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Introduction

We consider the problem of integration of the initial value problem of the rotational
rigid body dynamics. We are motivated by a very practical problem: time integration
of the equations of motion of drill bits as they cut through rock. The drill bit geometry
is fully three-dimensional, as is the surface of the rock to be cut, and the force laws of
cutting, scraping, impacts, and persistent contacts are heuristic, but computationally
intensive anyway. Consequently, evaluation of the forces acting at various points on
the bit is very expensive. (Similar observations may be made in many molecular
dynamics simulations, where the evaluation of the forcing may take as much as 90%
or more of the CPU time, or in finite element dynamics calculations.) Therefore it
makes eminent sense to try to limit the number of evaluations of the external torque,
and we are thus led to consider methods that are explicit in the torque calculation,
i.e. the torque is evaluated just once per time step, in preference to implicit methods
(torque evaluated many times per time step).

We are generally looking for an integrator that is robust, accurate, and efficient.
Conservation properties are often essential for the preservation of key qualitative
features of the motion. Equally important are often the dissipative and forcing char-
acteristics [19]. In addition, three-dimensional rotations pose a special challenge in
that the configuration set is a curved manifold, not a vector space. The integrator
should maintain the configuration on the manifold. Methods for this type of problem
have been studied by many researchers, both in the computational mechanics com-
munity, and in the applied mathematics community [5, 27, 1, 24, 20, 32, 21, 29, 25,
42, 23, 8, 39, 2, 28, 10, 40, 22, 17, 33, 15, 41, 31, 26, 13, 6].
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The issue of the integration of the equations of motion of a three-dimensional
rotating body may be approached from the general viewpoint of geometric integra-
tion [4, 17]. A good example of a geometric integrator is the Verlet algorithm [38],
whose generalization is the Newmark algorithm [30]. The Verlet/Newmark explicit
integrator has been recently shown to possess very attractive geometrical proper-
ties [18, 19, 12]: Long-term energy and momentum near-conservation being perhaps
the most important for our applications. Simo and Wong [35] have studied the algo-
rithms for rigid body rotation, and have proposed that the particular version of their
algorithm which used β = 0 was the explicit Newmark. However, their algorithm
does not display the same kind of behaviors that we see in the classical vector space
version of Newmark (crucially, it is not symplectic).

Our goal is to reformulate the traditional velocity based Newmark algorithm for
vector spaces for the rotational dynamics of rigid bodies, that is for the setting of Lie
groups. In fact, we show that the most naive re-write of the vector space algorithm
does possess the desired properties, and is in fact one of the best-performing currently
known explicit algorithms for rigid body dynamics. Curiously, this algorithm does
not seem to have been considered in the open literature at all. We claim that this
algorithm is the true rotation-group counterpart of the vector space velocity-based
explicit Newmark.

1 Formulation

In this section we very briefly present the formulation of the kinematics and dynamics
of the motion, chiefly to introduce the notation.

1.1 Kinematics

We shall consider rotations of a rigid body about a fixed point, located at the origin
of the global Cartesian system. An arbitrary particle in the reference configuration
is addressed by the vector p̄0. The current position of the particle is expressed with
the current rotation (attitude) matrix R as

p̄ = R · p̄0 (1)

where R is an orthogonal transformation, R−1 = RT .

1.1.1 Configuration

The orthogonal transformations R that represent rotations constitute points of a
particular manifold, the special orthogonal group SO(3). The motion of the rigid
body particles is therefore given as a mapping

t 7→ R ∈ SO(3) , (2)
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where the presence of the special orthogonal group is what makes the problem of
devising suitable integrators interesting.

The rotation matrix may be parameterized in many different ways [3]. In this
work we use the rotation vector to express rotation matrices. Thus,

R(Ψ) =
∞∑

k=0

Ψ̃
k

k!
(3)

or, in the form of the Rodrigues formula

R(Ψ) = 1 +
sin ||Ψ||
||Ψ|| Ψ̃ +

(1− cos ||Ψ||)
||Ψ||2 Ψ̃

2
. (4)

When needed, the rotation vector may be extracted from the rotation matrix with
the Spurrier’s algorithm (see for instance reference [34]).

1.1.2 Velocity

The velocity vector of a given particle is obtained from (1) as

˙̄p = Ṙp̄0 . (5)

We may define
Ṙ = RΩ̃ (6)

where Ω̃ is the body-attached (convected) angular velocity. The wave symbol is used
to indicate a skew-symmetric matrix, which is related to the angular velocity Ω as a
vector through Ω̃ ·Ω = 0.

Alternatively, the time derivative (6) may be expressed as

Ṙ = ω̃R (7)

where ω̃ is the spatial angular velocity as a skew-symmetric matrix; the spatial vector
of angular velocity ω is defined as ω̃ · ω = 0.

Skew-symmetric matrices are elements of the vector space

so(3) =
{

h̃ : R3 7→ R3|h̃ + h̃
T

= 0
}

(8)

with a map into R3 defined as
h̃v = h× v (9)

The spatial and the convected angular velocity are related through the two equiv-
alent relations

ω̃ = RΩ̃RT and ω = RΩ . (10)

The velocity of a given particle in the body may thus be written as

˙̄p = RΩ̃p̄0 = ω̃Rp̄0 (11)
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1.1.3 Angular acceleration

Proceeding with time differentiation, we obtain for the acceleration

¨̄p = R(Ω̃
2
+ Ã)p̄0 = (ω̃2 + α̃)Rp̄0 (12)

where Ã is the body frame (convected) angular acceleration as a skew-symmetric

tensor, Ã =
˙̃
Ω; α̃ is the spatial angular acceleration as a skew-symmetric tensor,

α̃ = ˙̃ω.

1.2 Dynamics

1.2.1 Principle of Virtual Power

The virtual velocity may be written as

η = RH̃Ωp̄0 = −R ˜̄p0HΩ (13)

where HΩ is the virtual angular velocity in the body frame.

1.2.2 Virtual power of the inertial forces

The virtual power of the inertial forces may be written as

Pi =

∫

V

η · ρ¨̄p dV (14)

where η is the virtual velocity; ρ is the mass density; and V is the volume of the
body.

Pi =
∫

V
(R ˜̄p0HΩ) · ρ(R(Ω̃

2
+ Ã)p̄0) dV

=
∫

V
(R ˜̄p0HΩ) · ρ(R(−Ω̃ ˜̄p0Ω− ˜̄p0A)) dV

(15)

which may be put into a familiar form using the tensor of inertia

Pi = HΩ · Ω̃
∫

V
ρ ˜̄p0

T ˜̄p0 dV Ω + HΩ ·
∫

V
ρ ˜̄p0

T ˜̄p0 dV A

= HΩ · Ω̃IΩ + HΩ · IA
(16)

where I =
∫

V
ρ ˜̄p0

T ˜̄p0 dV is the tensor of inertia in the body frame.

1.3 Virtual power of the applied forces

For a given force f applied at the point q̄, the virtual power may be written as

Pe = η · f = (R ˜̄q0HΩ) · f = HΩ ˜̄q0 ·RT f = HΩ · T (17)

where T = ˜̄q0 ·RT f is the torque in the body frame.
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1.4 Equation of motion

The equation of motion follows from the principle of virtual power as

Pi = Pe (18)

or explicitly

Ω̃IΩ + IA = T (19)

The above equation of motion in the body frame may be also cast in the spatial
frame

ω̃iω + ia = t (20)

where i = RIRT is the tensor of inertia in the spatial frame; and t = RT is the
torque in the spatial frame.

2 Time Discretization

The classical Newmark integration algorithm is formulated as follows, using two pa-
rameters, γ and β [30]

∆qn = ∆tvn−1 +
∆t2

2
[(1− 2β)an−1 + 2βan] (21)

vn = vn−1 + ∆t [(1− γ)an−1 + γan] (22)

where ∆qj = qj − qj−1 is the increment of the algorithmic position vector at time
tj; vj is the algorithmic velocity of the vector qj at time tj; aj is the algorithmic
acceleration of the vector qj at time tj. Note that all the vectors qj, vj, and aj must
belong to a vector space S,

qj ∈ S, vj ∈ S, aj ∈ S

in order for the linear combination in equations (21,22) to make sense.
For the particular choice β = 0 the Newmark algorithm becomes explicit:

∆qn = ∆tvn−1 +
∆t2

2
an−1 (23)

vn = vn−1 + ∆t [(1− γ)an−1 + γan] (24)

2.1 Compound rotations and tangents

While the increment ∆qn = qn − qn−1 may be expressed as a difference of two
configurations (locations) in (23), the transition in SO(3) from the rotation Rn−1 to
the rotation Rn needs to be computed in terms of compound rotations.

A compound rotation curve may be constructed from a given rotation R either
by left or right multiplication with another finite rotation matrix, parameterized with
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the scalar ε. Left multiplication by the matrix δR corresponds to an incremental
rotation applied in the spatial setting

R′ = δR ·R , (25)

right multiplication by the matrix ∆R corresponds to an incremental rotation applied
in the body-frame setting

R′ = R ·∆R (26)

The incremental matrices are expressible as rotations about a given, fixed (rotation)
vector. Thus, the left incremental rotation δR may be written as

δR = exp[εδ̃ψ] , (27)

and the right incremental rotation ∆R may be written as

∆R = exp[ε∆̃Ψ] . (28)

Tangent vectors to the compound curves may be evaluated as

dR′

dε
|ε=0 = δ̃ψR = R∆̃Ψ (29)

2.2 Rotation update

For now we shall proceed with formulation in the body frame. The incremental vector
∆Ψ belongs to a vector space, the tangent space TRSO(3) to the manifold SO(3) at
the rotation R

∆Ψ ∈ TRSO(3) .

Both the body-frame angular velocity Ω, and angular acceleration A belong also to
the same vector space

Ω ∈ TRSO(3), A ∈ TRSO(3) .

Notice that all quantities in equation (23) are expressed in the same configuration at
time tn−1. Therefore, it makes sense to construct the incremental rotation vector ∆Ψn

that will take us from the rotation Rn−1 to the rotation Rn by combining the angular
velocity and the angular acceleration. In other words, the Newmark algorithm may
be applied in the vector space TRn−1SO(3), so that equation (23) may be specialized
as

∆Ψn = ∆tΩn−1 + ∆t2

2
An−1, (30)

and the configuration will be therefore updated as

Rn = Rn−1 exp[∆Ψ̃n] .
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2.3 Angular velocity update

Now we proceed to the second Newmark equation, the update of the angular ve-
locity (24). At variance with (23), this equation mixes together accelerations and
velocities from two different time steps, and hence belonging to two different tangent
spaces. Therefore, we need to introduce the concept of the dexp operator (differ-
ential of the exponential map) [17]. For the case of rotations in 3-D, we may refer
for instance to [5], and relate increments to rotation vectors in two different tangent
spaces, at RA and RB = RA exp(Ψ). We express a curve RB,ε using increments in
the two tangent spaces, ΘA ∈ TRA

SO(3) and ΘB ∈ TRB
SO(3)

RB,ε = RA exp(Ψ + εΘA) = RB exp(εΘB) (31)

As shown in Reference [5], the two rotation vectors may be then related as

ΘB = S(Ψ)ΘA, (32)

where the operator that relates the two tangent spaces is

dexpΨ = S(Ψ) = 1 +
1− cos ||Ψ||
||Ψ||2 Ψ̃ +

(
1− sin ||Ψ||

||Ψ||
)

Ψ̃
2

||Ψ||2 . (33)

Relation (32) may be applied to the construction of the update of angular veloci-
ties. For instance, we could push forward quantities from configuration at time tn−1

to configuration at tn by the rotation increment ∆Ψn, which yields

Ωn = S(∆Ψn)Ωn−1 + ∆t [(1− γ)S(∆Ψn)An−1 + γAn] (34)

We could stop here, but there’s more that can be done. If we rewrite equation (34)
as

Ωn = S(∆Ψn) [Ωn−1 + ∆t(1− γ)An−1] + ∆tγAn , (35)

we may realize that the contents of the bracket are co-axial with the incremental
rotation vector ∆Ψn from equation (30), provided γ = 1/2. Thus, for this choice of
the coefficient γ, the shift with S(∆Ψn) has no effect [hint: use equation (9)], and
may be omitted. Since the choice of γ = 1/2 is known to be optimal from the point
of view of accuracy, it also appears in the Verlet algorithm, and we are going to use
this numerical value too. Therefore, we shall be using

Ωn = Ωn−1 +
∆t

2
(An−1 + An) , (36)

as the angular velocity update equation.
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2.3.1 Evaluated acceleration

The last essential component of the algorithm (21) is the algorithmic (evaluated)
acceleration, which is readily obtained from the equation of motion (19). As will
become clear in a moment, we need to solve a system of nonlinear equations to obtain
the acceleration, since it is coupled with the angular velocity due to the velocity
update.

The three ingredients, the configuration update, the velocity update, and the use
of the evaluated acceleration combine, in some way that might not be at this point
completely understood, to balance good behaviors (energy and momentum represen-
tation) in a nearly optimal way.

2.4 Explicit Newmark algorithm in the body frame

To summarize equations (30) and (36), the explicit Newmark algorithm (β = 0, and
γ = 1/2) in the body frame (NMB) may be written as

Algorithm NMB:
Given Ω0, R0,
A0 = I−1(RT

0 T 0 −Ω0 × I ·Ω0)
for n = 1, 2, ...

Rn = Rn−1 exp[∆tΩ̃n−1 + ∆t2

2
Ãn−1]

IAn −RT
nT n + Ωn × I ·Ωn = 0

Ωn = Ωn−1 + ∆t
2

(An−1 + An)
end

Note that the algorithm is self-starting, which is particularly nice from the point
of view of implementation. The integrator algorithm may be called repeatedly with
the output of the previous invocation as the initial conditions, and there will be no
loss of accuracy involved in doing so.

Also of note is the fact that we never actually need the components of the rotation
vector (or those of the associated quaternion): the update is performed on the ro-
tation matrix, and in our numerical experiments we have not come across numerical
difficulties. However, should such a need arise it is always possible to re-orthogonalize
R, or extract the rotation vector components. Of course, that is what we have to do
when the rotation vector components, or the components of the incremental rotation
vector are needed for output.

2.5 Explicit Newmark algorithm in the spatial frame

Contrary to popular belief, the spatial form of the above body-frame Newmark al-
gorithm as given below makes geometric sense and is completely equivalent to the
body-frame version.

8



Algorithm NMS:
Given ω0,R0,
α0 = i−1

0 (t0 − ω0 × i0 · ω0)
for n = 1, 2, ...

Rn = exp[∆tω̃n−1 + ∆t2

2
α̃n−1]Rn−1

inαn − tn + ωn × in · ωn = 0
ωn = ωn−1 + ∆t

2
(αn−1 + αn)

end

To show the equivalence, we may start with the rotation update equation and to
substitute the convected angular velocity and convected angular acceleration

Rn = Rn−1 exp[∆tΩ̃n−1 + ∆t2

2
Ãn−1]

= Rn−1

∞∑

k=0

(∆tΩ̃n−1 + ∆t2

2
Ãn−1)

k

k!

= Rn−1

∞∑

k=0

(∆tRT
n−1ω̃n−1Rn−1 + ∆t2

2
RT

n−1α̃n−1Rn−1)
k

k!

=
∞∑

k=0

(∆tω̃n−1 + ∆t2

2
α̃n−1)

k

k!
Rn−1

= exp[∆tω̃n−1 + ∆t2

2
α̃n−1]Rn−1

(37)

Analogously, we obtain the spatial version of the equation of motion

IAn −RT
nT n + Ωn × I ·Ωn =

RT
n inαn −RT

nT n + RT
nωn × in · ωn = 0

(38)

where we have to substitute for the angular velocity at time tn from

Ωn = Ωn−1 + ∆t
2

(An−1 + An)
= RT

nωn = RT
n−1ωn−1 + ∆t

2
(RT

n−1αn−1 + RT
nαn)

(39)

Thus, we obtain

ωn = RnRT
n−1ωn−1 +

∆t

2
(RnR

T
n−1αn−1 + αn) (40)

However, from equation (37) we have RnR
T
n−1 = exp[∆tω̃n−1+

∆t2

2
α̃n−1]. To complete

the proof, we need to realize that the vector ωn−1 + ∆t
2

αn−1 is a scalar multiple of

the axial vector of the rotation matrix exp[∆tω̃n−1 + ∆t2

2
α̃n−1], and is not affected by

the rotation, and therefore

ωn = exp[∆tω̃n−1 +
∆t2

2
α̃n−1](ωn−1 +

∆t

2
αn−1) +

∆t

2
αn

= ωn−1 +
∆t

2
(αn−1 + αn)

(41)
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2.6 Solving the equation of motion

Note that both algorithms NMB and NMS need to obtain the angular accelerations
by solving a nonlinear algebraic equation. For instance, for the algorithm NMS the
following equation in residual form needs to be solved

R(αn) = Inαn − T n + ωn × In · ωn = 0 (42)

where ωn = ωn−1 + ∆t
2

(αn−1 + αn), or; ωn = ωn,p + ∆t
2

αn, with the definition
ωn,p = ωn−1 + ∆t

2
αn−1. We may write a straightforward Newton’s solver as

α
(0)
n = 0, i = 1

while ‖R(α
(i−1)
n )‖ > TOL

α
(i)
n = α

(i−1)
n −

[
∂R(α

(i−1)
n )

∂αn

]−1

R(α(i−1)
n )

end

with the tangent ∂R/∂αn

∂R(α
(i−1)
n )

∂αn

= In +
∆t

2

(
ω̃n,pIn − Ĩnωn,p

)
+

∆t2

2

(
α̃nIn − Ĩnαn

)
(43)

3 Numerical Experiments

We are going to compare the performance of the Newmark algorithm (NMB, NMS)
with the performance of the two top-performing explicit algorithms, the staggered
momentum-conserving explicit algorithm [16] (HSTAGM) (see also discussion in
Svanberg [36]), and the explicit time integration algorithm of Simo and Wong [35]
(SW). For reader’s convenience, both algorithms are summarized in the Appendix A.
For comparison we also include references to the canonical implicit midpoint almost-
Lie-Poisson algorithm of Austin, Krishnaprasad, Wang [1] (AKW).

3.1 Freely spinning body (McLachlan, Zanna 2003)

This example is discussed in the report [26] in the context of discrete Moser-Veselov
integrators for the rigid body. The initial condition is Ω = (0.45549, 0.82623, 0.03476),
and the diagonal entries of the inertia tensor are diagI = (0.9144, 1.098, 1.66).

Figure 1 demonstrates how well-behaved the Newmark algorithm is in terms of
kinetic energy. Even though the kinetic energy is not conserved, it oscillates with
unchanging amplitude and without drift. Note that the time steps are quite large,
which can be clearly seen in Figure 2 showing the magnitude of the incremental
rotation vector in degrees.

Figure 3 shows the components of the body-frame angular velocity. One can see
that the qualitative character is very well preserved even for large time steps. This
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Figure 1: Freely spinning rigid body; kinetic energy for a step sizes 4 (◦), 2 (×), 1
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Figure 2: Freely spinning rigid body; magnitude of the incremental rotation vector
in degrees for step sizes 4 (◦), 2 (×), 1 (?), 1/2 (¤).
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Figure 3: Freely spinning rigid body; components of the body-frame angular velocity
for a step sizes 5 (◦), 4 (×), 2 (?), 1/8 (¤).

is a very attractive feature of the present Newmark algorithm. When compared with
other algorithms discussed in reference [26] in figure 7.7, for the largest timestep,
∆t = 5, our algorithm performs on par with the implicit midpoint rule (IMR, our
AKW) which is the only one that is able to capture the character of the solution,
while all the discrete Moser-Veselov integrators fail.

Figure 4 shows the convergence of the Newmark algorithm in the norm ||R −
Rconverged||2, where the orientation matrix Rconverged = R(t = 100) has been obtained
with an extremely small step size of 0.001. Note that our algorithm outperforms the
AKW by two orders of magnitude.

3.2 Unstable rotation: book toss

Consider a body described in the body frame whose directions coincide with the
principal directions of the tensor of inertia. It is well known that if the three principal
values of the tensor of inertia are different, rotation about the axis corresponding to
the intermediate principal value is unstable [37]. Real world examples include the
toss of a book. When the book is tossed with a spin imparted about the intermediate
axis, the book will as likely as not flip in mid-flight due to the slightest disturbance.

The data for this example appear to be due to Simo and Wong [35]. It had
also been studied by Hulbert [16]. A constant torque is applied about the axis of
intermediate moment of inertia to a body that is initially at rest. Then, at time
t = td, the constant torque is removed and a constant disturbance torque is applied
about an axis perpendicular to that of the intermediate moment of inertia for the
duration of a single timestep ∆t. The body frame tensor of inertia is diagonal,
diagI = (5, 10, 1). The spatial components of the torque are





(20, 0, 0), for 0 ≤ t ≤ td;
(0, 1/(5∆t), 0), for td ≤ t ≤ td + ∆t;
(0, 0, 0), for t >= td + ∆t.
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Figure 6: Book toss; convected angular velocities; left: NMB time step 0.05 (◦), and
0.001 (×), right: SW time step 0.05 (◦), and 0.001 (×).

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

35

40

Time

S
pa

tia
l A

ng
ul

ar
 m

om
en

ta

π
1

π
2

π
3

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

35

40

Time

S
pa

tia
l A

ng
ul

ar
 m

om
en

ta
π

1
π

2
π

3

Figure 7: Book toss; spatial angular momenta; left: NMB time step 0.05 (◦), and
0.001 (×), right: SW time step 0.05 (◦), and 0.001 (×).

In Figure 6 the characteristic pattern of the body-frame angular velocities is dis-
played for two different time steps. The tendency of the SW algorithm to become
unstable for larger time steps is quite clearly visible. On the other hand, the New-
mark algorithm does not seem to have any trouble maintaining stability, and even
the accuracy of the angular velocities seems quite acceptable.

Conservation of the angular momentum is illustrated in Figure 7: the Newmark
algorithm clearly does not conserve momenta exactly, however, the conservation is
achieved in a different sense. The oscillations of the momenta are limited, and seem
to be more or less periodic in time. On the other hand, the SW algorithm conserves
momenta exactly, even in those cases where it is actually unstable. This only illus-
trates that the conservation of momenta on its own does not necessarily mean that
good results follow.
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Figure 8: Lagrangian top; error in the Hamiltonian.

3.3 Lagrangian top

This particular problem had been studied with the number of methods [11, 9]. It is
well known that the symmetric Lagrangian heavy top model possesses four conserved
quantities:

1. the Hamiltonian,

H(π, γ) =
1

2
π · i−1π + Mlgγ · χ

where π is the spatial angular momentum, π = π ·ω; χ is the unit vector along
the axis of the top pointing from the fixed point; γ is the unit vector in the
direction of gravity; Mlg is the product of the mass, distance of the center of
mass and the fixed point, and gravitational acceleration, Mlg =

√
3

2
9.81.

2. the projection of the spatial angular momentum on the axis of the top, π · χ,

3. the projection of the spatial angular momentum on the gravity vector, π · γ,

4. the norm of the gravity vector in the body frame, ||Rγ||.
The last two are the Casimirs of the Poisson bracket that defines the Hamiltonian
structure.

The step size of the integration was ∆ = 0.05, and the dynamics was integrated
on the interval 0 ≤ t < 100. The error in Hamiltonian is shown in Figure 8. Notice
that the error in the Hamiltonian does not drift and stays fairly small (less than half
a percent of the exact Hamiltonian).

The algorithm NMB (NMS) is about as accurate both in the preservation of the
invariants and in the global error (convergence curve constant as well as slope) as the
Crouch-Grossman method [7] with the Runge-Kutta RK4 tableau [11].

The projection of the spatial angular momentum onto the axis of the top is shown
in Figure 9. The two curves correspond to a simulation which performs the rotation
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Figure 9: Lagrangian top; error in the projection of the spatial angular momentum
onto the axis of the top.

update directly on the attitude matrix by matrix-matrix multiplication (larger error),
and to a simulation in which the attitude matrix is re-orthogonalized in each timestep.
Clearly, the error is then down to machine precision. Hardly any effect may be seen
for either simulation in the physical characteristics of the motion, however.

3.4 Fast Lagrangian top

The data for this example appear to be due to Simo and Wong [35]. It had also been
studied by Hulbert [16]. In this example we consider the motion of a symmetrical top
with total mass M and axis of symmetry that coincides with the direction of uniform
gravitational field. The body frame tensor of inertia is diagonal, diagI = [5, 5, 1].
The spatial torque is

t = −20R(:, 3)× [0; 0; 1]

where R(:, 3) is the third column of the attitude matrix, and [0; 0; 1] is the “up” vector.

The initial conditions are R0 = exp[Ψ̃0] where Ψ0 = [0.3; 0; 0], and Ω0 = [0; 0; 50].
We investigate the global convergence by using a numerical solution (obtained with
an extremely small timestep ∆t = 0.000005) for the attitude matrix and the body
frame angular momenta at time t = 10. We measure the norm ||R−Rconverged||2, and
the norm ||Π − Πconverged||2, where the reference values are the orientation matrix
Rconverged = R(t = 10) and the body frame angular momentum Πconverged = Π(t =
10). The convergence curves are shown in Figure 10. The SW and HSTAGM
algorithms yield essentially identical answers except for the largest time steps.

3.5 Slow Lagrangian top

In this example we consider the motion of a slow symmetrical top with total mass M
and axis of symmetry that coincides with the direction of uniform gravitational field.

16



10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

10
1

log(time step)

lo
g(

||Π
−

Π
co

nv
er

ge
d||)

SW

HSTAGM

AKW

NMB

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

lo
g(

||R
−

R
co

nv
er

ge
d||)

SW

HSTAGM

NMB

AKW

Figure 10: Fast Lagrangian top; on the left hand side convergence in the norm of
the error in body-frame angular momentum; on the right hand side convergence in
the norm of the error in the attitude matrix: (/): AKW (implicit midpoint rule
of Austin, Krishnaprasad, Wang [1]): SW (dashed line, no symbol) solutions with
the Simo and Wong [35] algorithm; NMB (◦, solid line) Newmark algorithm; (¤):
explicit staggered algorithm with midpoint torque evaluation HSTAGM [16].

The body frame tensor of inertia is diagonal, diagI = [5, 5, 1]. The spatial torque is

t = −20R(:, 3)× [0; 0; 1]

where R(:, 3) is the third column of the attitude matrix, and [0; 0; 1] is the “up” vector.

The initial conditions are R0 = exp[Ψ̃0], where Ψ0 = [0.05; 0; 0], and Ω0 = [0; 0; 5].
Figure 11 illustrates the convergence for the slow Lagrangian top. The Newmark

algorithm is clearly a robust performer, delivering accuracy that improves on that of
the implicit midpoint rule. The staggered explicit integrator HSTAGM has stability
problems for the slow top, and also for the next example. Figure 12 illustrates this
for the free rigid body and the slow Lagrangian top. For the free rigid body, the
integrator HSTAGM produces a Hamiltonian that closely corresponds to the picture
for the Newmark integrator, which leads us to believe that HSTAGM is perhaps
symplectic, or possibly related to a symplectic algorithm. However, for the slow top
we can clearly see instability developing early on, which leads to a blowup at the
end of the simulation. If this algorithm is indeed symplectic it may be compromised
by some numerically unstable process. The leap-frog (staggered) algorithm has been
discussed more recently by Svanberg [36], and the inherent implicitness has been
discussed in relation to the lack of stability of the explicit versions. (Note that the
implicit leap-frog is indeed implicit in the torque evaluation.)

3.6 Body in Coulombic potential with soft wall contact

This problem had been used by the Holder, Leimkuhler, and Reich [15] to investigate
the need for adaptive variable step size methods. The problem they consider is a rigid
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Figure 11: Slow Lagrangian top; on the left hand side convergence in the norm of
the error in body-frame angular momentum; on the right hand side convergence in
the norm of the error in the attitude matrix: (/): AKW (implicit midpoint rule
of Austin, Krishnaprasad, Wang [1]): SW (dashed line, no symbol) solutions with
the Simo and Wong [35] algorithm; NMB (◦, solid line) Newmark algorithm; (¤):
explicit staggered algorithm with midpoint torque evaluation HSTAGM [16].
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Figure 12: Free rigid body and Slow Lagrangian top Hamiltonians: SW (dashed
line, no symbol) solutions with the Simo and Wong [35] algorithm; NMB (◦, solid
line) Newmark algorithm; (¤): explicit staggered algorithm with midpoint torque
evaluation HSTAGM [16].

body that rotates under an external torque coming from an attractive Coulombic
potential coupled with a repulsive potential with steep gradient that represents a soft
wall from which the rotating body is repeatedly repelled. As the authors point out,
the repelling torque is troublesome from the point of view of resolution.

The body frame tensor of inertia is diagonal, diagI = [2, 3, 4.5]. The components
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of the spatial torque are

[t] =
(−(1.1 + R3,3)

−2 + 0.01(1.1 + R3,3)
−11

)
[−R2,3; R1,3; 0]

where Rij are the components of the attitude matrix. The initial conditions are
R0 = 1, and π0 = [2; 2; 2].

Figure 13 compares the convergence of the various algorithms discussed here.
The Newmark algorithm clearly outperforms all the others, including the canonical
implicit midpoint method.
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Figure 13: Body in Coulombic potential with soft wall contact; on the left hand
side convergence in the norm of the error in body-frame angular momentum; on the
right hand side convergence in the norm of the error in the attitude matrix: (/):
AKW (implicit midpoint rule of Austin, Krishnaprasad, Wang [1]): SW (dashed
line, no symbol) solutions with the Simo and Wong [35] algorithm; NMB (◦, solid
line) Newmark algorithm; (¤): explicit staggered algorithm with midpoint torque
evaluation HSTAGM [16].

Discussion

The explicit Newmark algorithms discussed here, namely NMB, and NMS, and
also the SW algorithm, are time symmetric (for background see for example [14]).
To show that for instance for the proposed Newmark algorithm, we need to swap
subscripts n and n − 1 and change the sign of the time step. Thus, the rotation
update

Rn = Rn−1 exp[∆tΩ̃n−1 +
∆t2

2
Ãn−1] (44)

will become after the swap

Rn−1 = Rn exp[−∆tΩ̃n +
∆t2

2
Ãn] (45)
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while the angular velocity update

Ωn = Ωn−1 +
∆t

2
(An−1 + An) (46)

will read

Ωn−1 = Ωn − ∆t

2
(An + An−1) (47)

However, we may express

Ωn−1 +
∆t

2
An−1 = Ωn − ∆t

2
An

which upon substitution into (45) yields algorithm identical to equations (44), (46).
As pointed out for some integrators [41], time symmetry often leads to good energy
behavior. However, clearly that is not a sufficient condition since the Simo and Wong
integrator displays a drift in energy for all time steps.

It would appear that the present Newmark is a symplectic integrator. A proof
has not been completed yet, but the numerical evidence is very strong.

Conclusions

We have explored the issue of time stepping for the dynamics of rigid bodies in
three-dimensional space with explicit time integrators. In particular, we show that
the most naive and straightforward rewrite of the Verlet/Newmark algorithm for the
rotation group inherits a collection of good behaviors essentially analogous to those
of the vector-space version. On the other hand, the explicit momentum-conservation
algorithm as proposed by Simo and Wong [35] that is sometimes referred to as an
implementation of the explicit Newmark does not display the characteristics we would
expect.

We propose that our algorithm is the explicit velocity-based Newmark for the
rotation dynamics setting. It is a very good performer, robust and accurate. In
ways that are likely not fully understood at this moment it manages to balance good
behaviors in momentum and energy representation.
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4 Appendix A

The explicit time integration algorithm of Simo and Wong [35], which had been
designed to conserve angular momentum, is one of the best performing explicit al-
gorithms published in the open literature. It is not a self starting algorithm, and
following the recommendation of the above reference, the algorithm is started by
calculating the initial acceleration from the balance equation.

Algorithm SW:
Given Ω0,R0,
A0 = I−1(RT

0 T 0 −Ω0 × I ·Ω0)
for n = 1, 2, ...

Rn = Rn−1 exp[∆tΩ̃n−1 + ∆t2

2
Ãn−1]

RnIΩn = Rn−1IΩn−1 + ∆t
2

(T n + T n−1)
An = 2

∆t
(Ωn −Ωn−1)−An−1

end

Hulbert has proposed an explicit algorithm that achieves momentum conserva-
tion [16]. It is somewhat reminiscent of the leap-frog version of the Newmark algo-
rithm, but as noted by the author it cannot be exactly equivalent since the equations
of motion produce an additional coupling between accelerations and velocities (this
has been also discussed above).

Algorithm HSTAGM:
Given Ω0,R0,
A0 = I−1(t0 −Ω0 × I ·Ω0)

Θ1/2 = ∆t
2
Ω0 + ∆t2

8
A0

R1/2 = R0 exp[Θ̃1/2]
R1/2IΩ1/2 = R0IΩ0 + ∆t

2
t1/4

for n = 1, 2, ...
Rn = Rn−1 exp[∆tΩn−1/2]
RnIΩn = Rn−1IΩn−1 + ∆ttn−1/2

Rn+1/2 = Rn−1/2 exp[∆tΩn]
Rn+1/2IΩn+1/2 = Rn−1/2IΩn−1/2 + ∆ttn

end

Here the torques are evaluated as t1/4 = t(t1/4,R0 exp[1
2
Θ̃1/2]), tn−1/2 = t(tn−1/2, Rn−1/2),

and tn = t(tn,Rn).

5 Appendix B

For reference we present the Matlab method advance() for an integrator class of the
explicit Newmark in the body frame.
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function retobj = advance(self,torque,dt,nsteps)

Omegan1 = self.Omega;

Rn1 = self.R;

t=get(self.rotint,’t’);

I=self.I;

% initial acceleration at t_n-1

Alphan1=I\(Rn1’*feval(torque, t, Rn1) - skewmat(Omegan1)*I*Omegan1);

for i=1:nsteps

Rn=Rn1*rotmat(skewmat(dt*Omegan1+dt^2/2*Alphan1));

Tn = Rn’*feval(torque, t+dt, Rn); % solve equation of motion at t_n

Alphan = solve_Alpha(I, Tn, dt, Alphan1, Omegan1, 100*eps);

Omegan = Omegan1+dt/2*(Alphan1+Alphan); % update velocity

% swap variables for next step

Rn1=Rn; Omegan1=Omegan; Alphan1=Alphan;

t=t+dt;

end

self.R = Rn;

self.Omega = Omegan;

self.rotint = set(self.rotint,’t’,t);

retobj=self;

For completeness, we also include the method that solves the nonlinear equations
of motion, solve_Alpha.

function Alphan = solve_Alpha(I, Tn, dt, Alphan1, Omegan1, ceps)

maxi=12;

Omeganp=Omegan1+dt/2*Alphan1;

B = I + dt/2*skewmat(Omeganp)*I - skewmat(dt/2*I*(Omeganp));

Alphan=Alphan1;

i=0;

res = I*Alphan - Tn + skewmat(Omeganp+dt/2*Alphan)*I*(Omeganp+dt/2*Alphan);

while (max(abs(res)) > ceps)

Alphan = Alphan - (B+(dt/2)^2*(skewmat(Alphan)*I-skewmat(I*(Alphan))))\res;

res = I*Alphan - Tn + skewmat(Omeganp+dt/2*Alphan)*I*(Omeganp+dt/2*Alphan);

i=i+1;

if (i > maxi)

if (max(abs(res)) > ceps)

warning([’Failed to converge: ||residual||=’ num2str(norm(res))]);

end

break;

end

end
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