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We address the design of time integrators for mechanical systems that are explicit in the forcing 
evaluations.  Our starting point is the midpoint rule, either in the classical form for the vector 
space setting, or  the Lie form for the rotation group.  By introducing discrete, concentrated 
impulses we can approximate the forcing impressed upon the system over the time step, and 
thus arrive at first-order integrators.  These can be then composed to yield a second order 
integrator with very desirable properties: symplecticity and momentum conservation. 
 
 

1. Introduction 
It is well-known that the Verlet algorithm (explicit Newmark for a certain choice of its 
parameters) may be written as a composition of two first order algorithms, the symplectic Euler 
and its adjoint [HLG (2003)]. What is perhaps less known is that there is an interpretation of 
this composition in terms of an approximation of the midpoint rule, which is of course implicit 
in the evaluation of the forcing impulse. Our goal in this brief note is to point out that this 
mechanically inspired derivation yields the well-known second order explicit Verlet algorithm 
in the vector space setting, but also an extremely accurate integrator for rigid body rotations 
when the midpoint rule is interpreted in the Lie sense. 
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2. Vector space midpoint rule approximation 

Let us write the initial value problem for a mechanical system with configuration  in a 
fairly general form as 
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where  is the rate of linear momentum, andp& ( , )t=f f  is the applied force.  For simplicity we 
shall assume p = , where  is a time-independent mass matrix, and  is the velocity.  The 
midpoint approximation of the second equation is 
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where  makes this formula implicit.  To approximate the 
midpoint momentum, we may use the equation of motion in integral form, 
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and numerically evaluate the impulse integral. This we propose to treat by recourse to the 
concept of concentrated, discrete impulses delivered at pre-selected time instants.  In particular, 
the impulse may be delivered at the end of the time step, in which case 
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On the other hand, the impulse may be imposed at the beginning of the time step, and 
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Therefore, we obtain two algorithms. The first one, t∆Φ , may be recognized as the symplectic 
Euler method, and the second, , as its adjoint.  *
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These algorithms are symplectic [HLG (2003)], and momentum conserving. Their accuracy is 
only linear in the time step, but their composition preserves both symplecticity and momentum 
conservation and yields a second order accurate algorithm.  That algorithm may be recognized 
as the well-known Verlet (explicit Newmark with 1/ 2γ = ). 
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3. Midpoint rule approximation on the rotation group 
Now we shall discuss dynamics of rigid bodies rotating about a fixed point. (More detail is 
available in Reference [K(2004)].) The initial value problem may be written in the convected 
description (body frame) as  
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where is the rate of body frame angular momentum, is the rotation tensor, T  is the applied 
torque in the body frame,  is defined by ske

Π& R
[ ]skew[ ]• w ⋅ =h h 0 , and is the time-independent 

tensor of inertia in the body frame. The second equation is not in a form suitable for midpoint 
discretization, because the rotation tensor constitutes points of the Lie group , which is 
not a vector space and linear combinations are not legal operations on the rotation tensors. To 
transform the initial value problem to a form suitable for our purposes, we shall introduce the 
rotation vector representation of the rotation tensor.  
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The equation of motion is written in the spatial frame as , where  is the rate of the 
spatial angular momentum, and consequently the equation of motion may be written in integral 
form as 

π = RT& π&
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where  is the incremental rotation through vector .  Upon time 
differentiation and identification with the original differential equation of motion, we obtain 
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where  is the differential of the exponential map.  The initial value problem may 
be therefore rewritten as 

skew[ ]exp ( )d − •Ψ

   
( )

0

1 1
skew[ ]

skew[ ] , (0)

exp , (0)d
− −

−

− +

= =

-1

Ψ

Π = I Π Π T Π Π

Ψ I Π Ψ 0

&

&

=

The midpoint approximation applied to the second equation yields ( t =Ψ ) 0
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This equation needs to be solved for the rotation vector.  Therefore, as for the vector space 
setting we get two different algorithms, depending on the chosen approximation of .  For 
the impulse applied at the beginning of the time step we obtain the  counterpart of the 
symplectic Euler integrator: 
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On the other hand, the total torque impulse applied at the end of the time step yields the adjoint 
method 
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Both algorithms are first-order, symplectic, and momentum conserving. As before, the 
composition of these two algorithms in one time step provides us with a second order accurate 
algorithm, which is an analogy of the Verlet (explicit Newmark with 1/ 2γ = ) algorithm for the 
vector space dynamics   
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The above algorithms have been called the explicit midpoint Lie variant 2 and 1 respectively, 
and the alternating midpoint Lie algorithm in Reference [K(2004)].  It bears emphasis that these 
algorithms are not simply the symplectic Euler and its adjoint.  They all reduce to the full 
midpoint Lie algorithm for torque-free motion, and it is only the approximation of the midpoint 
momentum evaluation that distinguishes them from the implicit midpoint Lie rule. 

4. Example 
The accuracy of the explicit midpoint Lie algorithms is rather remarkable as may be seen in 
Figure 1. We show convergence graphs for the fast spinning heavy top (the kinetic energy is 
dominant, and a numerical method has to effectively deal with precession and nutation which 
are motions of distinct frequencies).  Even the first-order methods perform very well for larger 
time steps, and the present alternating midpoint Lie algorithm is the strongest performer out of a 
selection of the best currently available implicit and explicit algorithms, including the implicit 
midpoint Lie method.   
 
 



 
Figure 1. Fast Lagrangian top; on the left hand side convergence in  the norm of the error in 
body-frame angular momentum; on the  right hand side convergence in the norm of the error in 
the  attitude matrix:  AKW: implicit midpoint rule  of Austin, Krishnaprasad, Wang [AKW 
(1993)]:  SW: Simo and Wong [SW (1991)]; NMB: Krysl, Endres Newmark algorithm [KE 
(2004)]; LIEMID[I]: implicit midpoint Lie: LIEMID[E1]: adjoint of the symplectic Euler 
(explicit midpoint Lie variant 1); LIEMID[E2]: symplectic Euler (explicit midpoint Lie variant 
2); LIEMID[EA]: alternating explicit midpoint Lie method.  

5. Conclusions 
We have presented an approach to the construction of rigid body integrators, in particular for 
general 3-D rotations, that are explicit in the evaluation of the forcing, momentum-conserving, 
and symplectic. The starting point is the midpoint (implicit) rule, which is then treated with 
numerical integration of the forcing with concentrated impulses.  The resulting algorithms 
conserve momentum, are symplectic, first-order, and they are adjoint.  Consequently, their 
composition leads to a second order algorithm, which may be readily interpreted as a Verlet 
(explicit Newmark) integrator, both in the vector space setting, and in the setting of the special 
orthogonal group of rotations. (We would like to suggest as an appropriate name explicit 
midpoint Lie algorithm for the latter.)  For rotational dynamics, this integrator is a new addition 
to the lineup of current high performance algorithms, and in fact numerical evidence suggests 
that it is the best second-order integrator to date. Applications abound: molecular dynamics, 
micro magnetics, rigid body dynamics, finite element dynamics of deformable solids. 
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