMM_WORLD, &req);

}
}

Figure 10: Function isend() invoked in Figure 9.
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static void

irecv (W_mpi_process_t *p, /* IN: process */
int from, /* IN: source partition */
int num_vals_per_node, /* IN: number of values per node */
int tag /* IN: message tag */)

{
W_mpi_comm_buff_t *cb = &p->comm_buffs[from];

if (cb->num_to_recv > 0) { /* Anything to receive? */
cb->count = num_vals_per_node * cb->num_to_recv;

W_mpi_realloc_rbuf (cb); /* re-size */
MPI_Irecv (cb->rbuf, cb->count, MPI_DOUBLE,

cb->rank, tag, MPI_COMM_WORLD,

&p->recv_requests[from]);

} else { /* nothing to receive; set request to NULL */
p->recv_requests[from] = MPI_REQUEST_NULL;

}
}

Figure 11: Function irecv() invoked in Figure 9.

static void

wait_all (W_mpi_process_t *p, /* IN: process */
W_mpi_unpack_func unpack /* IN: unpack function */)

{
MPI_Status status;

int i, idx;

int num_recv = 0; /* count receives */
FOR (i, p->size) {

if (p->comm_buffs[i].num_to_recv > 0) num_recv++;

}
while (num_recv-- > 0) { /* wait for all receives */

MPI_Waitany (p->size, p->recv_requests, &idx, &status);

unpack (p, &p->comm_buffs[idx]); /* unpack */
}
MPI_Barrier (MPI_COMM_WORLD); /* synchronize */

}

Figure 12: Function wait all() invoked in Figure 9.
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3.3 Implementation for node-cut partitions

The communication pattern can be established for node-cut partitions very
easily, since the node/ partition map is the only data structure needed. In
other words, communication for a node is required if the value stored in the
node/ partition map is a list of two or more partition numbers. Also, the
number of nodes for which a send is required is equal to the number of nodes
for which a partition needs to receive.

The signature of the W mpi exchange function indicates how it is used
to carry out an exchange of nodal quantities among the collaborating MPI
processes: The caller provides pointers to functions packing and unpacking
the nodal data, the number of double precision values per node (one scalar
per node for the exchange of mass, array of 3 values per node for the exchange
of force), and the message tag. The packing and unpacking functions use the
to send and to recv arrays to find out for which nodes to communicate, and
depend of course on the scheme used to store nodal data. We present our
implementation of these functions in the Appendix.

3.4 Implementation for element-cut partitions

Contrary to the node-cut partitioning setup, the communication pattern for
element-cut strategy needs to be established by communication. Initially,
each partition knows for which nodes a receive is needed (and can therefore
compute easily the to recv array in the communication buffers), but does
not know for which nodes it should send data to which partition. Hence,
the communication setup is performed by broadcasting “send request” lists
of nodes for which a partition expects to receive data (ie. of those nodes
which the partition uses, but does not own) to all collaborating processes.
The “send request” lists are converted into the to send array in the com-
munication buffers; otherwise these functions are identical to those in the
Appendix.

4 Numerical experiments

As we have declared above, our intention is to provide hard data which
would indicate how the two dual partitioning strategies compare in terms
of scalability. Node-cut partitioning has been shown to scale well; see, for
instance References [15, 16], and a number of other publications which do
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not describe the API-level communication algorithms, but do give scalability
data [6, 3, 9, 20, 17].

Our intention is to provide performance, and in particular scalability,
figures for the element-cut strategy. However, to make all things equal for
the purpose of comparison, we also give analogous results for the node-cut
strategy. We choose an academic example discretized with several hexahedral
meshes to be able to observe the influence of mesh size, and a real-life finite
element model to observe properties of the communication routines under
slightly unbalanced-load conditions.

4.1 Discussion of speedup formulas

The time to run a simulation with the un-partitioned mesh (ie. on a sin-
gle processing unit) can be broken down into a parallelizable and a non-
parallelizable (serial) part as

T (Np = 1) = Tser + Tpar , (6)

where Tpar is the parallelizable part of the total CPU time, and Tser is the
serial part.

Let us now consider the effect of the partitioning strategy. Both strate-
gies lead to duplication; shared are either nodes (node-cut), or elements
(element-cut strategy). Hence the parallelizable part is no longer just Tpar,
but T ′par > Tpar, since there is more entities to compute with. The time to run
the simulation partitioned for Np processing units (processors) is therefore
composed of the serial part, Tser, fraction of the parallelizable part, T ′par/Np,
and of communication time, Tcomm, which is a non-linear function of the
number of processors, of the number of finite element nodes for which com-
munication is required, hardware configuration, etc.

T (Np) = Tser +
T ′par

Np

+ Tcomm (7)

Hence, the parallel speedup can be expressed as

S(Np) =
T (Np = 1)

T (Np)
=

Tser + Tpar

Tser + T ′par/Np + Tcomm

. (8)

In explicit finite element solid dynamics programs with domain decompo-
sition, the serial part is negligible compared with the parallelizable part,
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Tser � Tpar. The parallel speedup is then approximated as

S(Np) ≈
Np

T ′par/Tpar +Np

Tcomm

Tpar

(9)

Let us now consider the ramifications of equation (9). First, there is the effect
of the node or element duplication. As we have already pointed out, much
more work is associated with elements than with nodes, therefore the node-
cut strategy is penalized only lightly (T ′par ≈ Tpar). (However, the asymptotic
cost, ie. the cost for computations with meshes of size growing without limit,
will still be affected by duplication in both cases.)

On the other hand, the element-cut strategy incurs non-negligible over-
head, which can be roughly estimated by back-of-the-envelope calculations:
The un-partitioned mesh has NE elements. Assume Np � NE, ie. there is
substantially less processors than elements. Assuming perfect balance, the
number of elements per partition follows as NE/Np, and the number of du-
plicated (cut) elements is approximately proportional to the “surface” of all
the partitions, and for approximately cube-shaped partitions we get

NE,dupl ≈ O
[
Np (NE/Np)

2/3
]
. (10)

Since T ′par is proportional to the number of original elements plus the number
of cut elements, we can estimate

T ′par/Tpar =
NE +O

[
Np (NE/Np)

2/3
]

NE

= 1 +O
(
N1/3
p N

−1/3
E

)
. (11)

Together with parallel speedup, we find the parallel efficiency to be an
extremely useful measure. It is defined as

e(Np) = S(Np)/Np . (12)

From the above formulas, the parallel efficiency can be approximated for the
node-cut strategy as

e(Np) =
1

1 +Np

Tcomm

Tpar

, (13)

and for the element-cut strategy as

e(Np) =
1

1 +O
(
N

1/3
p N

−1/3
E

)
+Np

Tcomm

Tpar

. (14)

17



Specializing formulas (13) and (14) for fixed-partition-size runs, the parallel
efficiency may be rewritten by using the fact that the number of elements
per partition is fixed, NE,part = NE/Np ≈ const. Hence, we can see that
for the node-cut partitioning the parallel efficiency is predicted by (13) as
independent of Np (perfect scalability), and since (11) can be rewritten as

T ′par/Tpar =
NpNE,part +O

[
Np (NE,part)

2/3
]

NpNE,part

= 1 +O
(
N
−1/3
E,part

)
, (15)

we deduce that for the element-cut partitioning

• we may expect it to scale for fixed-partition-size computations, be-
cause (15) does not depend on the number of processors Np; and

• the overhead of element-cut partitioning decreases for larger partitions,
i.e. the larger is NE,part, the closer T ′par/Tpar is to one. (In other words,
the overhead due to duplication is mitigated by using larger partitions.)

Both predictions are explored via numerical experiments in the next sections.

4.2 Partitioning

The finite element mesh partitioning library METIS [18] has been used to ob-
tain the element-balanced partitions of this section. However, since METIS
currently does not have the capability of partitioning nodes and elements
according to our classification (node- and element-cut), a simple front-end
to METIS has been written. This program calls METIS to partition the
nodal graph (nodes are the vertices of the graph, and elements are its edges).
The output from METIS is an element-balanced labelling of elements and
nodes with partition numbers, which we use directly to produce the node-cut
(element-cut) partitions. It should be noted that the total number of ele-
ments, including also those elements duplicated along the partitioning cuts,
should be partitioned for the element-cut strategy. However, not knowing of
an easy way of doing this, we have accepted the resulting slight imbalance;
see Figures 13 and 21. The workload balance is defined as

Np∑
i

NEi

Np maxiNEi

× 100% , (16)

where NEi is the number of elements in partition i (including those duplicated
in other partitions).
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4.3 Computer system used in tests

The tests in this section have been run on the IBM Scalable PowerParallel
9076 SP-2 machine at the Cornell Theory Center. The machine is equipped
with POWER2 SC thin-nodes (120 MHz) with at least 256MB of mem-
ory. The computing nodes are interconnected by a High-Performance Switch
communication hardware, which has been used in the user-space mode for
increased throughput (it does not need to make kernel calls to communicate).
The processing nodes have been reserved for “unique” CPU usage (only the
test program was running on each node), and the wall-clock times we report
are free of load-unbalance effects related to time sharing. Since we measure
real elapsed time, the difference in CPU speeds is not relevant, although
we have to mix faster and slower processors for larger number of partitions.
Also, the times we report exclude input/output times.

The MPI library is on the SP-2 system layered on top of the native MPL
library [21], which was designed to take advantage of the High-Performance
Switch using a light-weight user-space protocol.

4.4 Cube

The finite element model in this section is a uniform, regular discretization
of a cube with a square through-hole. The material constitutive equation is
the St.Venant-Kirchhoff hyperelastic model. Hexahedral, isoparametric finite
elements with 2×2×2 Gauss quadrature have been used. The mesh sizes are
summarized in Table 2. All of the single-CPU runs could be accommodated
by a POWER2 SC node with 256MB of memory (CUBE-15 could not be run
on a single CPU). The wall-clock times for these runs were on the order of 300
seconds, which means that the runs for larger number of processors could not
be timed very accurately, but since we report averages over a certain number
of runs we believe the figures are reliable. The time per element per cycle
for the mesh CUBE-12 for a single-CPU run was measured as 100µs.

The best picture of the performance of the parallel algorithm seems to
be conveyed by graphs of parallel efficiency (parallel speedup can be easily
derived from efficiency, and actual wall-clock times are of little interest).
Therefore, and also in order to save space, we show only graphs of parallel
efficiency here.
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Figure 13: Model CUBE-12: balance of partitions (equation 16).

Model Number of nodes Number of elements
CUBE-5 17,160 15,000
CUBE-8 66,912 61,440
CUBE-10 128,520 120,000
CUBE-12 219,600 207,360
CUBE-15 421,200 405,000

Table 2: CUBE meshes.
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Figure 14: Parallel efficiency for different CUBE model sizes. Element-cut
partitioning.

4.4.1 Fixed-model-size scalability

Figure 14(a) shows the parallel efficiency for the smallest mesh, CUBE-5. In
the graph legends, NC and EC denote the node- and element-cut strategies
respectively. The ideal parallel efficiency for the node-cut strategy is simply
e(Np) = 1 (these curves are not shown in the graphs), whereas the ideal
parallel efficiency for the element-cut strategy (curves labelled EC/no comm)
is derived from speedup of (9) where the communication time is ignored, and
the ratio T ′par/Tpar is computed as

T ′par/Tpar =

Np∑
i

NEi

 /NE . (17)

Figures 14(b), 15(a), and 15(b) show parallel efficiencies for the other
meshes, CUBE-8, CUBE-10, and CUBE-12. Figures 17(a) and 17(b) summa-
rize the parallel efficiency for the node- and element-cut strategies for all
meshes. The increase in parallel efficiency for larger meshes reflects equa-
tion (13), or (14) respectively: The computation time Tpar grows faster than
the communication time, Tcomm. Figure 16 illustrates that our theoretical
prediction (11) of overhead due to duplication holds up against measured
data: the predicted cube-root variation is evident.
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Figure 15: Parallel efficiency for different CUBE model sizes. Element-cut
partitioning.
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Figure 16: T ′par/Tpar in dependence on Np for fixed-model-size element-cut
partitioning.
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Figure 17: Parallel efficiency for different size of CUBE models

The parallel efficiency has been obtained here for the case of fixed model
size. In other words, Tpar is held fixed in the term NpTcomm/Tpar in equa-
tions (13) and (14). Then, since Tcomm is non-decreasing with increasing Np,
the fixed-model-size parallel efficiency decreases with the number of proces-
sors. The evidence for this is quite clearly shown in Figures 17(a) and 17(b).

4.4.2 Fixed-partition-size scalability

The situation is quite different in the case of fixed partition sizes, when
Np/Tpar is held fixed in equations (13) and (14). To attain scalability in
this situation is often very important, because it means that bigger com-
putations can be undertaken by increasing the number of processors. To
document scalability in this setting, we present results for a series of simula-
tions with 2,500, 3,000, 5,000, and 7,500 elements per partition. (Even the
7,500-element partitions probably do not contain enough elements to achieve
optimal performance on the SP-2, which has relatively slower communication
hardware, but fast and well-balanced CPU, caches, and memory.)

Figure 18(a) shows wall-clock run times for the node-cut partitioning
strategy (curves connect points for same-size partitions; number 5,8,10,12,15
stands for CUBE-5, . . .). Good scalability is evident from the approximately
zero slope of curves connecting run times for same-size partitions. Some
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remarks are in order: The spacing of the curves is approximately given by the
ratio of the partition sizes. The results for very small number of processors are
not quite on equal footing with those for large number of processors, because
the average number of neighbors, and hence the number of exchanges in each
time step, increases with Np (but less so for larger Np). Therefore one can
observe steeper run time increase for small number of processors; then the
curve flattens.

Next, we present analogous results for the element-cut strategy; see Fig-
ure 18(b). In contrast to Figure 18(a), the run times increase more sharply
for smaller number of processors, but then level off. These experimental data
can be related to Eq. (14), which is based on the approximate formula for
the number of duplicated elements (10). Figures 19(a) and 19(b) show the
ratio T ′par/Tpar for a large number of partition sizes (from about 200 to 7,500
elements). These data demonstrate that formula (10) is overly pessimistic for
small number of partitions (hence the larger initial slope), and does not take
into effect the ratio of the number of internal partitions to the total number of
partitions (this number increases withNp; internal partitions contribute more
duplicated elements than partitions at the “free” surface). These two factors
explain the deviations of the measured curves in Figures 19(a) and 19(b)
from the theoretical predictions of (10). Nonetheless, the slope tends to
zero for large Np (indicating an asymptotic limit), and that means that the
element-cut partitioning scales well for fixed-partition-size computations.

4.5 Propeller

The mesh in this example is representative of real-life applications; see Fig-
ure 20. It is modestly complex geometrically, and although in terms of mesh
size it is rather smallish (121220 nodes, 63116 elements), the finite elements
are complex (quadratic tetrahedra with four-point quadrature). The mate-
rial is elasto-plastic with isotropic hardening [22], and the loading is chosen
so as to create moderate spreads of yielded material in a number of loca-
tions. The momentum equations have been advanced in time for 50 time
steps. The model has been partitioned into 1, 2, 4, 8, 16, and 32 partitions
(not quite as well balanced as perhaps could be desired; see Figure 21). The
time per element per cycle for the mesh PROPELLER for a single-CPU run
was measured as 84µs.

Figure 22 shows the parallel efficiency for mesh PROPELLER. It is inter-
esting to note the sudden drop in efficiency for 4 processor partitioning. It
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Figure 18: Parallel scalability for different size of CUBE models. Partitions
contain 2,500, 5,000, and 7,500 elements respectively.
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Figure 19: Ratio T ′par/Tpar in dependence on the number of processors Np for
fixed-partition-size computations with the element-cut partitioning.
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Figure 20: Finite element model of PROPELLER. Domain decomposition into
six partitions.
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Figure 21: Model PROPELLER: balance of partitions (equation 16).
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could be perhaps related to the workload unbalance evident in Figure 21.
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Figure 22: Parallel efficiency for model PROPELLER.

Conclusions

We have approached the parallelization of explicit finite element solid dynam-
ics program with domain decomposition and message passing from the point
of view of duality of partitioning cuts of the mesh graph. The mesh nodal
graph, with nodes being its vertices, and elements representing its edges,
can be partitioned by cutting either through the vertices or across the edges.
Hence, we have classified the two partitioning cuts as node- or element-cut
strategies.

The partitioning duplicates either nodes (node cut) or elements (element
cut). Consequently, the communication requirements can be in various situa-
tions quite dissimilar, and the duality of the two partitioning strategies may
in fact facilitate formulation and/or implementation of certain algorithms
(nodal subcycling, contact). However, operations on elements are consider-
ably more expensive compared to those on nodes, and duplication of elements
penalizes the element-cut partitioning noticeably. Therefore, the goal of this
paper was to explore the scalability of the element-cut partitioning so as to
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decide whether the approach warrants further study. We have approached
this issue via simple theoretical arguments and numerical studies.

We have found that the node-cut partitioning yields a higher parallel effi-
ciency than the element-cut partitioning in fixed-model-size scalability stud-
ies, but the difference does not seem to exclude the latter from consideration.

Turning to fixed-partition-size scalability, we conclude that both the node-
cut and the element-cut partitioning strategy scale well. This conclusion is,
of course, expected for the former, but rather surprising at first sight for the
latter. However, the duality between the two partitioning strategies makes
it rather obvious that the asymptotic costs are in fact the same, and only
the constants vary. Since our motivating question, namely “does element-
cut partitioning lead to a scalable algorithm” is answered in the affirmative,
further study of its applications for use in some areas of explicit solid dy-
namics, such as nodal subcycling and mechanical contact enforcement, seems
justified.

Finally, we have also presented the most important fragments of the code
implementing the communication algorithm with calls to the MPI library,
and we have documented the advertised possibility of using the same com-
munication code for both partitioning strategies.
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Appendix: Code for the packing and unpack-

ing of forces

The packing/unpacking routines depend on a particular storage scheme of
nodal forces – they are stored as a 3-D vector attribute of node. However,
modification for other cases such as storage in a global 1-D array is trivial.

static void

pack_forces (W_mpi_process_t *p, /* IN: process */
W_mpi_comm_buff_t *cb /* IN: comm. buffer */)

{
int i, nn = cb->num_to_send;

W_node_t *n, **npa = cb->to_send;

double *sbp = cb->sbuf;

FOR (i, nn) { /* packing loop */
n = npa[i];

*sbp = n->force_t.x; sbp++;

*sbp = n->force_t.y; sbp++;

*sbp = n->force_t.z; sbp++;

}
}

Figure 23: Function to pack forces (node-cut partitioning).
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static void

unpack_forces (W_mpi_process_t *p, /* IN: MPI process */
W_mpi_comm_buff_t *cb /* IN: comm. buffer */)

{
int i, nn = cb->num_to_recv;

W_node_t *n, **npa = cb->to_recv;

double *rbp = cb->rbuf;

FOR (i, nn) { /* unpacking loop */
n = npa[i];

n->force_t.x += *rbp; rbp++; /* increment force */
n->force_t.y += *rbp; rbp++;

n->force_t.z += *rbp; rbp++;

}
}

Figure 24: Function to unpack forces (node-cut partitioning).
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