
 1

Implementation of a General Mesh Refinement Technique

Paul Hammon1 and Petr Krysl2

PK: Dedicated to Zdenek Bittnar, mentor and friend.

1 Undergraduate student, University of California, San Diego, CA, U.S.A.
2 Professor, University of California, San Diego, U.S.A

Abstract In this paper, we describe a pilot
implementation of a hierarchical adaptive mesh
refinement technique. While the focus is on the
implementation in one-dimensional problems, the
methodology is generic in nature in that it is equally
applicable to the construction of adaptive
approximations in multi-dimensional domains, as is also
being demonstrated on some examples of steady-state
heat conduction and other potential-like equations
(EEG).

Keywords : adaptive mesh refinement, refinement
equation.

1 Introduction

The finite element method is an approach to finding
approximate solutions to differential equations. This
approach works by breaking up the domain of the
problem into a set of elements, which comprise a region
between nodes and the trial solutions defined over those
regions. Next, a technique such as the Galerkin
weighted residual method is used to construct a trial
function as a linear combination of the basis functions
that approximates the solution to the differential
equation. This paper is concerned with the construction
of a set of basis functions on a collection of
hierarchically arranged finite elements (a hierarchical
mesh). For the sake of simplicity, this paper will only
treat the one-dimensional case in detail, but the
technique described in this paper is applicable to multi-
dimensional problems [KGS (2002) and GKS (2002)].
Let us also note that application to high-order basis
functions is equally straightforward.

In this paper we describe a hierarchical adaptive
refinement technique for use in the finite element
method and discuss one particular implementation of
this technique in an object-oriented computer language
(Java). The strengths of the theoretical approach are its
simplicity, especially compared to current mesh
refinement techniques, and its ability to create
conforming approximations in two, three, and higher-
dimensional cases, for a wide range of elements types
and approximation orders without any special tricks
[KGS (2002)].

2 Overview of Mesh Refinement

In recent years there has been much interest in
hierarchical and multigrid methods for refining finite
element meshes. The primary benefit of these
techniques is their increased efficiency that results from
adaptive meshing, i.e. from the improvement of the
existing mesh which more efficiently represents the
pertinent parts of the problem.
Adaptive mesh refinement as discussed, for instance, in
Reference [BKS (1998)] is geometric in nature, and
involves refinement by splitting elements in areas of low
accuracy and merging elements in areas of high
accuracy. In order to prevent the creation of an
inconsistent or poor-quality mesh, techniques such as
this require special algorithms to improve and control
the quality of the mesh. The advantage of this method is
that it can effectively create a highly non-uniform mesh.
Approaches such as this have the drawback that the
algorithms used to refine the mesh are rather
complicated. The main reason is the necessity to
maintain compatibility. Hierarchical approaches to mesh

 2

refinement have been shown to yield stiffness matrices
with a condition number which does not increase as
quickly with refinement as it otherwise would [YSE
(1986)]. Creating nested meshes is attractive also from
the point of view of availability of highly efficient
multilevel solvers for systems of linear equations
resulting from the refined approximations.
The hierarchical refinement approach described in this
paper is particularly intuitive and simple to understand.
It leads naturally to what Yserentant describes as a self-
similar structure in [YSE (1992)]. The basic idea of the
present approach is that the refinement is applied to
basis functions, not to isolated pieces of basis functions
as defined over each element. Each refined mesh exists
on its own refinement level. The one requirement our
technique imposes on the meshing of new hierarchical
levels is that nodes from lower levels are retained in
higher refinement levels. It is this requirement which
ensures compatibility and removes the need for complex
mesh integrity checks and repair operations.

3 Conforming Hierarchical Mesh Refinement

For the benefit of the reader we shall very concisely
summarize the setting in which we wish to introduce our
implementation. It should be emphasized that our
discussion may indeed be entirely limited to the one-
dimensional setting, without any loss of generality. As
we shall show, our use of the refinement (multi-
resolution) equation guarantees that our results carry
over to higher dimensions without change.

3.1 The Galerkin Approximation Method

We are going to introduce the basic concepts for two-
point boundary-value problems of the form u′′ + f = 0,
with boundary conditions u(1) = g and –u′(0) = h. We
will be using the Galerkin approximation method [HUG
(1987)], which involves the adoption of a set of basis
functions NA, where NA(1) = 0 for A = 1, 2, …, n and
Nn+1 (1) = 1. Using the matrix notation, we write Kd =
F, where K is an n by n matrix, d is an n by 1 vector,
and F is an n by 1 vector:

 ∫= 1
0 ,, dxNNK xBxAAB

and

dxNNghNfdxNF xnxAAAA ∫∫ +−+= 1
0 ,1,

1
0)0((1, 2)

3.2 Conceptual Overview of Hierarchical
Refinement

In our hierarchical mesh refinement technique, we will
be constructing a hierarchy of approximation spaces
denoted V(j), where V(0) is the coarsest space and each
successive V(i) represents a finer-scale space. V(j) is a

collection of all the basis functions defined on the mesh
M(j) such that:

 }on supported is|)({)()()()(jj
i

j
i

j MNxNV =

In short, the set of functions N(j)(x) form a basis for V(j).
We construct the spaces V(j) so that each new V(j) is a
subset of each of the coarser spaces in the refinement
tree. It is this condition which ensures that the entire set
of refinement levels are consistent. This requirement
can be written as:

V(0) ⊂ V(1) ⊂ V(2) ⊂ … ⊂ V(j)
This nested aspect of the refinement spaces indicates
that any basis function Ni

(j)(x) ∈ V(j) can be written as a
linear combination of basis functions in a finer space:

 ∑=
k

b
k

b
ik

a
i xNxN)()()()()(β , b > a

(1) (6)
Equation (1) motivates our hierarchical refinement
technique. Using this relation, we can enhance
resolution by deactivating one or more basis functions in
V(a) and activating functions on level V(b), where b > a,
to replace the deleted functions (see [KGS (2002)]).

4 Hierarchical Refinement Algorithm

The hierarchical technique developed in this paper can
be easily understood with reference to a diagram. The
node one wishes to refine about on the initial coarse
level is deactivated, and a new refinement level is
created. This new level adds several new nodes but also
maintains all nodes present in levels lower down in the
refinement tree. Carrying over nodes from lower
refinement levels onto new levels of mesh refinement
ensures compatibility between refinement levels without
necessitating any complex checks of mesh continuity. It
is not necessary to use only three basis functions in a
refinement level; three are used in the above example

N 3 (0)

k (0)

initial
level

first
refinement
level

second
refinement level

k (1)

k (2)

N 3 (1)

N 3 (2)

Figure 1: Two levels of hierarchical mesh refinement
about node k . Dashed lines indicate omitted basis
functions.

 3

Cell.java

§ double
lowerBoundNode

§ double
upperBoundNode

BFunSegment.java

§ PolynomialFunction
function

§ Cell parentCell
§ int

parentNodeNumber
Node.java

§ (BFunSegmen
t) Vector
funcs

§ boolean
active

§ int
nodeNumber

Level.java

§ Node[] Funcs

Figure 5: Main classes in Java implementation.

only for sake of the argument. Any number of new
basis functions can be introduced in each refinement
level. As is evident from Figure 1, multiple refinement
levels can be created to increase accuracy in regions of
interest.

There are two different ways to represent a family of
refinement levels such as the one shown in Figure 1.
The refinements can be represented as a set of distinct
levels, each of which reference their immediate parent
and child refinement levels. This is shown in Figure 1.
Alternatively, since each node to be refined about is
deactivated, all refinement levels can be “flattened” into
a single level. Figure 2 shows a “flattened”
representation of the family of refinement levels shown
in Figure 1.

A derefinement technique does just the opposite of the
refinement technique. A set of basis functions about a
node can be deactivated and replaced by a single node in
order to decrease mesh resolution. This process is
shown in Figure 3.

The basis function at the site of the refinement (node k
in this example), along with the basis functions
immediately before and after it, are deactivated and
replaced with a single basis function which spans from k
– 2 to k + 2 and peaks at k . Note that this most basic
form of derefinement leads to meshes which are slightly
different from those shown in Figs. 1 and 2 because

there are more nodes than basis functions. This is
undesirable in our implementation, so we have devised a
modified derefinement algorithm that adjusts the basis
functions on either side of the newly derefined basis
function so that they both terminate in the node below
the derefined basis function (node k in our example).
The modified derefinement algorithm applied to a
flattened mesh is shown in Figure 4.

After a series of refinements about nodes of interests
and derefinements in mostly slow-variation areas, this
method creates a highly irregular yet consistent and
robust meshing of the domain. While refinement and
derefinement are presented in this paper in the context
of one-dimensional domains, the basic method is
extensible in an analogous way to higher-dimensional
function spaces [KGS (2002)].

5 Implementation

The implementation of our hierarchical refinement
technique was coded in Java and uses polynomial and
matrix algebra [BES (2001)] and Ptplot plotting [LH
(2001)]. Objects to represent each of the different
components used in this technique had been defined, at
different levels of abstraction. Each object contains
several data objects and methods to modify and interpret
the data stored on those objects. At the lowest level of
abstraction is the Cell, which contains data about the
two nodes between which it is define.d. Next, we have
BFunSegment, which contains the Cell over which it is
defined, and the segment of the nodal basis function
over which it is defined. BFunSegment also keeps
track of its parent nodal basis function. The class Node
represents a nodal basis function. It consists of a

N5

Figure 2: Flattened representation of refinement.

k5

Figure 3: Basic derefinement about node k .

initial

flattened derefined

Nk

Nk-1

k

k

k -1

k-2

k+1 k+2

N k

k

Figure 4: Modified flattened derefinement about
node k .

 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

100 x5-300 x4+325 x3-150 x2+25 x

Figure 6: Function to be interpolated using finite
elements.

collection of BfunSegments , its number in the
refinement level, and the position of its peak. Finally,
the class Level consists of the set of nodal basis
functions for the entire level. This information is
summarized in Figure 5.

The algorithms used for refinement, derefinement, and
flattening the mesh are all relatively straightforward.
Graphical representations of these processes can be seen
in Section 3 of this paper. The basic operation of our
implementation is to refine or derefine at a single nodal
basis function then flatten the initial mesh and refined
mesh.
Pseudo-code versions of these algorithms follow:
Refine Nodal Basis Function Nr:

§ deactivate Node Nr
§ create new Level with Cell size half that of the

previous Level. Increment refinement of nodes on
new Level. Activate Nodes k r-1 to kr+1 on new
Level.

Derefine Nodal Basis Function Nr:

§ deactivate Nr, Nr-1, and Nr+1
§ create a new Level of only two Cells , from k r-2 to k

and from k to kr+2
§ remove Nodes k r-1 and kr+1 on the initial Level
§ move termination of Nr-2 and Nr+2 to Node k r

Flatten Mesh and Reorder Basis Functions
§ collect set of Nodes from initial and refinement

Level, sort them by position of Node maximum,
and create the new flattened Level with this set of
Nodes

6 Refinement Example

The following example demonstrates how our
refinement technique and computer implementation
work. Our implementation used the Galerkin weighted
residual method to compute the approximate solution to
the differential equation 0=+′′ fu with the boundary

conditions gu =)1(and hu =′−)0(over the interval
[0,1] using the refined mesh of nodal basis functions.
A polynomial f is used in this example. The known
u is being used to derive g, h, and f. For this example,

xxxxxu 25150325300100 2345 +−+−= ,

and working backwards, we find

0)1(== gu and ,25)0(−==′− hu and

.300195036002000 23 +−+−= xxxf

Graphing u over the interval [0,1] yields Figure 6.

Applying the Galerkin method to this problem with 10
uniform cells and the g, h, and f from above yields the
following graphs: Figure 7a shows the initial uniform
mesh of nodal basis functions. Applying the Galerkin
method results in a set of weighting factors for each of
the basis functions, and figure 7b shows the weightings
applied to the basis functions. Finally, the contributions
of all the basis functions are added together over each
cell, and the resulting piece-wise function is the
Galerkin solution to the differential equation (Figure
7c). To improve this approximation, refine about nodes
that correspond to areas of rapid change. The refined
mesh and solution are shown in Figure 8.c

Figure 7a: Unweighted uniform mesh.

Figure 7b: Weighted basis functions.

Figure 7c: Galerkin solution.

 5

Note that this refined mesh in Figure 8 is non-uniform,
yet with conforming. This results from the fact that
refined meshes constructed using our hierarchical

refinement procedure are consistent by design, and yet
can produce highly non-uniform meshes. The second
refinement level of the mesh (Figure 8b) contains
elements that are one-fourth the size of the initial mesh.

7 Examples in two and three dimensions

with
It is very important to realize that the only assumption
as to the properties of the basis was the refinability
(refinement) equation (1). Otherwise the basis is
arbitrary (i.e. in addition to continuity as dictated by the
Galerkin form). In particular, the basis may be
constructed over the real line, over two-, three- or even
higher dimensional domains. Also the order is arbitrary:
linear, qudratic, cubic, Lagrange or Hermite, polynomial
or non-polynomial. This genericity is very powerful as

will be also shown on some examples in this section.
See also discussion in References [KGS and GKS
(2002)], which includes simulations on subdivision
surfaces.

The first example demonstrates the refinement of the
approximation spaces constructed on mesh of six-node
(quadratic) triangles in a square domain. The dipole
equation function is shown in the contours displayed
on the computational meshes in Figure 9. Note that
there are no hanging nodes, i.e the basis is naturally
conforming, even though the picture might suggest
otherwise. The triangles shown in Figure 9 are the
integration cells, and the integration cells support
basis functions of different resolutions. That is why it
appears as if the refinement was non-conforming.

The last example deals with a three-dimensional
biomechanics problem. Figure 10 shows the solution
to a point source Poisson equation solved on the
tetrahedral mesh of the human brain, which is the
setup commonly encountered in inverse EEG. Four
mesh refinements have been applied. The refinement
of approximations on tetrahedral meshes is described
in detail in Reference [EK (2002)]. The natural

hierarchical refinement described in this paper is
applicable without change. However, for this particular
finite element shape the issue is to ensure that the
tetrahedral cells resulting from purely geometrical
division of the original mesh cells be of guaranteed
bounded shape quality measure. The approach described
in [EK (2002)] attains this property through the use of
the so-called Kuhn octasection with careful alternation
of the division stencil between refinement levels.

Figure 8c: Refined Galerkin solution.

Figure 8b: Refined mesh with weighted basis
functions.

Figure 8a: Unweighted flattened two-level mesh.

Figure 10: Galerkin solution for a point-source
forcing for the Poisson equation in the human
brain. Mesh of 4-node tetrahedra.

Figure 9: Galerkin solution of a dipole equation in
a square domain. Mesh of 6-node quadratic
triangles. Left to right: initial, and two refined
meshes.

 6

8 Conclusions

The hierarchical refinement method described in
this paper has several major advantages. The
refined meshes created using this method are
compatible by construction and therefore do not
require any complicated algorithms designed to
ensure compatibility of the refined mesh.
Although this paper presents the details of a one-
dimensional case, this process is easily extensible
to higher-dimensional (two, three, and more)
domains [KGS (2002)]. Note that the theoretical
outline given in Section 3 at no place invokes the
dimension of the domain supporting the function
space V—this is because the refinement technique
is not dimension-specific. The refinement equation
applies equally well to higher-dimensional spaces
as it does to the one-dimensional case treated in
this paper. Therefore, one of the major
advantages of out technique is its easy extensibility
to higher dimensions without imposing added
complications to the refinement algorithm.
Additionally, because this refinement scheme is
based on a fixed-subdivision stencil, elements on
higher refinement levels do not become ill-shaped
(this applies also to higher-dimensional spaces, and
to approximations on tetrahedral meshes, which are
notoriously difficult to refine) [EK (2002)]. The
proposed approach is exceedingly simple, and does
not invoke any special tricks to produce
conforming approximations. The implementations
may be correspondingly simple and robust, an
appealing contrast to existing techniques.

Acknowledgements: Support for this research by
NSF/Darpa (DMS-9874082) and the Hellman
Foundation Fellowship (2001) is gratefully
acknowledged.

References:

[BDY (1998)] Bank, R.E., Dupont, T., Yserentant, H.
(1998): The Hierarchical Basis Multigrid Method.
Numer. Math. 52, 427-458.
[BES (2001)] Besset, D.H. (2001): Object-Oriented
Implementation of Numerical Methods: an Introduction
with Java and Smalltalk . New York: Academic Press.
[BKS (1998)] Bottasso, C. L., Klass, O.; Shepard,
M.S. (1998): Data Structures and Mesh Modification
Tools for Unstructured Adaptive Techniques.
Engineering with Computers. 14, 235-247.

[EK (2002)] Endres, L; Krysl, P. (2002): Refinement
of Tetrahedral Meshes with Guaranteed Quality,
submitted.

[HUG (1987)] Hughes, T.J.R. (1987): The Finite
Element Method: Linear Static and Dynamic Finite
Element Analysis. Englewood Cliffs, NJ: Prentice Hall.

[GKS (2002)] Grinspun, E, P. Krysl, and P. Schröder
(2002): CHARMS: A Simple Framework for Adaptive
Simulation. Proceedings of SIGGRAPH 2002, and ACM
Transactions on Graphics, to appear.
[KGS (2002)] Krysl, P., Grinspun, E., Schröder, P.
(2002): Natural Hierarchical Refinement of Finite
Element Meshes, to appear, Int. J. Numerical Methods
of Engineering.
[LH (2001)] Lee, E. A.; Hylands, C. (2001): Ptolemy
II.
http://ptolemy.eecs.berkeley.edu/java/ptplot5.1p1/ptole
my/plot/doc/index.htm

[YSE (1992)] Yserentant, H. (1992): Hierarchical
Bases. “ICIAM 91” (O’Malley, R.E., ed.), SIAM,
Philadelphia.

[YSE (1986)] Yserentant, H. (1986): On the Multi-
Level Splitting of Finite Element Spaces. Numer. Math.
49,379-412

