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1 Introduction

The focus of this work is the initial value problem of the rotational rigid body dy-
namics. Often the calculation of forcing (evaluation of the external torques) is com-
putationally intensive. For instance, in many molecular dynamics simulations, the
evaluation of the forcing may take as much as 90% or more of the CPU time. Con-
sequently, methods that limit the number of evaluations of the external torque are of
considerable interest, and we are thus led to contemplate algorithms that are explicit
in the torque calculation, i.e. the torque is evaluated just once per time step.

The main result of this work follows from a reformulation of the midpoint Lie
algorithm, which is implicit in the torque calculation as the impulse needs to be
evaluated at the unknown midpoint of the incremental rotation. In order to make the
algorithm explicit in the torque calculation, we approximate the impulse delivered
over the time step with discrete impulses delivered at either the beginning of the time
step or at the end of the time step. Therefore, we obtain two related variants, both of
which are explicit in the torque calculation, but only first-order in the time step. Both
of these algorithms are momentum-conserving and both are symplectic. Therefore,
drawing on the properties of the composition of maps, we introduce another algorithm
as a composition of these two variants. The resulting algorithm is then explicit,
momentum-conserving, symplectic, and second order. Its accuracy is outstanding and
consistently matches or exceeds currently known implicit and explicit integrators, as
we show on a number of examples.
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pkrysl@ucsd.edu
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2 Midpoint Lie algorithm for free motion

To derive the implicit midpoint Lie integrator algorithm we could follow the abstract
procedure in Iserles et al. [5] for general ordinary differential equations on Lie groups.
(Application of the implicit midpoint Lie approximation to mechanics appeared in
Reference [10].) However, in this paper the presentation will be strictly couched in
mechanical terms as it affords the most insight.

We start with unforced, free rotations in this section, and then we shall proceed to
introduce external torques in the next section. Our point of departure is the equation
of motion which reads

Π̇ = −Ω̃Π . (1)

where Π is the body-frame angular momentum; Ω is the body-frame angular velocity:
recall Π = IΩ, where I is the time-independent body-frame tensor of inertia; and Ω̃
is the angular velocity as a skew-symmetric matrix; the vector of angular velocity Ω
is defined as Ω̃ ·Ω = 0.

The angular momentum and the angular velocity may be expressed in the spatial
frame as

π = RΠ , ω = RΩ

where R is the rotation (attitude) matrix; an orthogonal transformation, R−1 = RT .
In this work we use the rotation vector to express rotation matrices. Thus,

R(Ψ) =
∞∑

k=0

Ψ̃
k

k!
(2)

or, in the form of the Rodrigues formula

R(Ψ) = exp[Ψ̃] = 1 +
sin ||Ψ||
||Ψ|| Ψ̃ +

(1− cos ||Ψ||)
||Ψ||2 Ψ̃

2
. (3)

In the spatial frame the equation of motion (1) reads

π̇ = 0

where π the general solution is
π(t) = π(t0)

or, translating to the body frame angular momentum

R(t)Π(t) = R(t0)Π(t0)

This may be put as
Π(t) = RT (t)R(t0)Π(t0)

or, expressing rotation from time t0 to t with the help of an incremental rotation
applied to the body frame, exp[Ψ̃(t)]

R(t) = R(t0) exp[Ψ̃(t)]
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we obtain
Π(t) = exp[−Ψ̃(t)]Π(t0) (4)

Taking the time derivative, we arrive at (the dependence on the argument t is sup-
pressed)

Π̇ =
d

dt
(exp[−Ψ̃]) Π(t0) = dexp−Ψ̃(− ˙̃

Ψ) exp[−Ψ̃]Π(t0)

or, using equation (4)

Π̇ = dexp−Ψ̃(− ˙̃
Ψ)Π (5)

Note that we have introduced the differential map [5]

dexp
Ψ̃

= 1 +
1− cos ||Ψ||
||Ψ||2 Ψ̃ +

(
1− sin ||Ψ||

||Ψ||
)

Ψ̃
2

||Ψ||2 . (6)

Now we set equal the right hand sides of equations (5) and (1) to arrive at a link
between the angular velocity and the vector of incremental rotation

dexp−Ψ̃(− ˙̃
Ψ)Π = −Ω̃Π

or,

dexp−Ψ̃(− ˙̃
Ψ) = −Ω̃ (7)

or, using vector quantities
dexp−Ψ̃(−Ψ̇) = −Ω (8)

Introducing the inverse of the differential map (6)

dexpinv
Ψ̃

= 1− 1

2
Ψ̃−

( ||Ψ||
2

cot(||Ψ||/2)− 1

)
Ψ̃

2

||Ψ||2 , (9)

we may write
Ψ̇ = dexpinv−Ψ̃ Ω (10)

2.1 Midpoint approximation

The midpoint approximation to equation (10) reads

Ψ̇n− 1
2

=
(
dexpinv−Ψ̃ Ω

)
n− 1

2

≈ 1

∆t
(Ψn −Ψn−1)

From consistency considerations Ψn−1 = 0, and thus we get

(
dexpinv−Ψ̃ Ω

)
n− 1

2

≈ 1

∆t
Ψn
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where
(
dexpinv−Ψ̃ Ω

)
n− 1

2

= dexpinv− 1
2
Ψ̃n

Ω(1
2
Ψn), and therefore to advance the

solution, we need to solve

dexpinv− 1
2
Ψ̃n

Ω(
1

2
Ψn) =

1

∆t
Ψn (11)

However, since we may write equation (11) as

Ω(
1

2
Ψn) =

1

∆t
dexp− 1

2
Ψ̃n

Ψn

we may use Ψ̃n ·Ψn = 0, to show dexp− 1
2
Ψ̃n

Ψn = Ψn, and thus we can conclude

that equation (11) maybe simplified to

Ω(
1

2
Ψn) =

1

∆t
Ψn (12)

The angular velocity at the midpoint may be expressed using the equation of motion
(4) as

Ω(
1

2
Ψn) = I−1 exp[−1

2
Ψ̃n]Π(tn−1) (13)

Substituting the above into equation (12), we arrive at the algorithm LIEMID for
the time stepping of the torque-free motion.

Algorithm LIEMID:
Given Ω0,R0,
for n = 1, 2, ...

Solve Ψn = ∆tI−1 exp[−1
2
Ψ̃n]IΩn−1

Rn = Rn−1 exp[Ψ̃n]

Ωn = I−1(exp[−Ψ̃n]IΩn−1)
end

2.2 Freely spinning body (McLachlan, Zanna 2003)

This example is discussed in the report [8] in the context of discrete Moser-Veselov in-
tegrators for the free rigid body. The initial condition is Ω = (0.45549, 0.82623, 0.03476),
and the diagonal entries of the inertia tensor are diagI = [0.9144, 1.098, 1.66].

Figure 1 demonstrates how well-behaved the LIEMID algorithm is in terms of
kinetic energy. Even though the kinetic energy is not conserved, it oscillates with
unchanging amplitude and without drift (promising mark of symplecticness). Note
that the time steps are quite large, which can be clearly seen in Figure 2 showing the
magnitude of the incremental rotation vector in degrees.

Figure 3 shows the components of the body-frame angular velocity. One can see
that the qualitative character is well preserved even for large time steps. This is an
attractive feature of the present midpoint Lie algorithm.
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Figure 1: Freely spinning rigid body; kinetic energy for a step sizes 4, 2, and 1.
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Figure 2: Freely spinning rigid body; magnitude of the incremental rotation vector
in degrees for step sizes 4, 2, and 1.
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Figure 3: Freely spinning rigid body; components of the body-frame angular velocity
for a step sizes 4, 2, 1, and 1/16 (thick line).
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Figure 4: Freely spinning rigid body; on the left hand side convergence in the norm
of the error in body-frame angular momentum; on the right hand side convergence
in the norm of the error in the attitude matrix. LIEMID: the present midpoint Lie
algorithm; (/): AKW (implicit midpoint rule of Austin, Krishnaprasad, Wang [1]):
SW (◦, dashed line) solutions with the Simo and Wong [9] algorithm; NMB (◦, solid
line) Krysl, Endres Newmark algorithm [6]; (?): DMV (discrete Moser-Veselov) [8];
LS Lewis and Simo symplectic conserving algorithm [7]. Step size 2−8, 2−7, ..., 23.

Figure 4 illustrates the convergence behavior in the norm ||R −Rconverged||2 and
the norm ||Π −Πconverged||2, where the orientation matrix Rconverged = R(t = 100)
and the angular momentum in the body frame Πconverged = Π(t = 100) have been ob-
tained with an extremely small step size of 0.001. On this problem the LIEMID algo-
rithm is on on par with the currently best explicit second-order algorithm, the Krysl,
Endres Newmark algorithm [6]. In fact, the performance of the best second-order
implicit algorithm, the canonical midpoint rule of Austin, Krishnaprasad, Wang [1] is
marginally more accurate for the body frame momentum, but lags behind significantly
in the accuracy of the attitude matrix.

3 Midpoint Lie algorithm for forced motion

In this section we introduce forcing. We start with the implicit version of the midpoint
Lie algorithm. The equation of motion in the spatial frame reads

π̇ = t (14)

where
t = space-frame applied external torque.

The general solution is

π(t) = π(t0) +

∫ t

t0

t(τ)dτ
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or, translating to the body frame

R(t)Π(t) = R(t0)Π(t0) +

∫ t

t0

R(τ)T (τ)dτ

where T = RT t is the body frame applied torque. Analogously to equation (4), we
may write

Π(t) = exp[−Ψ̃(t)]

(
Π(t0) + RT (t0)

∫ t

t0

R(τ)T (τ)dτ

)
(15)

Differentiating with respect to t we obtain

Π̇(t) = dexp−Ψ̃(− ˙̃
Ψ) exp[−Ψ̃(t)]

(
Π(t0) + RT (t0)

∫ t

t0

R(τ)T (τ)dτ

)
+ T (t) . (16)

or, substituting from (15)

Π̇(t) = dexp−Ψ̃(− ˙̃
Ψ)Π(t) + T (t) . (17)

With the equation of motion in the body frame, Π̇ = −Ω̃Π + T , at hand, we see
that we again arrive at equation (7), or equivalently equation (8).

3.1 Implicit Midpoint approximation

Applying results of Section 2.1 we find yet again the condition from which to advance
the solution as

Ω(
1

2
Ψn) =

1

∆t
Ψn .

However, now the midpoint angular velocity Ω(1
2
Ψn) needs to be expressed from the

forced equation of motion (15), where as before Π = IΩ. Therefore, we need to
approximate the torque impulse, and the midpoint form may be put as

RT (t0)

∫ t0+∆t/2

t0

R(τ)T (τ)dτ ≈ ∆t

2
RT (t0)R(t0 + ∆t/2)T (t0 + ∆t/2) (18)

where T (t0 + ∆t/2) = T (t0 + ∆t/2, 1
2
Ψn), and

R(t0 + ∆t/2) = R(t0) exp[
1

2
Ψn]

RT (t0)

∫ t0+∆t/2

t0

R(τ)T (τ)dτ ≈ ∆t

2
exp[

1

2
Ψ̃n]T (t0 + ∆t/2) (19)

Substituting this approximation into equation (15) expressed at time t + ∆t/2, we
obtain

I−1

(
exp[−1

2
Ψ̃n]Π(tn−1) +

∆t

2
T (t0 + ∆t/2,

1

2
Ψn)

)
=

1

∆t
Ψn .

Thus, we arrive at the implicit midpoint Lie algorithm
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Algorithm LIEMID[I]:
Given Ω0,R0,
FOR n = 1, 2, ...

Solve Ψn = ∆tI−1
(
exp[−1

2
Ψ̃n]IΩn−1 + ∆t

2
T n−1/2

)

Rn = Rn−1 exp[Ψ̃n]

Ωn = I−1
(
exp[−Ψ̃n]IΩn−1 + ∆t exp[−1

2
Ψ̃n]T n−1/2

)

end

3.2 Explicit Midpoint approximation

As for the implicit version, we need to approximate the torque impulse. It seems
natural to consider a forward Euler approximation

RT (t0)

∫ t0+∆t/2

t0

R(τ)T (τ)dτ ≈ ∆t

2
RT (t0)R(t0)T (t0) =

∆t

2
T (t0) (20)

Thus, we get the algorithm LIEMID[E].

Algorithm LIEMID[E]:
Given Ω0,R0,
for n = 1, 2, ...

Solve Ψn = ∆tI−1 exp[−1
2
Ψ̃n]

(
IΩn−1 + ∆t

2
T n−1

)

Rn = Rn−1 exp[Ψ̃n]

Ωn = I−1 exp[−Ψ̃n] (IΩn−1 + ∆tT n−1)
end

The visual differences between the implicit version and LIEMID[E] are innocuous,
but of tremendous importance. The algorithm LIEMID[E] is in fact no good: very
poor accuracy, linear convergence rate compared to the quadratic rate of the im-
plicit version, and apparently only conditional stability (compare with figures in the
following sections, for instance Figure 6). How can we improve on this?

We suggest that the solution be considered in terms of discrete impulses as a
way of approximating the integral in equation (20). Thus, let us assume that the
effect of external torques is delivered by discrete impulses, whose sum over a given
interval approximates the integral of the external torques over the same interval, but
which are concentrated at times ti. In other words, we assume that the motion is
free in between the time instants ti−1 and ti, and that there are torque impulses at
the boundaries of the time steps that deliver instantaneous kicks to the body. This is
easily accommodated in the algorithm for the free rigid body LIEMID. We assume
the body moves without external torques in the interval tn−1 ≤ t < tn, and therefore
we may solve for the incremental rotation vector from (13). Then, at time tn the
torque impulse ∆tT n is delivered, which is reflected in the update equation for the
angular velocity. This narrative is summarized in the algorithm LIEMID[E1], which
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should be compared with the algorithm LIEMID for the free body. Clearly, the only
difference is the added torque impulse.

Algorithm LIEMID[E1]:
Given Ω0,R0,
for n = 1, 2, ...

Solve Ψn = ∆tI−1 exp[−1
2
Ψ̃n] (IΩn−1)

Rn = Rn−1 exp[Ψ̃n]

Ωn = I−1
(
exp[−Ψ̃n]IΩn−1 + ∆tT n

)

end

While we have assumed that the kick from the external torque had been delivered
at the end of the time step, evidently it would equally make sense to give the shove at
the beginning of the time step. Therefore, we may assume the body moves without
external torques in the interval tn−1 < t ≤ tn, but at time tn−1 the torque impulse
∆tT n−1 changes the initial angular velocity for the step. This is put into formulas in
the algorithm LIEMID[E2].

Algorithm LIEMID[E2]:
Given Ω0,R0,
for n = 1, 2, ...

Solve Ψn = ∆tI−1 exp[−1
2
Ψ̃n] (IΩn−1 + ∆tT n−1)

Rn = Rn−1 exp[Ψ̃n]

Ωn = I−1 exp[−Ψ̃n] (IΩn−1 + ∆tT n−1)
end

3.3 Slow Lagrangian top

It is time to look at an example to help us assess the qualities of the above algorithms.
In the first forced-motion example we consider the slow symmetrical top with total
mass M in a uniform gravitational field. The body frame tensor of inertia is diagonal,
diagI = [5, 5, 1]. The spatial torque is

t = −20R(:, 3)× [0; 0; 1]

where R(:, 3) is the third column of the attitude matrix, and [0; 0; 1] is the “up”
vector. The initial conditions are

R0 = exp[Ψ̃0]

where Ψ0 = [0.05; 0; 0], and
Ω0 = [0; 0; 5]

Figure 5 shows the spatial angular momenta for the slow top obtained with ∆t =
1/16. Notice that the component of angular momentum in the direction of gravity is
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Figure 5: Slow Lagrangian top: Components of the spatial angular momentum. Im-
plicit midpoint Lie LIEMID[I].)

conserved (simulation with the implicit midpoint Lie method). Figure 6 illustrates
the global convergence by using a numerical solution (obtained with an extremely
small time step ∆t = 0.0001) for the attitude matrix and the body frame angular
momenta at time t = 20. We measure the norm ||R−Rconverged||2, and the norm ||Π−
Πconverged||2, where the reference values are the orientation matrix Rconverged = R(t =
20) and the body frame angular momentum Πconverged = Π(t = 20). The explicit
midpoint Lie algorithm does not converge at all. The implicit algorithm converges at
the expected quadratic rate, and the relative accuracy is also excellent. The explicit
midpoint Lie variants have excellent accuracy for larger time steps, but then seem to
be experiencing trouble for smaller time steps, especially in the representation of the
attitude matrix. This is worrying, since that would indicate that these two variants
have asymptotically linear convergence rate. Since the story told in Figure 6 is being
corroborated by other numerical and theoretical evidence, some of it reported below,
we have to ask ourselves if we could do better.

Figure 7 shows the Hamiltonian for the slow top calculated for ∆t = 1/8 with the
implicit algorithm LIEMID[I] and also with all the above explicit algorithms. Couple
of intriguing observations may be made in that figure. Firstly, all the algorithms dis-
play periodic behavior, and the implicit algorithm and the two variants LIEMID[E1]
and LIEMID[E2] are apparently symplectic. Secondly, the two explicit variants ap-
pear to possess some sort of symmetry, since the errors of the calculated Hamiltonians
cancel, not quite perfectly but well enough to suggest taking advantage of this. Some
symmetry may be also discerned in the algorithms themselves.

3.4 Improved explicit midpoint Lie algorithm

Indeed the idea presented at this point is very simple: we have two algorithms whose
errors seem to be canceling, could we then combine them in some suitable way to take
advantage of this cancellation? There may be more than one answer to this question,
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Figure 6: Slow Lagrangian top; on the left hand side convergence in the norm of
the error in body-frame angular momentum; on the right hand side convergence in
the norm of the error in the attitude matrix: (/): AKW (implicit midpoint rule of
Austin, Krishnaprasad, Wang [1]): SW (◦, dashed line) solutions with the Simo and
Wong [9] algorithm; NMB (◦, solid line) Krysl, Endres Newmark algorithm [6]; (.):
implicit midpoint Lie; (/, dashed line): explicit midpoint Lie; (♦): explicit midpoint
Lie variant 1; (¤): explicit midpoint Lie variant 2.
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2 LIEMID[E2]. (Hamiltonian for explicit midpoint Lie LIEMID[E] was growing
linearly.)

and the proposed algorithm LIEMID[EA] presents a particularly simple one: We al-
ternate the two variants LIEMID[E1] and LIEMID[E2]: push forward the solution
with variant 1, then continue with variant 2 using the output of variant 1 as the initial
conditions, then variant 1 again and so on. One might think that the alternation may
be performed at the level of time steps, that is odd time steps performed with variant
1, and even time steps performed with a variant 2. However, upon closer inspection
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we see that the torque would be calculated only once per every two time steps. It is
possible then to deduce that we can produce an algorithm with exactly one torque
evaluation per time step if the two algorithms advance the solution by half a time
step each. The resulting algorithm LIEMID[EA] is summarized below. Note that
we update the rotation matrix twice only for presentation purposes; for efficiency and
robustness it is actually updated only once as Rn = Rn−1 exp[Ψ̃n−1/2] exp[Ψ̃n].

Algorithm LIEMID[EA]:
Given Ω0,R0,
for n = 1, 2, ...

% half-step with algorithm 2
Solve Ψn−1/2 = ∆t

2
I−1 exp[−1

2
Ψ̃n−1/2]

(
IΩn−1 + ∆t

2
T n−1

)

Rn−1/2 = Rn−1 exp[Ψ̃n−1/2]

Ωn−1/2 = I−1 exp[−Ψ̃n−1/2]
(
IΩn−1 + ∆t

2
T n−1

)
% half-step with algorithm 1
Solve Ψn = ∆t

2
I−1 exp[−1

2
Ψ̃n]

(
IΩn−1/2

)

Rn = Rn−1/2 exp[Ψ̃n]

Ωn = I−1
(
exp[−Ψ̃n]IΩn−1/2 + ∆t

2
T n

)

end

The above mechanically inspired formulation may be couched in mathematical
terms as a composition of maps. It is straightforward to show that LIEMID[E1]
and LIEMID[E2] are mutually adjoint. (Recall the definition of adjoint methods [2]:
the adjoint method of Φh is Φ∗

h such that Φ∗
h = Φ−1

−h.)
It is well known that composition of adjoint maps is going to be time-symmetric,

that is for Ψh = Φ∗
h ◦ Φh we will have Ψ∗

h = Ψh. Therefore, since LIEMID[EA] is
a composition of mutually adjoint first-order maps, it is time-symmetric and conse-
quently we expect its accuracy to be of second order [2].

If we can prove that LIEMID[E1] is symplectic (work in progress, but numerical
evidence is very strong), then also its adjoint is going to be symplectic, as well as their
composition. In addition, both LIEMID[E1] and LIEMID[E2] conserve momen-
tum in the absence of external forcing, and therefore LIEMID[EA] is momentum
conserving too. Consequently, we expect the algorithm LIEMID[EA] to have a very
desirable set of basic properties: symplecticness and momentum conservation.

We wish to stress that we choose to label both the basic algorithms LIEMID[E1]
and LIEMID[E2] and their composition LIEMID[EA] as explicit midpoint Lie,
since

1. all of these maps are identical to the midpoint Lie in the absence of forcing; the
only difference between them is the approximation of the torque impulse;

2. these algorithms are explicit in the torque evaluation, as it needs to be computed
just once per time step.
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The last remark concerns the analogy between the present algorithm and a compo-
sition of two first-order methods from the vector-space setting, the symplectic Euler
and the adjoint of the symplectic Euler. The composition of these two Euler methods
is the well-known Newmark/Verlet algorithm [2]. That algorithm may be also derived
from the concept of concentrated impulses, with the basic discretization in the form
of a midpoint method (work in progress).

Next we shall study a few more examples to demonstrate the performance of the
improved explicit midpoint Lie algorithm, LIEMID[EA].

3.5 Fast Lagrangian top

The data for this example appear to be due to Simo and Wong [9]. It had also been
studied by Hulbert [4]. In this example we consider the motion of a symmetrical top
with total mass M and axis of symmetry that coincides with the direction of uniform
gravitational field. The body frame tensor of inertia is diagonal, diagI = [5, 5, 1].
The spatial torque is

t = −20R(:, 3)× [0; 0; 1]

where R(:, 3) is the third column of the attitude matrix, and [0; 0; 1] is the “up”
vector. The initial conditions are

R0 = exp[Ψ̃0]

where Ψ0 = [0.3; 0; 0], and
Ω0 = [0; 0; 50]

It is well known that the symmetric Lagrangian heavy top model possesses four
conserved quantities:

1. the Hamiltonian,

H(π, γ) =
1

2
π · i−1π + Mlgγ · χ

where
π = spatial angular momentum, π = π · ω;
χ = unit vector along the axis of the top pointing from the fixed point;
γ = unit vector in the direction of gravity;
Mlg = product of the mass, distance of the center of mass and the fixed

point, and gravitational acceleration, Mlg =
√

3
2

9.81
.

2. the projection of the spatial angular momentum on the axis of the top, π · χ,

3. the projection of the spatial angular momentum on the gravity vector, π · γ,

4. the norm of the gravity vector in the body frame, ||Rγ||.
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Figure 8: Fast Lagrangian top; Hamiltonian. Left-hand side: overall view, right hand
side: zoom in to the neighborhood of the time axis. (/): AKW (implicit midpoint
rule of Austin, Krishnaprasad, Wang [1]): SW (◦, dashed line) solutions with the
Simo and Wong [9] algorithm; NMB (◦, solid line) Krysl, Endres Newmark algo-
rithm [6] algorithm; (.): implicit midpoint Lie LIEMID[EI]; (/, dashed line): ex-
plicit midpoint Lie LIEMID[E]; (♦): explicit midpoint Lie variant 1 LIEMID[E1];
(¤): explicit midpoint Lie variant 2 LIEMID[E2]; alternating explicit midpoint Lie
method LIEMID[EA].

The last two are the Casimirs of the Poisson bracket that defines the Hamiltonian
structure.

The Hamiltonian is shown in figure 8. The two methods LIEMID[E] and SW
display a distinct non-conservation of the total energy. On the other hand, as shown
in the zoomed in viewport on the right, the Newmark method NMB, the two vari-
ants LIEMID[E1] and LIEMID[E2], the alternating explicit midpoint Lee method
LIEMID[EA], and the implicit midpoint Lie method LIEMID[I] all show essen-
tially periodic character of the Hamiltonian with no drift. Notice that the error of
the implicit midpoint is larger than the errors of the explicit variants, both linear and
quadratic.

We investigate the global convergence by using a numerical solution (obtained with
an extremely small timestep ∆t = 0.000005) for the attitude matrix and the body
frame angular momenta at time t = 10. We measure the norm ||R−Rconverged||2, and
the norm ||Π − Πconverged||2, where the reference values are the orientation matrix
Rconverged = R(t = 10) and the body frame angular momentum Πconverged = Π(t =
10). The convergence curves are shown in Figure 9. Noticed excellent behavior of
the present alternating explicit midpoint method LIEMID[EA]. It is the best per-
former, even compared with the implicit midpoint Lee method. Interestingly, the
first order variants of the explicit midpoint the method produce errors comparable to
those attained by the best quadratic method for smaller time steps. As evidence of
symplecticness, Figure 10 shows the scaled Hamiltonian error (by 1/∆t2) for the alter-
nating explicit midpoint lead method LIEMID[EA] for 90 times larger integration
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interval. Note that there is no perceivable drift, or change in amplitude.
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Figure 9: Fast Lagrangian top; on the left hand side convergence in the norm of
the error in body-frame angular momentum; on the right hand side convergence in
the norm of the error in the attitude matrix: (/): AKW (implicit midpoint rule of
Austin, Krishnaprasad, Wang [1]): SW (◦, dashed line) solutions with the Simo and
Wong [9] algorithm; NMB (◦, solid line) Krysl, Endres Newmark algorithm [6] algo-
rithm; (.): implicit midpoint Lie LIEMID[EI]; (/, dashed line): explicit midpoint
Lie LIEMID[E]; (♦): explicit midpoint Lie variant 1 LIEMID[E1]; (¤): explicit
midpoint Lie variant 2 LIEMID[E2]; thick solid line: alternating explicit midpoint
Lie method LIEMID[EA].
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Figure 10: Fast Lagrangian top: Hamiltonian error scaled by 1/∆t2. Alternating
explicit midpoint Lie LIEMID[EA].
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3.6 Slow Lagrangian top

In this example we continue with the example of the slow symmetrical top from
Section 3.3. Figure 11 adds to the data of Figure 6 the curves for at the alternat-
ing explicit algorithm, LIEMID[EA], and it is clearly the most accurate algorithm
overall.
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Figure 11: Slow Lagrangian top; on the left hand side convergence in the norm of the
error in body-frame angular momentum; on the right hand side convergence in the
norm of the error in the attitude matrix: (/): AKW (implicit midpoint rule of Austin,
Krishnaprasad, Wang [1]): SW (◦, dashed line) solutions with the Simo and Wong [9]
algorithm; NMB (◦, solid line) Krysl, Endres Newmark algorithm [6] algorithm;
(.): implicit midpoint Lie; (/, dashed line): explicit midpoint Lie LIEMID[E]; (♦):
explicit midpoint Lie variant 1 LIEMID[E1]; (¤): explicit midpoint Lie variant 2
LIEMID[E2].

Figure 12 supplements the data in Figure 7 with the algorithm LIEMID[EA],
and illustrates the cancellation of the errors of the Hamiltonian for the slow top calcu-
lated for ∆t = 1/8. Even though the error of LIEMID[EA] is not zero (that would
mean the algorithm has become momentum and energy conserving), it substantially
decreased with respect to its constituent parts. Interestingly, is evident that the error
of the present explicit algorithm LIEMID[EA] is much lower than the error of the
fully implicit midpoint Lie method LIEMID[I].

Figure 13 shows the error of the Hamiltonian exhibited by the alternating explicit
midpoint Lie method LIEMID[EA] scaled by the step size squared for three different
∆t’s. The three curves are similar in appearance, of roughly the same amplitude, and
display no perceivable drift in time, which seems to confirm our guess that the method
is second order and symplectic.
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Figure 12: Slow Lagrangian top: Hamiltonian. (.): implicit midpoint Lie
LIEMID[I]; (♦): explicit midpoint Lie variant 1 LIEMID[E1]; (¤): explicit mid-
point Lie variant 2 LIEMID[E2]; thick black line: alternating explicit midpoint
Lie LIEMID[EA]. (Hamiltonian for explicit midpoint Lie LIEMID[E] was growing
linearly.)
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Figure 13: Slow Lagrangian top: Hamiltonian error scaled by 1/∆t2. Alternating
explicit midpoint Lie LIEMID[EA].

3.7 Body in Coulombic potential with soft wall contact

This problem had been used by the Holder, Leimkuhler, and Reich [3] to investigate
the need for adaptive variable step size methods. The problem they consider is a rigid
body that rotates under an external torque coming from an attractive Coulombic
potential coupled with a repulsive potential with steep gradient that represents a soft
wall from which the rotating body is repeatedly repelled. As the authors point out,
the repelling torque is troublesome from the point of view of resolution.

The body frame tensor of inertia is diagonal, diagI = [2, 3, 4.5]. The components
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of the spatial torque are

[t] =
(−(1.1 + R3,3)

−2 + 0.01(1.1 + R3,3)
−11

)
[−R2,3; R1,3; 0]

where Rij are the components of the attitude matrix. The initial conditions are
R0 = 1, and π0 = [2; 2; 2].

Figure 14 compares the convergence of the various algorithms discussed here with
some good representatives of implicit and explicit algorithms from the literature.
By some lucky cancellation of errors, the two first order methods, LIEMID[E1]
and LIEMID[E2] outperform all the second order methods in the representation of
body-frame angular momentum for larger time steps. Interestingly, they also maintain
second order rate in the representation of the attitude matrix. The alternating explicit
midpoint Lie method LIEMID[EA] performs very well, and maintains second-order
accuracy.
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Figure 14: Body in Coulombic potential with soft wall contact; on the left hand side
convergence in the norm of the error in body-frame angular momentum; on the right
hand side convergence in the norm of the error in the attitude matrix: (/): AKW
(implicit midpoint rule of Austin, Krishnaprasad, Wang [1]): SW (◦, dashed line)
solutions with the Simo and Wong [9] algorithm; NMB (◦, solid line) Krysl, En-
dres Newmark algorithm [6]; (.): implicit midpoint Lie; (/, dashed line): explicit
midpoint Lie; (♦): explicit midpoint Lie variant 1 LIEMID[E1]; (¤): explicit mid-
point Lie variant 2 LIEMID[E2]; thick solid line: alternating explicit midpoint Lie
LIEMID[EA].

Figure 15 shows one of the non-conserved components of the spatial angular mo-
mentum. The reference solution was obtained with the timestep ∆t = 0.01. The other
solutions had been obtained with a large timestep ∆t = 0.75. As can be seen, the
implicit midpoint Lie, and both variants of the the explicit midpoint Lie outperform
the classical midpoint rule AKW (implicit midpoint rule of Austin, Krishnaprasad,
Wang [1]).
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conserved components of the spatial angular momentum: solid line without symbol is
the reference solution; (/): AKW (implicit midpoint rule of Austin, Krishnaprasad,
Wang [1]); (.): implicit midpoint Lie; (♦): explicit midpoint Lie variant 1; (¤):
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Figure 16: Body in Coulombic potential with soft wall contact: Hamiltonian for
∆t = 0.2. (.): implicit midpoint Lie LIEMID[I]; alternating explicit midpoint Lie
LIEMID[EA].

Figure 17 compares the performance of some good performing with implicit and
explicit algorithms with respect to the conservation of the projection of the spatial
angular momentum onto the symmetry axis (direction of the potential gradient). All
the midpoint Lie algorithms presented in this paper conserve this projection to within
machine accuracy. On the other hand, some of the best-performing algorithms from
the literature do not conserve the projection exactly, but only within a certain bound.
In particular, it can be seen that the algorithm of Simo and Wong [9] conserves this
projection, while the Newmark algorithm of Krysl, Endres Newmark algorithm [6] and
the algorithm AKW (implicit midpoint rule of Austin, Krishnaprasad, Wang [1]) do

19



not.
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Figure 17: Body in Coulombic potential with soft wall contact; error in the projec-
tion of the spatial angular momentum on the symmetry axis: (/): AKW (implicit
midpoint rule of Austin, Krishnaprasad, Wang [1]): SW (◦) solutions with the Simo
and Wong [9] algorithm; NMB (◦) Krysl, Endres Newmark algorithm [6] algorithm.

Conclusions

We have presented an algorithm that is explicit in the evaluation of the forcing
(torque), is momentum conserving, and apparently also symplectic. The numerical
evidence we have presented indicates that this algorithm is the best explicit second-
order integrator for rigid body dynamics the date, as it consistently matches or exceeds
the accuracy of the currently known best-performing algorithms, both implicit and
explicit.

The result we present follows from a reformulation of the implicit midpoint Lie
algorithm. This integrator is implicit in the torque calculation because the impulse
needs to be evaluated at the unknown midpoint of the incremental rotation. In
order to make the algorithm explicit in the torque calculation, we approximate the
impulse delivered over the time step with discrete impulses delivered at either the
beginning of the time step or at the end of the time step. Therefore, we obtain two
related variants, both of which are explicit in the torque calculation. It turns out
that this approximation reduces the order of these algorithms from two to one, but
they are momentum-conserving and apparently both are symplectic. To improve the
convergence rate, we take advantage of the apparent possibility to cancel discretization
errors of these two variants, since they tend to go in opposite directions. Thus, we
introduce another algorithm as a composition of these two variants. As is well-
known, such a composition will also be symplectic and the momentum conservation
is preserved too. The resulting algorithm is then explicit, momentum-conserving,
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(apparently) symplectic, and second order. Its error constant is excellent, and its
accuracy consistently matches or exceeds (sometimes very substantially) accuracy of
the best known implicit and explicit integrators on a number of problems, including
the free rigid body, both fast and slow Lagrangian tops, and dynamics in the presence
of more complex potentials (soft wall obstacle).
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Appendix

It needs to be realized that the classical midpoint rule AKW (almost Lie-Poisson
integrator) of Austin, Krishnaprasad, Wang [1] differs substantially from the present
midpoint Lie algorithms. For easy reference, the algorithm is summarized here.

Algorithm AKW:
Given Ω0,R0,
for n = 1, 2, ...

Solve IΩn = IΩn−1 − ˜̄ΩIΩ̄ + ∆t
2

(T n + T n−1)
where Ω̄ = 1

2
(Ωn + Ωn−1)

Rn = Rn−1cay[∆t ˜̄Ω]
end
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