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We present a library for the computation of the shape functions for the
element free Galerkin (EFG) method. While the EFG method is in many
respects strikingly similar to the finite element method, the construction
of the shape functions for the EFG method is much more complicated
than in the FEM. Thus, the question arises whether it is possible to
encapsulate the complexity of the shape function construction process,
while providing a simple interface to the shape function data.
We present a shape function library design which proved unrestrictive (it
can be used with almost any programming language without any spe-
cial requirements on application program data structures), highly config-
urable, and robust.

Introduction

The element free Galerkin method (EFG) is a relatively recent approach. It
was proposed by Belytschko et al. [1] as a consistent and improved version of
the diffuse element method as introduced by Nayroles et al. [2]. It has been
since applied to problems in static and dynamic fracture mechanics [3–5],
modeling of material interfaces [6], large-strain inelastic deformations [7], thin
plates and shells [8,9], and transient coupled problems [10]. The connections
of the EFG method to the reproducing kernel particle methods [11], to hp-
clouds [12] and to the most general method, partition of unity [13,14], have
been described; see the review by Belytschko et al. [15].

The EFG method has been recently explored from the point of view of essen-
tial boundary conditions enforcement [16–18], techniques for speeding up the
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shape function evaluation [19], approximations in non-convex domains [20,21],
and convergence rates [22,21].

The EFG is classified as a meshless method. The reason for this rests on its
flexibility in the shape function construction. Let us compare the differences
between the finite element method (FEM), and the EFG method (EFGM) in
rather general terms.

In the FEM, one constructs a subdivision of the domain into non-overlapping
finite elements, and then defines the support of a shape function associated
with a node as a union of those finite elements which reference the node.
Thus, the supports of the FE shape functions overlap exactly in a single finite
element. To guarantee the required smoothness of the shape functions across
inter-element boundaries, special consideration must be given to the form of
the shape functions and to the topology of the mesh.

To summarize, in order to evaluate the FE shape functions one needs to

(i) construct the mesh topology (difficult and expensive, in general, since
there are many constraints on the mesh topology and shape; also, this
step is usually done off-line, by separate programs, mesh generators), and

(ii) compute the element-based expressions (easy and inexpensive, because
the restrictions of the shape functions to an element are of simple, usually
polynomial, form).

The EFG method is very different in this respect. To construct the shape
functions, one uses the moving least squares technique [23], in which the in-
fluence of a node emanates from a weight function defined on an arbitrary
compact subset of the domain. Since the shape functions can be constructed
with arbitrary continuity, the boundaries of the node supports do not affect
deleteriously the smoothness of the shape function; the smoothness of the
shape function is given by the smoothness of the weight function and of the
so-called basis functions, and both can easily be constructed in C∞.

The arbitrary overlaps of the nodal supports lead to a variable connectivity:
the number of nodes affecting the approximation varies from point to point
arbitrarily, and is usually higher than for the FEM. Furthermore, the shape
functions are determined from a least-squares problem, and they are non-
polynomial. Therefore, we see that

(i) the topology is easily computed (although it needs to be done at run-
time), and

(ii) the shape function expressions are complicated and expensive to evaluate.

The two methods can be thus seen to have very different implementation re-
quirements. On the other hand, when one looks at the formulation of the
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problem being solved, e.g, data fitting, boundary value problem etc, the for-
mulas are equivalent. Thus, the question arises: Is it possible to provide an
equally simple shape function interface in EFG programs as in FE programs?
When comparing the above diametrically opposed requirements, the answer
would seem to be no, or at least ‘not easily’. However, as we intend to show,
there is a straighforward way to program the EFG shape function construction
in a way which leads to both a simple interface to the application code, and
to the implementation of the EFG shape function itself. This goal is achieved
by providing an abstract form of the EFG shape function construction algo-
rithm. This form specifies neither how certain operations are to be carried
out, nor the data structures to be used. Instead, it leaves these details to be
unspecified in the form of a protocol. The abstract algorithm is made concrete
and executable by the application programmer, who provides code complying
with the protocol.

The outline of the paper is as follows: In Section 1, we briefly review the
equations of the EFG shape function construction, to make the paper self-
contained. Section 2 discusses the motivation for the design drawing argu-
ments from the similarity of the FEM and the EFGM, and concludes with
an exposition of the design goals. The next two sections, Section 3 and 4,
discuss two important concepts, renaming and callbacks. The next section,
Section 5, introduces the concept of a callback, and describes both the shape
function interface, and the programming of the callbacks, on a simple example.
Section 6 refines the running example by introducing the blending (coupling)
technique to modify the EFG shape functions to satisfy certain constraints,
such as interpolation at some points. Section 7 discusses the construction of
shape functions for non-convex domains, such as cracked bodies. Performance
and how to improve it are discussed in Section 8.

The issues of error handling are crucial to the robustness of any software.
They are discussed briefly in Section 9. To make the software useful to a wide
audience, it needs to be well documented. While this is widely recognized, pro-
grammers rarely find time or the will to provide an adequate documentation.
We describe a way to make this task more or less automatic in Section 10.

1 Construction of the EFG shape functions

To construct the EFG shape functions we can proceed by invoking the basic
idea of the moving least squares technique, or by modifying the weight func-
tions to satisfy consistency conditions. The latter approach seems to be more
instructive, so we adopt it here.

We wish to construct the approximation to a function u(x) in Ω such that it
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can be written as a linear combination of the shape functions φI , i.e.,

u(x) ≈ uh(x) =
∑
I

φI(x)uI , (1)

where uI are some coefficients (nodal unknowns) to be determined from the
criteria defining the quality of the approximation. Note in particular that the
nodal coefficients are not necessarily the values of the function u at the nodes,
u(xI) 6= uI .

We assume that the approximation is to be constructed in a domain Ω em-
bedded in Rn, where n = 1, 2, 3. Each node I can affect the approximation
within its domain of influence, BI , which can be conveniently defined as such
a subset of Rn where a weight function wI(x) is non-zero (in fact, positive),
i.e.,

BI = {x ∈ Rn : wI(x) = w(x,xI) > 0} . (2)

Weight function. The weight function has a compact support, which en-
sures sparsity of the global matrices. The weight functions that are commonly
used are listed below. They differ in both the shape of the domain of influence
(parallelepiped centered at the node for tensor-product weights, or sphere),
and in functional form (polynomials of varying degrees, or non-polynomial
such as the truncated Gaussian weight).

– quadratic tensor-product weight function

w(xI ,x) = W

(
x− xI
dmxI

)
W

(
y − yI
dmyI

)
W

(
z − zI
dmzI

)
(3)

where the component function W is defined as

W (s) =

(1− s2) for 1 > s ≥ 0,

0 for s ≥ 1.
(4)

– composite quadratic tensor-product weight function

w(xI ,x) = W

(
x− xI
dmxI

)
W

(
y − yI
dmyI

)
W

(
z − zI
dmzI

)
(5)

where the component function W is defined as

W (s) =


(1− 2s2) for 1/2 > s ≥ 0,

2(1− s)2 for 1 > s ≥ 1/2.

0 for s ≥ 1.

(6)
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– quadratic spherical weight function

w(xI ,x) = w(r) =

(1− r2) for 1 > r ≥ 0,

0 for r ≥ 1.
(7)

– composite quadratic spherical weight function

w(xI ,x) = w(r) =


(1− 2r2) for 1/2 > r ≥ 0,

2(1− r)2 for 1 > r ≥ 1/2.

0 for r ≥ 1.

(8)

– quartic spherical weight function

w(xI ,x) = w(r) =

(1− 6r2 + 8r3 − 3r4) for 1 > r ≥ 0,

0 for r ≥ 1.
(9)

– truncated Gaussian spherical weight function

w(xI ,x) = w(r) =
exp(β2r2)− exp(β2)

1− exp(β2)
(10)

In the above expressions, r = ||xI − x||/dmI , with dmI being the radius of
a spherical support, and dmxI , dmyI , and dmzI are the half the length of the
support parallelepiped sides for the tensor product weights. The parameter β
affects the shape of the weight function bell, and is usually adopted as β = 4.

Construction from reproducibility conditions. The convergence of ap-
proximation techniques often rests on local approximation properties of poly-
nomials. Therefore, it is often required that the shape function should be able
to reproduce exactly polynomials of a certain order (so-called “consistency
conditions”). For example, in applications to second order partial differential
equations, the shape functions are required to be of linear precision, which
means that they should be able to reproduce exactly a constant and a linear
polynomial. This requirement is also linked to the classical and generalized
patch test. See Strang and Fix [24] for a thorough discussion of the classical
patch test; Stummel [25] introduced the generalized form of the patch test.

The linear consistency conditions can be written as

uh(x) = u(x) = a+ bTx . (11)

Collecting the terms corresponding to the different powers and simplifying, we
arrive at the following form of the consistency conditions∑

I

φI(x) 0uI = 1 , and
∑
I

φI(x) 1uI = x , (12)
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where 0uI and 1uI are some parameters which make it possible for (12) to hold.
The conditions (12) can be made more useful by requiring that the approxi-
mation (1) should interpolate the function u when it is a linear polynomial or
a constant. Thus, Equation (12) boils down to∑

I

φI(x) = 1 , and
∑
I

φI(x) xI = x . (13)

In general, we should not pick an arbitrary weight function to act as a shape
function; the consistency conditions (13) would not be satisfied.

Following [15,26] we will seek the shape function as a “corrected” weight func-
tion, i.e., we multiply the weight function by a correction function CI(x),
which will be designed so that the resulting shape function satisfies (13)

φI(x) = CI(x)wI(x) , (14)

The correction function CI will be sought in the form

CI(x) = a(x)Tg(xI) , (15)

where g(x) is a column matrix of m linearly independent functions (m ≥ 4
for 3D domains), and a is a column matrix of m coefficients. The functions
gi should include the linear polynomial and a constant. In addition, they may
include also some other (possibly non-polynomial) functions, such as near-
field crack tip solutions[27]. Since we need to determine m coefficients ai to
compute the correction function, we complete the linear consistency conditions
by a requirement that all functions gi should be reproduced exactly by their
EFG approximations ∑

I

φI(x)g(xI) = g(x) . (16)

Substituting (14) and (15) into (16) gives

∑
I

wI(x)
[
g(xI)g

T (xI)
]
a(x) = g(x) . (17)

Equation (17) can be cast in a form identical with that arrived at by the
moving least squares technique (compare, for example, with [15]), i.e.,∑

I

∑
j

wI(x)gi(xI)gj(xI)aj(x) = gi(x) , (18)

or

A(x)a(x) = g(x) . (19)
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where A is given by

Aij =
∑
I

wI(x)gi(xI)gj(xI) . (20)

The matrix A is symmetric. Under certain conditions it is expected to be
positive-definite (more on this below), and is often called the moment matrix.
The matrix A is usually factorized by the pivoting LU, QR factorization or
singular value decomposition (the latter two are indicated for ill-conditioned
matrices). In the software described in this article, we use the solvers imple-
mented in the linear algebra package Meschach by D. Stewart and Z. Leyk [28].

Shape function derivatives. The derivatives of the shape functions are
calculated by an approach described in Reference [19] which speeds up the
computations. The required equations are obtained by differentiating (14) and
by noting that the differentiation of (19) yields

A,ia+Aa,i = g,i , (21)

where g,i denotes ∂g/∂xi. Thus we can obtain the derivatives of a,i by solving

Aa,i = g,i −A,ia . (22)

For this purpose the factorization of A computed when solving (19) can be
reused, so the computation of the derivatives involves little extra effort.

Accuracy checks. The moment matrix may be ill-conditioned when (i)
the basis functions gj are (almost) linearly dependent, or (ii) there are not
enough nodal supports overlapping at the given point, or (iii) the nodes whose
supports overlap at the point are arranged in a special pattern, such as a
conic section for a complete quadratic polynomial basis gj. Provided enough
supports overlap at a point and the basis functions are reasonably independent,
the matrix A can be factorized with sufficient accuracy. However, a robust
algorithm should always check the precision of the solutions ofA, and the final
precision of the shape function values. There are two checks possible. The first
one is indirect: one can estimate the condition number of the matrixA, using
one of the many techniques for doing this, which vary both in reliability and
in cost. The second one is direct, and checks the final accuracy of the shape
functions by invoking the first of the consistency conditions (13),∑

I

φI(x) = 1 . (23)

Differentiating this equation with respect to the independent variable, we can
check also the accuracy of the computed shape function derivatives by checking
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that ∑
I

φI,i(x) = 0 , for i = x, y, z . (24)

Time dependency of the shape functions. Let us consider the following
problem of large deformation of solids. The deformation is described by the
mapping x = χ(X, t), where X is the material point (particle marker), x is
the position material point X in the deformed configuration, t is the time, and
χ is the deformation. If the deformation is described in the total Lagrangian
setting, i.e. if the boundaries of the node supports are curves deforming with
the material, the shape functions are not dependent on time. Therefore, for
example the approximations of the displacement and of the velocity are linked
through

u(X , t) =
∑
I

φI(X)uI(t) , and

v(X, t) =
∑
I

φI(X)vI(t)

=
∑
I

φI(X)u̇I(t) .

(25)

Let us note in this context that the FE shape functions are always expressed
as being inscribed in the material (they are defined on the elements, which
deform with the material), and are therefore time-independent.

Let us now consider what happens when the EFG node supports are inscribed
in their given shape in the deformed state of the material (e.g, spheres on the
deformed configuration). The material time derivatives then should take into
account also the time-dependence of the shape functions. The shape func-
tions may not depend on time directly, but only through the time-varying
connectivity, i.e., through the positions of the nodes XM in the deformed
configuration. For example, let us consider the case where the shape functions
are expressed in terms of the positions of the nodes in the deformed configura-
tion, φI(χ(X),χ(XM). The velocity would then be linked to the displacement
through a much more complicated expression

v(X, t) =
∂

∂ t

∑
I

φI(χ(X),χ(XM))uI(t)

=
∑
I

[
∂ φI(χ(X),χ(XM))

∂ χ(X)

∂χ(X)

∂ t

+
∑
M

∂ φI(χ(X),χ(XM))

∂χ(XM)

∂χ(XM)

∂ t

]
uI(t)

+
∑
I

φI(χ(X),χ(XM)) u̇I(t)

(26)
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These expressions are truly a nightmare to program, and their implementa-
tion may be excessively expensive. Neglecting the term in the square brackets
in (26) might help, but its effects are not yet fully explored.

The time-independence of the shape functions in the total Lagrangian formula-
tion seems to be a good reason for using the EFG with this setting. Therefore,
the dependence of the shape functions on time is not handled by the software
presented here.

2 Design considerations

Comparison of the EFG and FE methods. As shown by Babuška and
Melenk [14], both the finite element method and the element free Galerkin
method can be viewed as specializations of the partition of unity method.
Once an algorithm is described in a discrete form, the difference between
using the EFG method or the FE method in the formulas shows only in the
properties of the shape functions. Compare, for instance, the way a function
may be approximated by an interpolation. In the FE method, we write

uh(x) =
∑
I

NI(x)uI , (27)

where the nodal parameters uI are simply the values of the approximated
function at the nodes, uI = u(xI) due to the interpolating properties of the
FEM, NI(xM) = δIM .

In complete analogy, the approximate function is written using an EFG ap-
proximation scheme as

uh(x) =
∑
I

φI(x)uI , (28)

where the only difference with respect to (27) is the replacement of the finite
element shape function NI by the EFG shape function φI . Since here we do
not have the Kronecker delta property, φI(xM) 6= δIM , we seek the nodal
parameters uI by setting up the interpolation conditions at the nodes

uh(xM) = u(xM) =
∑
I

φI(xM)uI , (29)

and the (sparse) system of linear equations (29) needs to be solved for the
unknown uI ’s. Plugging the obtained coefficients uI into (28) we can evaluate
the approximation at any point.

Comparing (27) and (28), one can see a complete formal analogy. The differ-
ence lies in the evaluation of the values of the shape functions at the given
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point. Let us look at how it is done for the FEM. For the sake of concrete-
ness, consider an 8-noded hexahedral finite element. The routine to evaluate
the shape functions, together with their derivatives at a given point x̂ (corre-
sponding to the parametric coordinates ξ, η, θ) can be called like this

hex_shape_f (n, n_x, n_y, n_z,

xi, eta, theta, x1, y1, z1, x2, ..., z8);

The output parameter n (n_x, n_y, n_z) is the array of eight shape function
values (values of derivatives with respect to the spatial coordinates) evaluated
at ξ, η, θ. The input parameters xi, eta, theta are the parametric coordinates
of the point x̂, and x1, . . . , z8 are the spatial coordinates of the nodes.

One can see that the interface between the shape function routine
hex_shape_f () and the application program is very simple. It requires a
small number of input parameters and no tuning of its operations.

On the other hand, the EFG shape function routine can be expected to require
not only the similar arguments as the finite element routine, but also a large
number of other parameters: shapes and sizes of domains of influence of the
nodes, types of the weight functions for each node, data describing the basis
functions gi, etc. Also, the EFG shape function routine can fail, in contrast
to its finite element counterpart; consider just the case of a (near) singular
moment matrix, when there is no solution of (19). Therefore, the EFG shape
function routine and its interface with the application program may turn out
to be much more complex than its FE counterpart, when designed in a tradi-
tional, structured programming manner.

Design considerations. In the following, the acronym ESFLIB (Element
free Galerkin Shape Function LIBrary) denotes both the concept of an ab-
stract algorithm being encapsulated in a library (in the sense of a repository
of software), and the actual code in the form of a library archive.

ESFLIB was designed with several objectives in view:

Flexibility: In order to satisfy varying demands posed by different applica-
tion programs, the ESFLIB must be very flexible in terms of configurability
(different weight functions, basis functions, etc.). We also wish to allow the
application software to design and implement its data structures indepen-
dently of the ESFLIB. This is especially important with respect to the use
of the ESFLIB in mixed language environments using a mix of procedural
(C, Fortran 77 and Fortran 90), and object-oriented languages.

Robustness: The software should be robust both in terms of implementation
(robust linear algebra routines, sufficient number of checks), and in terms
of resilience to misuse by the application programmer.
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Maintainability: The software should be easily maintanable, especially with
respect to its use in different space dimensions (1, 2, and 3), and in many
different configurations with different implementation requirements.

Performance: The ESFLIB should provide acceptable performance in the
worst case, and it should allow for transparent optimized implementations
for some special needs. As an example of this, we can mention parallel eval-
uation of the shape functions values at several points on multi-threaded
machines.

Readability: We wish to enhance the readability of the application programs,
and to allow for better structuring. We also strive to make the ESFLIB self
documented, with appropriate manuals generated from the source without
human intervention.

It is our belief that the technology of a library module caters well to all of the
above requirements. The software-engineering issues related to the subject of
libraries are discussed to considerable depth for example by Plauger [29].

Terminology. In what follows, we use some abbreviations and acronyms to
avoid repeating lengthy names.

ESFLIB EFG shape function library. Here we use the term “library” in its
generic meaning denoting simply a repository of software.

SFLT Shape function library template. The template is a prescription for
the creation of a type in the sense that template is an incomplete type,
with some specifications intentionally left blank. The unresolved specifica-
tions can be viewed as variables of the type, and be substituted for at an
appropriate time to create the fully specified types. In our case, the un-
resolved specifications are related to the number of space dimensions, to
the calling conventions specific to the caller’s language environment, and to
some other issues of tuning, checking etc.

SFLA Shape function library archive. This is the full type specification,
which is obtained from the template, SFLT, by preprocessing and compila-
tion.

SFLI The concrete instance of the type as specified by SFLA. It is a run-
time entity, created and initialized by calling an initialization routine from
the library.

TSFV Table of values of the shape functions and of its derivatives. This is
a useful abstraction; the term does not necessarily reflect the actual storage
of data. The TSFV is valid at a particular point x̂ at which it was evaluated.
There is a row in the table for each node whose support overlaps x̂. A jth

row of the table stores:
(i) The identifier of the node, Ij; this can be a pointer, or an integer index,

or any other suitable key.
(ii) The value of the shape function for the node Ij, φIj(x̂).
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(iii) The value of the first derivatives of the shape function for each spatial
dimension, φIj ,x(x̂) for 1D, φIj,x(x̂), φIj ,y(x̂) for 2D, and φIj ,x(x̂), φIj ,y(x̂),
φIj ,z(x̂) for 3D.

(iv) In some cases not only the first derivatives are needed, but also the sec-
ond derivatives of the shape functions. Then the SFLA’s are generated
with provisions for the second derivatives, which are stored for each
combination of spatial dimensions (taking into account the symmetry
of differentiation) φIj,xx(x̂) for 1D, . . .

SFLA generation. The ESFLIB source is written and maintained in the
form corresponding to an SFLT, i.e., it describes the algorithm in a general,
parameterized form, which leaves certain decisions, such as the number of
space dimensions, inclusion of certain features, open. The rewriting capability
of the C-language preprocessor is applied to the SFLT source to remove and
adjust all parametric features during the first phase of the compilation, when
the SFLT is converted to the SFLA source. The SFLA source is then compiled
and collected into a library archive.

An application program may link in a single SFLA for each space dimension.
However, the source of the SFLT names all variables and functions in a generic
way. Some of the variables are private to the compiled modules; those do not
need to be renamed, since the linker is able to distinguish between private and
public symbols. On the other hand, the names SFLT source uses for public
functions need to be changed (mangled) so that different SFLA’s use different
names. Otherwise the linker would run into a name clash (two or more public
symbols with the same name), and the linking phase would fail.

Finally, during the processing of the SFLA source, the documentation is au-
tomatically generated, so that it reflects the appearance of the code the ap-
plication programmer needs to use.

Instantiation of a SFLI. While the SFLA as a type is a persistent entity,
the SFLI as the instantiation of the SFLA is a run-time object. The technique
of instantiation of a model (type) is well known from the object-oriented (OO)
literature. The instances maintain different state data, are configured to work
slightly differently, but are still subject to the same protocol. The observance
of the protocol guarantees that the software does what it is supposed to.

The application program can create just a single SFLI from a given SFLA, or
it can create more. Consider, for example, an implementation of the Petrov-
Galerkin method, where there is a need to work with two different sets of shape
functions in the test and trial spaces. Thus, a Petrov-Galerkin program with
1D, 2D and 3D capabilities would need three SFLA’s (for each dimension),
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and six SFLI’s (two for each SFLA; one for trial and one for test functions).
Alternatively, one could use only three SFLI’s, and reconfigure them when
the context is switched between test and trial space shape functions. The for-
mer solution is, of course, preferable from the maintainability and readability
viewpoint.

State data. The notion of an SFLI rests on the notion of an object (in
the sense commonly used in the OO literature). The object consists of some
state data, it complies with some interface specifications, and responds to
requests sent to it. How these requests are satisfied is immaterial as long as the
results are consistent with the specification of the interfaces. The evaluation of
the TSFV requires a considerable amount of state data – linear algebra data
structures, configuration parameters, etc. The state data should be private
to each SFLI, otherwise one could compromise parallelization, as discussed
below.

Implementation language. We could have used an object-oriented lan-
guage, such as C++. However, designing the ESFLIB around some classes,
which the application would then be required to use in order to be able to
work with the ESFLIB, is overly restrictive. It would force the programmer
to program in an object-oriented language, and to structure the application
program to suit the ESFLIB. What we wanted was the exact opposite.

Writing the ESFLIB in Fortran 90 was also out of the question, since the
instantiation in the form envisioned above is awkward in this language, if not
impossible.

If we do not consider some obscure and rarely used languages, the choice is
restricted essentially to Ada, Eiffel, and the C language. Practical considera-
tions (availability, inter-language mixing) and convenience led us to adopt C
as our implementation language.

3 Renaming scheme and space dimensions

As indicated previously, the source of the ESFLIB corresponds to the template
form, the SFLT. Here we discuss the scheme which we use to cope with the
conversion of the SFLT into separate SFLA’s.

To rename some symbols (types of variables, function prototypes) we use the
C-preprocessor capability to expand code. Thus we define
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#define GLUE(A, B) A##B

#define GL(A, B) GLUE(A, B)

#define ESFLIBID(ID) GL(GL(GL(ESFL,ESFLIB_SPACE_DIM),_),ID)

The above macros embelish the identifier ID by prefixing it with the string
ESFLn_, where n is the space dimension (1, 2, or 3). Thus, the given the
following macro definition,

#define ESFLIB_weight_func ESFLIBID(weight_func)

all occurrences of the string ESFLIB_weight_func are replaced in the
source files during the compilation of, for example, the 3D library, by
ESFL3_weight_func. The compiler thus “sees” the mangled symbol name,
not the generic one, and the finished library archive defines the symbol
ESFL3_weight_func as it should.

The ESFLIB needs to describe the algorithm of computing the shape function
values by invoking different functions, whose signature, of course, is different
for the one-, two-, or three-dimensional SFLI’s. Therefore, we use to following
technique to allow for automatic adjustement of the calling sequences during
code generation. We define a series of macros for each spatial dimension

#if ESFLIB_SPACE_DIM == 2

# define REF_LIST(X, Y, Z) X, Y

...

#endif

Then, during the code generation (assuming an SFLA for two space dimensions
is generated), the function name ESFLIB_shape_func_at is transformed by
renaming into ESFL2_shape_func_at, and the code fragment

double REF_LIST(x, y, z);

REF_LIST (x = rcx - atx, y = rcy - aty, z = rcz - atz);

curr_lib->efg_node_coords (efgp, REF_LIST (&x, &y, &z));

is transformed by adjustment to the number of space dimensions into

double x, y;

x = rcx - atx, y = rcy - aty;

curr_lib->efg_node_coords (efgp, &x, &y);

Therefore, the compiler can perform the full range of compile-time type check-
ing. Since the code generation produces also header files for the different space
dimensions, the compiler can also check the application code for type consis-
tency.
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4 Callbacks

The SFLI can obtain the input data needed to compute the shape function
table at a given point in several (at least two) ways.

– The first approach is to assemble input data outside the library and pass
the information as argument lists at each invocation of a library routine.
Thus, one would for example search for all nodes whose supports overlap the
given point, store them in a list, compute for each of them the values of the
weight function and its derivatives, and pass them to the library routines.
However, this would be not only unwieldy and difficult to read, it would
also be very error prone and a nighmare to maintain.

– Another way, and we believe it is the better solution, is to let the library
call the application code with requests for data. This technique is well es-
tablished in the form of callbacks in one of the best known graphical user
interfaces, the X Window System, and its conceptual form is also well es-
tablished in the object-oriented programming paradigm.

Let us explain the concept of a callback on an analogy with phone numbers.
Consider the following algorithm: An agent is asked to perform certain actions
in certain circumstances, for example in case of an emergency, or if one wants
to find out about the up-to-date weather forecast. The actions consist in both
cases in making a phone call to obtain/tranmit the needed information.

emergency_phone_# =

weather_info_phone_# =

...

if (emergency)
dial emergency_phone_#

else if (need to know the weather forecast)
dial weather_info_phone_#

As can be seen, the boxes which should hold the numbers to call are empty.
That means that the requested actions cannot be performed. Now, imagine
we tell the agent which number to use to obtain help in an emergency. The
code it would execute could look like this
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emergency_phone_# = 911

weather_info_phone_# =

...

if (emergency)
dial emergency_phone_#

else if (need to know the weather forecast)
dial weather_info_phone_#

...

One could augment the above further to take an alternative action when the
phone number is not available, and to require that the algorithm cannot start
without having some particular phone number. For instance like this

emergency_phone_# = 911

weather_info_phone_# =

...

require emergency_phone_#

if (emergency)
dial emergency_phone_#

else if (need to know the weather forecast)
if (weather_info_phone_# available)

dial weather_info_phone_#

else

try to find it in newspapers
...

Note that if there follows a conversation after the dialing, it usually involves
some information exchange, in a single direction or bidirectionally.

The callbacks used by the library are direct equivalents of the phone numbers;
invocation of the callback is the equivalent of dialing, and so forth. Some
of the callbacks are optional (the algorithm can perform some alternative
computation, or simply do nothing), others are required; all of them are passed
some context data. There may be also some data computed by the callback
and passed back to the library.

One note regarding the C-language implementation. The ESFLIB callbacks
are technically handled as pointers to functions, which can be for the present
purposes thought of as “function names”. Passing, storing, or invoking a func-
tion by pointer can be done by simply referring to its name.
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5 Example of ESFLIB use

Understandably, we cannot reproduce a user’s manual and describe every func-
tion provided by the library. However, we can illustrate our design by intro-
ducing the most important concepts in action. Therefore, we describe a typical
use of the ESFLIB in a simple program for approximation of functions of a sin-
gle variable by interpolation. Later on, we also briefly discuss applications in
two or three dimensions, where an additional issue of non-convex boundaries
comes into play.

The first thing an application code should do to be able to use the ESFLIB,
is to create a SFLI. The parameters passed to the initialization function are

(i) the error handler function name, err_handler,
(ii) the data needed by the search callbacks, lobs1d, (in this example, we are

using a bounding box search library, which is not part of ESFLIB),
(iii) the callbacks for the search of nodes whose support overlaps a given point

(find_overlaps), and for iteration through the nodes found (first and
next),

(iv) the callback to obtain the node location, node_loc,
(v) then we pass two NULL’s to indicate that we want a polynomial basis, and

that an inlined, optimized code, should be used,
(vi) the next parameter (2) is the number of the basis terms (complete linear

polynomial, 1 and x; thus two terms),
(vii) the names of the functions to compute the value and the derivative of

the weight, ESFL1_gh_w and ESFL1_gh_D1 (in this case, the functions
are bundled with the SFLI, but it is of course possible to use one’s own
functions),

(viii) the callback to obtain the support size of a node, supp_size,
(ix) and finally, we pass some NULL’s to indicate that we do not wish to con-

figure these callbacks.

esflib1 = ESFL1_init (

err_handler, /* error handler */
lobs1d, /* data for the search routine */
find_overlaps, first, next, /* search callbacks */
node_loc, /* callback to get node location */
NULL, NULL, /* use in-lined code for basis gj */
2, /* # of linear basis terms, 1 and x */
ESFL1_gh_w, ESFL1_gh_D1,

supp_size, /* callback to get support size */
NULL, NULL, NULL, 0, NULL /* do not configure */
);

The function to search for the nodes whose supports overlap a given point x
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simply calls a function from a bounding box library, and returns a boolean
outcome (successful search or a failure). The nodes found are collected in a
buffer by the library, and can be iterated over when needed as shown in what
follows.

static int

find_overlaps (ESFLIB_search_struct_t ss, double x)

{
lobs_1d_front_end_t *lobs = (lobs_1d_front_end_t *)ss;

return lobs_1d_search_for_boxes_overlapping_pt (lobs, x);

}

The two functions used to iterate the nodes found by find_overlaps() use
the search library functions for access to the found objects. The functions are
rather simple and do not need further elaboration, with the exception of the
value returned. It is either the node found, or NULL, when there is nothing to
return, i.e., when there was no node found (first), or the iteration reached
the end (next).

static ESFLIB_efg_node_id_t

first (ESFLIB_search_struct_t ss)

{
lobs_1d_front_end_t *lobs = (lobs_1d_front_end_t *)ss;

return lobs_1d_first_overlapping_object (lobs);

}

static ESFLIB_efg_node_id_t

next (ESFLIB_search_struct_t ss)

{
lobs_1d_front_end_t *lobs = (lobs_1d_front_end_t *)ss;

return lobs_1d_next_overlapping_object (lobs);

}

The next two functions provide a means for the SFLI to obtain information
about the nodes. The functions access fields in the data structure of a node.
Note that they rely on the input parameter, efgp, to be a pointer to a node.
This is quite safe, however, since the SFLI calls these callbacks passing to
them whatever first and next returned, unless they returned NULL, in which
case the functions do not get called at all.
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static void

node_loc(ESFLIB_efg_node_id_t efgp, double *x)

{
*x = ((node_t *)efgp)->x;

}

static void

supp_size (ESFLIB_efg_node_id_t efgp, double *ssize)

{
*ssize = ((node_t *)efgp)->d_m;

}

Once the SFLI has been created, one can use it to create a TSFV, sft. This
table is initially empty (no rows).

sft = ESFL1_new_shape_func (esflib1);

To evaluate the TSFV at a given point, x, we call the function
ESFL1_shape_func_at(). It is passed the TSFV, sft, and the location x.
The remaining two parameters are on this occasion unused. One could be
used when constructing the TSFV near a reentrant corner of the domain Ω
(which does not make sense in the current, one-dimensional, setting), and the
other would indicate data used when blending the EFG shape functions with
another basis.

ESFL1_shape_func_at (sft, x, NULL, NULL);

Once the TSFV has been constructed, one can access any information in it,
and use it in the application program. One comment is in order here: both
the library type and the TSFV type are opaque to the application writer, i.e.,
the application cannot access any information from the private data of these
types directly; the access functions provided by ESFLIB are the only way. This
measure promotes maintainability, enhances robustness, and its run-time cost
is rarely significant.

To compute the approximation at the point x̂, uh(x̂), we need to evaluate the
sum

∑
I φI(x̂)uI . One way to do this is by looping over the number of rows in

the TSFV sft, retrieving from them the identifier of the node I (a pointer, in
this case), and the value of the shape function φI .
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u_h = 0;

nn = ESFL1_num_of_entries (sft);

for (I = 0; I < nn; I++) {
an = ESFL1_efg_node_at (sft, I);

ESFL1_inspect_at (sft, ESFLIB_ORDER_0, ESFLIB_X, I, &phi_I);

u_h = u_h + phi_I * an->u_I;

}

While this approach is quite straighforward, there is a much more elegant
and readable way. One can use the library function ESFL1_f_eval(), which
is passed the TSFV, sft, the name of the callback to access the nodal
value associated with a particular node from the TSFV, the function order
(ESFLIB_ORDER_0 means function value itself, ESFLIB_ORDER_1 would mean
the first derivative). The result of the sum is returned in the variable u_h.

ESFL1_f_eval (sft, get_u_I, ESFLIB_ORDER_0, ESFLIB_X, &u_h);

The callback get_u_I () is very simple. It just returns the value of the nodal
parameter stored in the node data structure.

static double

get_u_I (ESFLIB_efg_node_id_t efgp)

{
return ((node_t *)efgp)->u_I;

}

This way is clearly preferable to the explicit looping in the application pro-
gram. While we might not save on the total of lines coded, we make the flow
of the algorithm more explicit, and consequently the program becomes more
readable.

6 Blending

The EFG shape functions do not produce interpolations, but rather approxi-
mations. This property complicates the imposition of the essential boundary
conditions. Therefore, a blending technique was proposed by Belytschko et al.
[16] and by Krongauz and Belytschko[17] to couple finite element and EFG
trial spaces. It was also applied by Fleming et al. [27] to blend together asymp-
totic crack tip fields with a regular EFG approximation. It is a very general
technique, which allows essentially any set of basis functions to be blended with
another set over arbitrarily shaped transition regions. The blending function
is also sometimes called a ramp, because it is 0 on one side of the transition
region, and 1 on the opposite, varying monotonously in between.
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ESFLIB allows for construction of EFG shape functions in the transition re-
gions. Since the most useful applications of blending so far have been in cou-
pling finite element type functions with EFG approximations, we describe here
how to implement the callbacks which allow us to make the EFG approxima-
tion computed by the sample program to interpolate at the end nodes.

The transition region (cell) is defined as the span between the end-point nodes
(e), and their interior neighbors (i). The finite element produces interpola-
tions, and it is therefore natural to establish a linear FE basis in the transition
cell using the two nodes, e and i, and enforce the interpolation conditions at
the end nodes by the blending. Note that in order to blend two sets of shape
functions and still preserve their precision both sets need to be complete over
the transition region. That is why the nodes in the transition cell are associ-
ated both with the EFG approximation and with the linear basis.

First we define the transition region (cell) data package type. This package is
used to transfer data to the callbacks described next, and it is passed to the
library when evaluating a shape function.

typedef struct blend_cell_data_t {
node_t *end;

node_t *interior;

} blend_cell_data_t;

The transition cell package stores the pointers to the two nodes of the cell.

We assign the two transition cell nodes the numbers 0 (the end node) and 1
(the interior node). The blend_cell_node_num callback returns a local num-
ber of an EFG node, i.e. 0 for the end node, and 1 for the interior node, and
it returns -1 to indicate that the node on input is not one of the cell nodes.
This numbering is used by the ESFLIB routines to keep track of which node
is associated with a transition region node shape function of the linear type.

static int

blend_cell_node_num (ESFLIB_generic_ptr_t if_data,

ESFLIB_efg_node_id_t efgn)

{
blend_cell_data_t *

tcell = (blend_cell_data_t *) if_data;

node_t *n = (node_t *)efgn;

if (n == tcell->end) return 0; /* end node */
else if (n == tcell->interior) return 1; /* interior node */
else return -1; /* it is neither */

}

The procedure linear_shape_f computes the shape function and its deriva-
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tive for a transition cell node.

static void

linear_shape_f (ESFLIB_generic_ptr_t if_data, int node_num,

double *n, double *nx, double x)

{
blend_cell_data_t *

tcell = (blend_cell_data_t *) if_data;

node_t *i = tcell->interior, *e = tcell->end;

double L = (i->x - e->x);

if (node_num == 0) {
*n = (i->x - x) / L;

*nx = -1 / L;

} else {
*n = (x - e->x) / L;

*nx = 1 / L;

}
}

The construct_ramp callback computes the value of the ramping function at
the current point, x. The ramp function should be equal to one at the interior
node (i.e., at the EFG boundary of the transition cell), and zero at the end
nodes. Therefore, the ramp is in fact identical with that portion of the linear
function associated with the interior node which is inside the transition region
(compare with the “else” part of linear_shape_f()).

static void

construct_ramp (ESFLIB_generic_ptr_t if_data,

double *R, double D_R[1], double x)

{
blend_cell_data_t *

tcell = (blend_cell_data_t *) if_data;

node_t *i = tcell->interior,

*e = tcell->end;

double L = (i->x - e->x);

*R = (x - e->x) / L;

D_R[0] = 1 / L;

}

To be able to use the blending technique, we need to configure the SFLI
so that it can call our callbacks linear_shape_f, construct_ramp, and
blend_cell_node_num.

ESFL1_set_construct_ramp_func (esflib1, construct_ramp);

ESFL1_set_fe_shape_func (esflib1, linear_shape_f);

ESFL1_set_elem_node_num_func (esflib1, blend_cell_node_num);

ESFL1_set_base_elem_num (esflib1, 0);/* number from zero */
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In order to compute the TSFV at a point outside the transition regions we
can stil use the same code fragment as before (passing NULL as the transition
package data signals no blending is required). To evaluate the TSFV inside
the blending cell, we need to pack a transition cell package to be used by the
callbacks, and pass it as an additional argument to ESFL1_shape_func_at():

static blend_cell_data_t cd;

cd.end = end;

cd.interior = interior;

ESFL1_shape_func_at (sft, x, NULL, &cd);

Note that when one constructs the TSFV inside a transition cell only the invo-
cation of the ESFL1_shape_func_at() function changes; the TSFV computed
there is indistinguishable from a TSFV computed anywhere else.

7 Handling of reentrant corners in domains

The moving least squares technique produces arbitrarily smooth shape func-
tions. However, this is sometimes undesirable. One of these cases occurs near
discontinuity surfaces in domains, such as cracks, or near non-convex bound-
aries, such as reentrant corners. As a consequence, the supports of nodes af-
fected by these discontinuities need to be modified to incorporate the proper
behaviour of the shape functions or of its derivatives.

Algorithms for dealing with non-convex boundaries have been discussed by
Krysl and Belytschko [21]. For the reader’s convenience, we summarize the
findings here.

Let us denote the list of nodes which can affect the approximation at x̂ by
A(x̂). We shall denote this set also as the active set. Further, let us denote by
Ω the spatial domain of interest, by Γ the surface of discontinuity, and by BI

the domain of influence (support set) of the node I.

Node inclusion criterion. The first step in the treatment of discontinuities
is to decide whether a node should be included in the list A(x̂) of a given point
x̂. Reference [21] lists two criteria: Provided the original (unmodified) domain
of influence of the node I covers the point x̂, the node is included in the set
A(x̂):

Visibility criterion: if node I is visible from the point x̂ (assuming the dis-
continuity surface is “opaque”).
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Contained-path criterion: if node I can be reached from x̂ by a path C without
leaving the intersection of Ω and BI , and without crossing the discontinu-
ity Γ.

Modification of the domain of influence. If a node I qualifies for inclu-
sion in A(x̂), the next action depends on the criterion used.

Visibility criterion The most important implication of this criterion is that
the domains of influence are truncated by the exclusion of the “shadows”
of boundaries. The resulting shape functions are then not even in C0 in the
domain. However, as shown in Reference [21], the theory of non-conforming
approximation then, under certain conditions, implies that the EFG ap-
proximation is still convergent. In fact, for some classes of problems, the
non-conforming EFG method gives very good results, even better than a
conforming one. While the reason is not yet fully theoretically understood,
one can expect some error cancelling to be at play.

Contained-path criterion There are two possible courses of action. In the first,
the domain of influence of the node is left unchanged. The shape functions
are then as smooth in the vicinity of the discontinuity surface as anywhere
else. The second approach modifies the domain of influence of nodes, for
which the supports overlap the edges of the discontinuity surface. The rea-
son is that for some applications, the approximation is required to display
certain singularity at the edge of the discontinuity (e.g, crack front). How-
ever, the original supports may constrain the approximation to be exces-
sively smooth near the edge. Thus, a possible cure of this phenomenon is to
make the supports reach only just round the discontinuity, but still preserve
their smoothness to some degree (usually to produce C0 shape functions).

Implementation of the node inclusion criteria. The node inclu-
sion/exclusion is decided by ESFLIB using the following algorithm:

if ( node_qualifies_by_weight

OR node_is_at_interface_cell_vertex)

if (node_is_at_interface_cell_vertex)

node is included in the active set

else

if (have_callback_to_check_for_exclusion_by_boundary)

if (NOT excluded_by_boundary)

node is included in the active set

else

node is included in the active set

The following comments apply:
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– The node_qualifies_by_weight predicate is expressed simply as wI(x) >
0, where wI(x) is the value of the weight function associated with node I
at point x.

– Provided the TSFV is being evaluated inside a blending region, the
node_is_at_interface_cell_vertex predicate is TRUE if the node I is
located at one of the vertices of the blending region; otherwise it is set to
FALSE.

– The predicate excluded_by_boundary is the value returned by the callback
supplied by the application program. Therefore, it is up to the application
writer to decide which criterion is used to check for inclusion/exclusion of
nodes.

The second step, domain of influence modification, is again implemented by
callbacks. We shall not delve into the subject deeper due to space constraints;
the reader can look up additional information in References [30,20].

8 Performance issues

Connectivity computation. As already noted, the connectivity in the
EFG method is determined at run-time, for each point at which the shape
functions need to be evaluated. The connectivity at a given point x̂ is estab-
lished by searching for all nodes whose supports overlap (cover) x̂. (The con-
nectivity computation is actually more involved for non-convex boundaries.)
Let us denote the active set of nodes which can affect the approximation at x̂
by A(x̂). The speed with which the set A(x̂) is computed depends crucially
on the search strategy adopted. Sequential searches are of O(N) complexity
for each evaluation point (N is the total number of EFG nodes). Therefore,
one should always try to use a search technique which employs localization,
since such techniques can perform the search at a given point in an optimal
time O(logN); see, for example, References [31,32].

Optimization by not computing. One of the ways of making the EFG
shape functions less costly is in fact the simplest: do not compute things you
do not need. For example, for certain domains one knows that they are either
convex or insignificantly non-convex. In that case not checking for bound-
ary/support interference may save considerable amount of time. Another way
to save is not to compute derivatives when they are not needed.

Checks vs. optimal performance. ESFLIB offers a series of verifications
and checks to provide robust and fool-proof computation. However, at times it
might be preferable to limit the number of checks performed, so that a higher
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performance could be achieved. This is possible by a run-time configuration
of a SFLI.

Access to shape function data. Some applications, such as explicit dy-
namics programs, avoid the cost of shape function recomputation by com-
puting once and storing the TSFV’s. The access to shape function data may
appear to be unnecessarily expensive when effected through function invoca-
tions as it is demonstrated in the sample code fragments above. The solution
may be to copy the TSFV’s to local storage.

Local storage may also be a solution to the following problem: ESFLIB stores
all shape function data as double precision values. The memory to store hun-
dreds of thousands of TSFV’s may be prohibitive, though, especially for large
active sets. To cut the storage cost in half with respect to TSFV’s is to store
them in local variables as floats (real*4) instead of as doubles (real*8) (this
may be expected to work on only those machines which store fewer bits for
floats than for doubles).

Parallelization. The evaluation of the EFG shape functions is inherently
more costly than it is the case with the FEM. (Or rather, while the cost is in
the EFG all concentrated to run-time, the FEM delegates part of it to separate
computations, which does not necessarily mean lower overall computation cost,
but definitely leads to smaller run-time cost of the solution run.) Therefore, it
is worthwhile to consider parallel evaluation of the shape functions for the EFG
programs. Especially with respect to the increasing availability of symmetric
multi-processing machines, since essentially no synchronization is necessary.

While the computation of the shape functions is theoretically in the class of
“embarrassingly parallel” algorithms, care must be taken to allow for parallel
invocation of the ESFLIB. ESFLIB does not use any static data, not even read-
only ones, which could be a source of synchronization bottlenecks. However,
since each SFLI uses some private data structures, a single SFLI cannot be
used by two concurrent threads of computation. The solution is to create as
many SFLI’s as there are threads (processors).

Another possible contention area is, for instance, the search for the active
set A(x̂). The search can be performed by storing each node in a search
structure (tree, cell array, etc), and by performing a search customized to the
search structure used. However, the search algorithm may store the informa-
tion about the set A(x̂) as it is collected in a storage area private to the search
structure, which would, of course, preclude its concurrent use by two or more
threads of execution. The solution might be to use different storage for each
search thread. Similarly, when constructing the active setA(x̂) for non-convex
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boundaries, a search needs to be performed to check for possible interference
of boundaries with the supports. Also these searches might use private data,
which would need to be re-assigned to parallel threads of computation.

Some performance measurements. We provide an illustrative selection
of performance measurements. All of them were carried out on an HP/9000
715/100XC workstation. The reported times are CPU time consumed by the
process.

The measurements were done for a uniform, rectangular, three-dimensional
grid of N nodes in a unit cube. The spacing of the nodes was a, and was the
same in all directions. We set the size of domains of influence to a multiple
of dm = κ

√
3a. We denote by cA the number of nodes in the set A(x̂), i.e.,

cA = card{A(x̂)}. The shape functions are evaluated E times at randomly
generated points inside the interval {0.1; 0.9}×{0.1; 0.9}×{0.1; 0.9} to avoid
irregular connectivities for the regions close to the boundary. The search for
connectivities was conducted by a bounding box library, which stores the
nodes as boxes, and the search formulation is “find all boxes overlapping a
given point”. A single search can be done in O(logN) time.

For all measurements given, we list the total time t needed to evaluate the
shape functions at the given number of points.

(i) In this experiment, we determine how the time to evaluate the shape
functions changes with cA. We use the following settings: tensor-product
quadratic weight, N = 10000, E = 10000. The results are given in Ta-
ble 1. The dependency can be observed to be approximately linear.

(ii) In the next measurement, we explore how costly the various weight func-
tions are. We use the quadratic, composite quadratic and quartic spheri-
cal, and quadratic and composite quadratic tensor-product weights. The
multiplier κ = 1.05 for the spherical weights, and κ = 0.85 for the tensor-
product weights, to achieve approximately the same cA ≈ 25 for all sup-
port shapes. The results are given in Table 2.

(iii) In this measurement, we test the relative cost of linear, quadratic, and
cubic polynomial basis. We use N = 10000, E = 1000, tensor-product
quadratic weight, and κ = 1.5 which corresponds to cA = 139. The results
are given in Table 3.

(iv) In this measurement, we test the relative cost of the different solvers which
are used to factorize the moment equation (19). We use N = 10000, E =
100000, tensor-product quadratic weight, and κ = 0.85 which corresponds
to cA = 25. The results are given in Table 4.

(v) It might be of interest to know the relative expense connected to each
separate part of the shape function evaluation in ESFLIB. For the above
grid with N = 10000, κ = 0.85, quadratic tensor-product weight, and
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cA κ t [s]

25 0.85 7.58

34 0.94 9.32

45 1.03 11.19

60 1.13 14.02

80 1.24 17.58

107 1.37 23.60

142 1.50 28.97

189 1.65 35.86

249 1.82 46.33

326 2.00 61.28

428 2.20 79.58

556 2.42 100.36

719 2.66 132.93

928 2.93 168.38

Table 1
Cost of different support sizes

linear polynomial basis, with a bounding box search library, the topology-
related computations account for 33% of the total time, evaluation of the
weight function used up approx. 6%, and 56% of the total time is actually
spent in the linear algebra related to the equations of Section 1. The rest
is spent in various bookkeeping routines and other minor consumers of
time.

(vi) How expensive are the checks that the consistency conditions are reason-
ably well satisfied? It depends on a number of factors, but in the worst
case less than 5% of the total time is spent in checking that equations (23),
and (24) hold with sufficient accuracy. Therefore, it does not seem wise
to turn off these checks, especially because they can be invaluable when
using graded meshes with variable support sizes.

Performance comparison of FEM and EFGM. We can distinguish two
cases of shape function construction for the FEM. The first is used in Galerkin
procedures, when the shape functions are evaluated at integration points. In
that case, the connectivity in the FEM is known beforehand, since one knows
in which element, and at which parametric coordinates in that element the
shape functions are being evaluated. In the second case, the shape functions
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weight shape t [s]

quadratic spherical 9.2

composite quadratic spherical 10.0

quartic spherical 10.0

truncated Gaussian spherical 10.2

quadratic tensor-product 8.2

composite quadratic tensor-product 8.6

Table 2
Cost of different weight functions

basis gj terms t [s]

linear 4 3.3

quadratic 10 7.5

cubic 20 20.7

Table 3
Cost of different number of terms in a polynomial basis

Solver characteristics t [s]

LU with partial pivoting 95.1

QR 105.2

Choleski 97.1

Table 4
Cost for different solvers

are evaluated at an arbitrary point inside the domain. This case corresponds to
re-interpolation from mesh to mesh, post-processing etc. It is then necessary
to find the element enclosing the given point (and probably while testing, also
evaluate the parametric coordinates of the point in the element).

To put things into perspective, let us quote here one measurement of time
needed to construct the isoparametric shape functions, both values and deriva-
tives, for a hexahedral, eight-noded finite element: calling the shape function
routines 10000-times costs approximately 0.15 second. Comparing with Ta-
ble 1, we can see that the EFG shape functions are 50-times more expensive
to compute. However, let us examine these numbers in the light of the above
classification.

While in the first case, the FEM relegates part of the effort to separate mesh
generators, so the run-time of the analysis program is not burdened by the
need to determine the topology, in the second case, the cost is all carried by
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a single program. In the EFGM, these two cases are essentially identical as
far as evaluation of the shape functions goes; the topology is computed at
run-time. (However, note that it is also possible to precompute the topology
for the EFGM for a Galerkin procedure. In that case, a cell structure is used
to evaluate the weak-form integrals, so it is possible to precompute connec-
tivities for each integration point, or for each integration cell, by a separate,
preprocessing step.)

Now we can discuss the implications of the above observations. In the first
case, the FEM is clearly much faster than EFGM when evaluating the shape
functions, by an order of magnitude, roughly speaking. However, should we
include also the cost of mesh generation, with triangulation speed of arbitrary
meshes on the same HP workstation on the order of 2000 triangles (1500
tetrahedra) per second, the difference could be substantially reduced. Take,
for example, a 3D unstructured FE mesh with 10000 nodes, 50000 tetrahedra;
the mesh generation time could be on the order of 50 seconds.

In the second case, namely for the random-point evaluation, the FEM can be
still expected to be faster due to the simple character of per element expres-
sions, but not by orders of magnitude.

9 Error handling

The computation of the EFG shape functions can fail when the moment matrix
is (nearly) singular. Also, it is possible to configure the SFLI erroneously, or to
access non-existent data in a shape function table, etc. In these cases, errors
need to be handled in a consistent and reliable manner. We chose to provide
both boolean return values to signal success or failure, and an error handler to
be invoked by the library in case an error was detected. It is the combination
of these two means which proves most satisfactory.

The error handler can also be invoked from the user callbacks so that a uniform
way of error handling can be provided for all functions associated with the EFG
shape function evaluation.

The error handler we provide for our sample program presented here recognizes
two kinds of error conditions. One is the precision loss found during the check
of the EFG shape functions (one should get

∑
I φI(x) = 1, and

∑
I φI,x(x) = 0

for any x): if the mismatch is small (errors < 10−6, in this case), only a warning
is reported; otherwise an error exit is made. The other group of errors includes
any other circumstance, and an error exit from the program follows.

30



static void

err_handler (ESFLIB_lib_t lib)

{
if (ESFL1_status (lib) == ESFLIB_BAD_PREC) {
if (ESFL1_prec_loss (lib) < 1.e-6)

fprintf (stderr, "%s\n", ESFL1_explain_error (lib));

else

errexit (ESFL1_explain_error (lib));

} else {
errexit (ESFL1_explain_error (lib));

}
}

10 Documentation

We document the ESFLIB routines in the source code (purpose, arguments
and return values), and we use the automatic documentation extraction pro-
gram, c2man by G. Stoney [33], to produce both HTML browsable documents,
and a LATEX documentation. This approach has the obvious advantage that
the documentation can be kept up-to-date with the source. We show an ex-
ample of a manual page for the function ESFL2_shape_func_at(). First we
show the source code fragment from the SFLT. This is the only place where
the ESFLIB maintains documentation.

/* Evaluate shape function table. */
ESFLIB_bool_t /* returns TRUE if all went OK;

otherwise FALSE indicates an error */
ESFLIB_shape_func_at (

ESFLIB_sf_table_t sft, /* shape function table */
double atx /* x-coordinate of the evaluation point */,

#if ESFLIB_SPACE_DIM >= 2

double aty /* y-coordinate of the evaluation point */,
#endif

#if ESFLIB_SPACE_DIM == 3

double atz /* z-coordinate of the evaluation point */,
#endif

ESFLIB_generic_ptr_t eval_for,/* data which is passed
to the callback node hidden by bdry(); as it is not interpreted
by the library in any way, it may be passed in as NULL */

ESFLIB_generic_ptr_t if_data /* data which is passed
to the callbacks implementing the blending (ramping) for
interface regions; as it is not interpreted by the library in any
way, it may be passed in as NULL */);
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And this is the manual page, generated completely without human interven-
tion (for this journal, however, manually edited to save space).

NAME
ESFL2 shape func at — Evaluate shape function table.
SYNOPSIS
ESFLIB_bool_t ESFL2_shape_func_at

(

ESFLIB_sf_table_t sft,

double atx,

double aty,

ESFLIB_generic_ptr_t eval_for,

ESFLIB_generic_ptr_t if_data

);

PARAMETERS

ESFLIB sf table t sft
Shape function table.

double atx
X-coordinate of the evaluation point.

double aty
Y-coordinate of the evaluation point.

ESFLIB generic ptr t eval for
Data which is passed to the callback node hidden by bdry(); as it is
not interpreted by the library in any way, it may be passed in as
NULL.

ESFLIB generic ptr t if data
Data which is passed to the callbacks implementing the blending
(ramping) for interface regions; as it is not interpreted by the library
in any way, it may be passed in as NULL.

DESCRIPTION
Evaluate shape function table.
RETURNS
Returns TRUE if all went OK; otherwise FALSE indicates an error.
SEE ALSO
ESFL2 init(), ESFL2 new shape func(), . . .

32



Conclusions

The finite element method (FEM) and the element free Galerkin method
(EFGM) share a commonality as partitions of unity. This relationship shows
in many ways, especially when dealing with abstract formulas. However, the
paradigm the EFGM uses to construct the shape functions is radically differ-
ent from the traditional FEM approach. This equips the EFGM with flexibility
and the ability to control the absolute error, while at the same time making
the construction of the shape functions appreciably more expensive. One of
the reasons is the need to compute the topology on the fly, the other is the
non-polynomial, implicit definition of the shape functions.

In constrast to the FEM, the algorithm of EFG shape function construction
is rather complicated, and requires considerable number of input parameters.
Therefore, it makes good sense to use a software component, which would
make it as easy to design applications with the EFGM as easily as with the
FEM. The above observations led us to hide the complexity of the EFG shape
function construction, and to provide an interface to the shape function con-
struction which matches the FEM in simplicity.

In this paper, we have described the EFG shape function library, ESFLIB.
We have discussed the design goals (flexibility, robustness, maintainability,
solid performance, ease of use), and the concepts we have applied. The library
interface has been documented on a sample program.

With the ESFLIB, the application programmer is supplied a flexible tool,
allowing for experimentation and customization. The implementation is also
robust and thoroughly debugged, providing a consistent exception and er-
ror handling component. The library implements state-of-the-art algorithms,
and its performance has been tuned. The library source is heavily parameter-
ized, so that library instances, customized and specialized to required space
dimensions, can be generated from a single source. This contributes to main-
tainability of the source. The interface of the library used by the application
programmer hides the implementation, is very simple, and allows for its use
in mixed language environments.

The library was implemented in the ANSI C language for portability. It con-
sists of +5000 lines of C-language header and source files. The ESFLIB soft-
ware has been used successfully on a number of architectures (SGI Indy, In-
digo, Power Challenge, IBM RS/6000, HP/9000 7xx, CRAY C-90), and both
in the C-language environment, and in conjuction with a purely Fortran 77
analysis code.

Given the size and complexity of the ESFLIB, the benefits of its constant
reuse with application programs become obvious. In many cases the amount
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of programming and debugging needed by an analysis program is much lower
than that invested in the shape function library alone.
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