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Abstract   In this paper, we describe a pilot 
implementation of a hierarchical adaptive mesh 
refinement technique.  While  the focus is on the 
implementation in one-dimensional problems, the 
methodology is generic in nature in that it is equally 
applicable to the construction of adaptive 
approximations in multi-dimensional domains, as is also 
being demonstrated on some examples of steady-state 
heat conduction and other potential-like equations 
(EEG).  
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1 Introduction 

The finite element method is an approach to finding 
approximate solutions to differential equations.  This 
approach works by breaking up the domain of the 
problem into a set of elements, which comprise a region 
between nodes and the trial solutions defined over those 
regions.  Next, a technique such as the Galerkin 
weighted residual method is used to construct a trial 
function as a linear combination of the basis functions 
that approximates the solution to the differential 
equation.  This paper is concerned with the construction 
of a set of basis functions on a collection of 
hierarchically arranged finite elements (a hierarchical 
mesh).  For the sake of simplicity, this paper will only 
treat the one-dimensional case in detail, but the 
technique described in this paper is applicable to multi-
dimensional problems [KGS (2002) and GKS (2002)]. 
Let us also note that application to high-order basis 
functions is equally straightforward. 

In this paper we describe a hierarchical adaptive 
refinement technique for use in the finite element 
method and discuss one particular implementation of 
this technique in an object-oriented computer language 
(Java).  The strengths of the theoretical approach are its 
simplicity, especially compared to current mesh 
refinement techniques, and its ability to create 
conforming approximations in two, three, and higher-
dimensional cases, for a wide range of elements types 
and approximation orders without any special tricks 
[KGS (2002)]. 
 
2 Overview of Mesh Refinement 

In recent years there has been much interest in 
hierarchical and multigrid methods for refining finite 
element meshes.  The primary benefit of these 
techniques is their increased efficiency that results from 
adaptive meshing, i.e. from the  improvement of the 
existing mesh which more efficiently represents the 
pertinent parts of the problem. 
Adaptive mesh refinement as discussed, for instance, in 
Reference [BKS (1998)] is geometric in nature, and 
involves refinement by splitting elements in areas of low 
accuracy and merging elements in areas of high 
accuracy.  In order to prevent the creation of an 
inconsistent or poor-quality mesh, techniques such as 
this require special algorithms to improve and control 
the quality of the mesh.  The advantage of this method is 
that it can effectively create a highly non-uniform mesh.  
Approaches such as this have the drawback that the 
algorithms used to refine the mesh are rather 
complicated. The main reason is the necessity to 
maintain compatibility. Hierarchical approaches to mesh 
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refinement have been shown to yield stiffness matrices 
with a condition number which does not increase as 
quickly with refinement as it otherwise would [YSE 
(1986)]. Creating nested meshes is attractive also from 
the point of view of availability of highly efficient 
multilevel solvers for systems of linear equations 
resulting from the refined approximations.  
The hierarchical refinement approach described in this 
paper is particularly intuitive and simple to understand.  
It leads naturally to what Yserentant describes as a self-
similar structure in [YSE (1992)].  The basic idea of the 
present approach is that the refinement is applied to 
basis functions, not to isolated pieces of basis functions 
as defined over each element.  Each refined mesh exists 
on its own refinement level.  The one requirement our 
technique imposes on the meshing of new hierarchical 
levels is that nodes  from lower levels are retained in 
higher refinement levels.  It is this requirement which 
ensures compatibility and removes the need for complex 
mesh integrity checks and repair operations. 

3 Conforming Hierarchical Mesh Refinement  

For the benefit of the reader we shall very concisely 
summarize the setting in which we wish to introduce our 
implementation. It should be emphasized that our 
discussion may indeed be entirely limited to the one-
dimensional setting, without any loss of generality. As 
we shall show, our use of the refinement (multi-
resolution) equation guarantees that our results carry 
over to higher dimensions without change.  

3.1  The Galerkin Approximation Method 

We are going to introduce the basic concepts for two-
point boundary-value problems of the form u′′ + f = 0, 
with boundary conditions u(1) = g and –u′(0) = h.  We 
will be using the Galerkin approximation method [HUG 
(1987)], which involves the adoption of a set of basis 
functions NA, where NA(1) = 0 for A = 1, 2, …, n and 
Nn+1 (1) = 1.  Using the matrix notation, we write Kd = 
F, where K is an n by n matrix, d is an n by 1 vector, 
and F is an n by 1 vector: 

 ∫= 1
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3.2 Conceptual Overview of Hierarchical 
Refinement 

In our hierarchical mesh refinement technique, we will 
be constructing a hierarchy of approximation spaces 
denoted V(j), where V(0) is the coarsest space and each 
successive V(i) represents a finer-scale space.  V(j) is a 

collection of all the basis functions defined on the mesh 
M(j) such that: 
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In short, the set of functions N(j)(x) form a basis for V(j).  
We construct the spaces V(j) so that each new V(j) is a 
subset of each of the coarser spaces in the refinement 
tree.  It is this condition which ensures that the entire set 
of refinement levels are consistent.  This requirement 
can be written as: 

V(0) ⊂ V(1) ⊂ V(2) ⊂ … ⊂ V(j) 
This nested aspect of the refinement spaces indicates 
that any basis function Ni

(j)(x)  ∈ V(j) can be written as a 
linear combination of basis functions in a finer space:  
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(1) (6) 
Equation (1) motivates our hierarchical refinement 
technique.  Using this relation, we can enhance 
resolution by deactivating one or more basis functions in 
V(a) and activating functions on level V(b), where b > a, 
to replace the deleted functions (see [KGS (2002)]). 

4 Hierarchical Refinement Algorithm 

The hierarchical technique developed in this paper can 
be easily understood with reference to a diagram. The 
node one wishes to refine about on the initial coarse 
level is deactivated, and a new refinement level is 
created.  This new level adds several new nodes but also 
maintains all nodes present in levels lower down in the 
refinement tree.  Carrying over nodes from lower 
refinement levels onto new levels of mesh refinement 
ensures compatibility between refinement levels without 
necessitating any complex checks of mesh continuity.  It 
is not necessary to use only three basis functions in a 
refinement level; three are used in the above example 
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Figure 1: Two levels of hierarchical mesh refinement 
about node k . Dashed lines indicate omitted basis 
functions.  
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§ double 
lowerBoundNode 
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BFunSegment.java 

§ PolynomialFunction 
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§ Cell parentCell 
§ int 
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t) Vector 
funcs 
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active 

§ int 
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Level.java 

§ Node[] Funcs 

Figure 5: Main classes in Java implementation. 

only for sake of the argument.  Any number of new 
basis functions can be introduced in each refinement 
level.  As is evident from Figure 1, multiple refinement 
levels can be created to increase accuracy in regions of 
interest. 

There are two different ways to represent a family of 
refinement levels such as the one shown in Figure 1.  
The refinements can be represented as a set of distinct 
levels, each of which reference their immediate parent 
and child refinement levels.  This is shown in Figure 1.  
Alternatively, since each node to be refined about is 
deactivated, all refinement levels can be “flattened” into 
a single level.  Figure 2 shows a “flattened” 
representation of the family of refinement levels shown 
in Figure 1. 

 
A derefinement technique does just the opposite of the 
refinement technique.  A set of basis functions about a 
node can be deactivated and replaced by a single node in 
order to decrease mesh resolution.  This process is 
shown in Figure 3. 

 
The basis function at the site of the refinement (node k 
in this example), along with the basis functions 
immediately before and after it, are deactivated and 
replaced with a single basis function which spans from k 
– 2 to k + 2 and peaks at k .  Note that this most basic 
form of derefinement leads to meshes which are slightly 
different from those shown in Figs. 1 and 2 because 

there are more nodes than basis functions.  This is 
undesirable in our implementation, so we have devised a 
modified derefinement algorithm that adjusts the basis 
functions on either side of the newly derefined basis 
function so that they both terminate in the node below 
the derefined basis function (node k  in our example).  
The modified derefinement algorithm applied to a 
flattened mesh is shown in Figure 4. 
 
After a series of refinements about nodes of interests 
and derefinements in mostly slow-variation areas, this 
method creates a highly irregular yet consistent and 
robust meshing of the domain.  While refinement and 
derefinement are presented in this paper in the context 
of one-dimensional domains, the basic method is 
extensible in an analogous way to higher-dimensional 
function spaces [KGS (2002)].  
 

5 Implementation 

The implementation of our hierarchical refinement 
technique was coded in Java and uses polynomial and 
matrix algebra [BES (2001)] and Ptplot plotting [LH 
(2001)].  Objects to represent each of the different 
components used in this technique had been defined, at 
different levels of abstraction.  Each object contains 
several data objects and methods to modify and interpret 
the data stored on those objects.  At the lowest level of 
abstraction is the Cell, which contains data about the 
two nodes between which it is define.d.  Next, we have 
BFunSegment, which contains the Cell over which it is 
defined, and the segment of the nodal basis function 
over which it is defined.  BFunSegment also keeps 
track of its parent nodal basis function.  The class Node  
represents a nodal basis function.  It consists of a 

N5 

Figure 2: Flattened representation of refinement. 
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Figure 3: Basic derefinement about node k . 
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Figure 4: Modified flattened derefinement about  
node k . 
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Figure 6: Function to be interpolated using finite 
elements. 

collection of BfunSegments , its number in the 
refinement level, and the position of its peak.  Finally, 
the class Level consists of the set of nodal basis 
functions for the entire level.  This information is 
summarized in Figure 5. 

The algorithms used for refinement, derefinement, and 
flattening the mesh are all relatively straightforward.  
Graphical representations of these processes can be seen 
in Section 3 of this paper.  The basic operation of our 
implementation is to refine or derefine at a single nodal 
basis function then flatten the initial mesh and refined 
mesh.   
Pseudo-code versions of these algorithms follow: 
Refine Nodal Basis Function Nr: 

§ deactivate Node Nr 
§ create new Level with Cell size half that of the 

previous Level.  Increment refinement of nodes on 
new Level.  Activate Nodes k r-1 to kr+1  on new 
Level. 

 
Derefine Nodal Basis Function Nr: 

§ deactivate Nr, Nr-1, and Nr+1 
§ create a new Level of only two Cells , from k r-2 to k 

and from k  to kr+2  
§ remove Nodes  k r-1 and kr+1  on the initial Level 
§ move termination of Nr-2 and Nr+2  to Node k r 

 
Flatten Mesh and Reorder Basis Functions 
§ collect set of Nodes  from initial and refinement 

Level, sort them by position of Node maximum, 
and create the new flattened Level with this set of 
Nodes  

 

6 Refinement Example  

The following example demonstrates how our 
refinement technique and computer implementation 
work.  Our implementation used the Galerkin weighted 
residual method to compute the approximate solution to 
the differential equation 0=+′′ fu  with the boundary 

conditions gu =)1(  and hu =′− )0(  over the interval 
[0,1] using the refined mesh of nodal basis functions.  
A polynomial f is used in this example.  The known 
u is being used to derive g, h, and  f. For this example,  

xxxxxu 25150325300100 2345 +−+−= ,  

and working backwards, we find  

0)1( == gu  and ,25)0( −==′− hu  and 

.300195036002000 23 +−+−= xxxf   

Graphing u over the interval [0,1] yields Figure 6. 

Applying the Galerkin method to this problem with 10 
uniform cells and the g, h, and f from above yields the 
following graphs: Figure 7a shows the initial uniform 
mesh of nodal basis functions.  Applying the Galerkin 
method results in a set of weighting factors for each of 
the basis functions, and figure 7b shows the weightings 
applied to the basis functions.  Finally, the contributions 
of all the basis functions are added together over each 
cell, and the resulting piece-wise function is the 
Galerkin solution to the differential equation (Figure 
7c).  To improve this approximation, refine about nodes 
that correspond to areas of rapid change.  The refined 
mesh and solution are shown in Figure 8.c 

Figure 7a: Unweighted uniform mesh. 

Figure 7b: Weighted basis functions. 

Figure 7c: Galerkin solution. 
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Note that this refined mesh in Figure 8 is non-uniform, 
yet with conforming.  This results from the fact that 
refined meshes constructed using our hierarchical 

refinement procedure are consistent by design, and yet 
can produce highly non-uniform meshes.  The second 
refinement level of the mesh (Figure 8b) contains 
elements that are one-fourth the size of the initial mesh.  
 

7     Examples in two and three dimensions 

with 
It is very important to realize that the only assumption 
as to the properties of the basis was the refinability 
(refinement) equation (1). Otherwise the basis is 
arbitrary (i.e. in addition to continuity as dictated by the 
Galerkin form). In particular, the basis may be 
constructed over the real line, over two-, three- or even 
higher dimensional domains. Also the order is arbitrary: 
linear, qudratic, cubic, Lagrange or Hermite, polynomial 
or non-polynomial. This genericity is very powerful as 

will be also shown on some examples in this section. 
See also discussion in References [KGS and GKS 
(2002)], which includes simulations on subdivision 
surfaces. 
 
The first example demonstrates the refinement of the 
approximation spaces constructed on mesh of six-node 
(quadratic) triangles in a square domain. The dipole 
equation function is shown in the contours displayed 
on the computational meshes in Figure 9. Note that 
there are no hanging nodes, i.e the basis is naturally 
conforming, even though the picture might suggest 
otherwise. The triangles shown in Figure 9 are the 
integration cells, and the integration cells support 
basis functions of different resolutions. That is why it 
appears as if the refinement was non-conforming.  
 
The last example deals with a three-dimensional 
biomechanics problem. Figure 10 shows the solution 
to a point source Poisson equation solved on the 
tetrahedral mesh of the human brain, which is the 
setup commonly encountered in inverse EEG. Four 
mesh refinements have been applied. The refinement 
of approximations on tetrahedral meshes is described 
in detail in Reference [EK (2002)]. The natural 

hierarchical refinement described in this paper is 
applicable without change. However, for this particular 
finite element shape the issue is to ensure that the 
tetrahedral cells resulting from purely geometrical 
division  of the original mesh cells be of guaranteed 
bounded shape quality measure. The approach described 
in [EK (2002)] attains this property through the use of 
the so-called Kuhn octasection with careful alternation 
of the division stencil between refinement levels. 
 
  

 

Figure 8c: Refined Galerkin solution. 

Figure 8b: Refined mesh with weighted basis 
functions. 

Figure 8a: Unweighted flattened two-level mesh. 

 
Figure 10: Galerkin solution for a point-source 
forcing for the Poisson equation in the human 
brain. Mesh of 4-node tetrahedra. 

 
Figure 9: Galerkin solution of a dipole equation in 
a square domain. Mesh of 6-node quadratic 
triangles. Left to right: initial, and two refined 
meshes. 
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8 Conclusions 

 
The hierarchical refinement method described in 
this paper has several major advantages.  The 
refined meshes created using this method are 
compatible by construction and therefore do not 
require any complicated algorithms designed to 
ensure compatibility of the refined mesh.  
Although this paper presents the details of a one-
dimensional case, this process is easily extensible 
to higher-dimensional (two, three, and more) 
domains [KGS (2002)].  Note that the theoretical 
outline given in Section 3 at no place invokes  the 
dimension of the domain supporting the function 
space V—this is because the refinement technique 
is not dimension-specific.  The refinement equation 
applies equally well to higher-dimensional spaces 
as it does to the one-dimensional case treated in 
this paper.    Therefore, one of the major 
advantages of out technique is its easy extensibility 
to higher dimensions without imposing added 
complications to the refinement algorithm.  
Additionally, because this refinement scheme is 
based on a fixed-subdivision stencil, elements on 
higher refinement levels do not become ill-shaped 
(this applies also to higher-dimensional spaces, and 
to approximations on tetrahedral meshes, which are 
notoriously difficult to refine) [EK (2002)]. The 
proposed approach is exceedingly simple, and does 
not invoke any special tricks to produce 
conforming approximations. The implementations 
may be correspondingly simple and robust, an 
appealing contrast to existing techniques. 
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