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THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC
PROPAGATION OF ARBITRARY 3-D CRACKS

PETR KRYSL! AND TED BELYTSCHKO™*
Civil and Mechanical Engineering Departments, Northwestern University, Evanston, IL 60208, U.S. A.

SUMMARY

A technique for modelling of arbitrary three-dimensional dynamically propagating cracks in elastic bodies
by the Element-Free Galerkin (EFG) method with explicit time integration is described. The meshless char-
acter of this approach expedites the description of the evolving discrete model; in contrast to the finite
element method no remeshing of the domain is required. The crack surface is defined by a set of triangular
elements. Techniques for updating the surface description are reported. The paper concludes with several ex-
amples: a simulation of mixed-mode growth of a center crack, mode-I surface-breaking penny-shaped crack,
penny-shaped crack growing under mixed-mode conditions in a cube, and a bar with centre through crack.
Copyright © 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

Three-dimensional crack growth problems are of great interest in the simulation of failure. The
three spatial dimensions make for large models, as compared to 2-D, and dynamic crack growth
poses substantial additional difficulties. Two aspects of crack growth simulations are of interest: the
mechanical (physical) model underlying the crack evolution, and the representation of an evolving
geometry. The current computational technology for the modelling of stationary cracks is quite
robust, but the representation of crack evolution of arbitrary three-dimensional cracks is still an
embryonic field.

The main computational techniques currently used in fracture mechanics are the finite-difference
method, the finite element method, and the boundary integral method. The suitability of these
methods for simulation of arbitrary crack growth depends on the complexity of simulating the
evolution of cracks with these discrete models, and the accuracy, versatility and speed of these
methods. One of the most difficult aspects of modelling the evolution of cracks is the need to
link an evolving solid model representation of the body to the discretization for each stage of the
propagation. The ability of the so-called meshless methods! to minimize or simplify changes to
the discrete model is why these methods are promising alternatives to the traditional approaches.
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768 P. KRYSL AND T. BELYTSCHKO

In this study, we explore the potential of the Element-Free Galerkin (EFG) method for simulating
the evolution of arbitrary 3-D cracks in dynamic problems.

The outline of the paper is as follows. In Section 1 we discuss crack growth from the view-
point of general simulation systems required for simulating the modelling components. We then
review the existing literature from this vantage point. Next, we discuss the framework of the
EFG method for crack growth problems, and to put things into perspective, we compare with
the FEM or BEM as exemplified, for example, by the FRANC3D system,”S to highlight both
the advantages and the weak points of both methods, Section 2 describes the meshless discrete
computational model, and the EFG superclement through which the EFG method is embedded
in an explicit finite element system. Section 3 deals with construction of EFG shape functions.
We present a consistent node inclusion criterion for the discontinuity surfaces (cracks), and dis-
cuss the impact of the discontinuities on the choice of the weight function. In Section 4, we
deal with the implementation of the visibility criterion. Section 5 deals with the geometrical and
topological management of the crack surface representation. A set of rules is proposed which
allows for a variety of practically important situations, such as surface-breaking cracks, to be
modelled. !

The physical model for crack growth laws is almost distinct from the crack representation.
The stress intensity factor-based model presented in Section 6 allows for a number of interesting
problems to be modelled, and its implementation in the EFG setting is described. The stress
intensity factors are extracted from interaction energy integrals in the domain (volume) form. The
virtual extension domain is defined separately from the integration cells to allow for general crack
front motion. A technique for the evaluation of these integrals, which is both relatively inexpensive
and of adequate accuracy, is proposed.

The last section describes several numerical simulations: mixed mode growth of crack in a
finite plate, mode-I surface-breaking penny-shaped crack, penny-shaped crack growing under mixed
mode conditions in a cube, and crack growth under general mixed mode conditions in a bar under
combined tension and torsion.

1. LITERATURE SURVEY

A key feature of crack growth simulation is the evolving geometry. The growth of the crack
changes the computational model, and implementing these changes is one of the most difficult
aspects of crack propagation simulations, particularly in three dimensions.

An analysis package for crack growth involves the components shown in Figure 1 (after Ref-
erence 7). For the ith step of crack growth, there are three data repositories: (1) R;, is the repre-
sentational database, which describes the problem; (2) the analysis database, 4;, which describes
the computational model, tailored to the discretization method e.g. (FEM, BEM of EFG); it is
generated from the representational database by the software component M (mesh generator). The
generation may be as simple as adjustment of nodal release stiffness, or as complicated as a local
remeshing of the domain (3) The variables representing the mechanical state of the body, such as
the kinetic state E;, the fracture parameters F;. These parameters are computed by the solver S
using the discrete model 4;.

The solution method S, to a considerable extent, determines the complexity of the other com-
ponents. For example, in a finite element solver using remeshing after each crack motion, the
constraints on the quality of the mesh around the crack front can be severe. On the other hand,

Copyright © 1999 John Wiley & Sons, Ltd.
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Figure 1. Databases and transformation functions of a topology-based crack propagation system

the boundary element method poses lesser demands on the meshing component M, because only
a surface mesh is needed.

The cycle of Figure 1 is closed by the update function U, which computes the shape of the
crack for the step i + 1. The update may amount to no more than a new location of the crack
tip (e.g. in the moving mesh technique in 2-D), or it may involve changes in the solid model
database affected by a complicated suite of update operators.

The diagram of Figure 1 is quite general, and neither the databases nor the transformation
operators always appear in the simulation system explicitly. The effectiveness of crack growth
simulation systems will depend on the complexity of the required databases and on the efficiency
with which the databases can be updated during crack evolution. The choice of the solver effects
both the discretization (volume meshes are more complicated to generate than surface meshes),
and the representation database.

1.1. 2-D crack growth simulations

There is a substantial body of literature concerned with the simulation of two-dimensional crack
growth; see, for instance, the review article by Nishioka.® One of the most often used approaches
is the nodal release technique; see, e.g., Chen and Wilkins® using a finite-difference technique
et al.,'® who used FEM, and Ivankovic and Williams!! using a finite volume method. The major
disadvantage of the nodal release approach is that the path of the crack is limited to the mesh edges.

The moving mesh technique was used by Atluri and Nishioka!? (with the FEM), Koh, Lee and
Haber'3 (Eulerian-Lagrangian description in conjunction with the FEM), Gallego and Dominguez'*
(BEM with a moving singular element), Koh et al.,!’’ (Eulerian-Lagrangian description in con-
junction with the FEM). Modelling arbitrary curved crack growth seems to be difficult with this
approach, since excessive mesh distortion will occur.

Boundary integral methods or the FEM are applicable to arbitrary mixed-mode cracks when
combined with a remeshing of the discrete model after each crack increment. Automatic remeshing
has been used, e.g. by Swenson and Ingraffea'® and Bittencourt e al.,!” in the framework of the
FRANC2D system. Xie et al.'® and Xie and Gerstle!? describe a 2-D system using singular finite
clements with a virtual crack extension and special remeshing rules. Portela et al?® report an
application of the dual boundary element method to crack propagation.

While the remeshing technique allows for an arbitrary path, it also has certain disadvantages. It is
highly desirable, especially in 3-D, to free the analyst of repeated interventions in the remeshing. In
order to achieve this goal, the update function U and the mesh generator M need to operate on their

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)




770 P. KRYSL AND T. BELYTSCHKO

respective databases automatically. However, the complexity of these operations is considerable,
especially in three dimensions, and the associated cost in terms of implementation effort can be
very high.

Several reports on the use of the element-free Galerkin method in arbitrary crack propagation
have appeared: References 1,21-29. All of these deal with two-dimensional fracture. Nevertheless,
certain features which make the EFG method appealing for arbitrary three-dimensional discrete
cracks are already apparent in 2-D EFG simulations: the arbitrariness of the crack path, the high-
order character of the trial functions, the ability to use a time-invariant integration cell structure,
and the relaxed compatibility requirements between the crack discretization and the cell structure.
The enhancement of the trial space by the asymptotic fields, which proved extremely useful in
2-D EFG simulations, is currently under investigation also in the three-dimensional setting; see
Sukumar ez al.30

1.2. 3-D crack growth simulations

The following overview of the literature on three-dimensional crack growth simulations, while
not complete, documents various aspects of the subject.

A system for crack propagation based on general solid modelling, analysis and fracture compo-
nents was described by Gerstle et al332 The crack was evolved essentially manually. Martha?
and Martha er al3 report a more advanced system, the integrated environment FRANC3D, which
allows for a semi-automatic treatment of general three-dimensional cracks. Germanovich, Carter,
Ingraffea, Dyskin and Lee? describe application of the FRANC3D system to the growth of multiple
cracks under compression. e

Bower and Ortiz>* describe analysis of a crack which propagates through tougher particles.
Xu and Ortiz** apply a boundary integral equation to the propagation of a planar crack, and
Xu et al36 report a technique which allows propagation of a planar or almost planar crack under
mixed mode conditions. The crack is allowed to assume a wavy shape, which is excited by
the tearing mode of loading. A boundary integral approach is adopted, which requires only the
crack to be discretized and remeshed at successive stages of its evolution. Ortiz3” describes a
simulation of crack propagation through an array of bridging fibers. The originally planar crack
is allowed to follow the surfaces of the fibers, resulting in a truly three-dimensional approach.
Only the crack surface needs to be discretized due to the use of a boundary integral equation
formulation. Mi and Aliabadi*® describe an application of a dual boundary element method to
quasistatic and fatigue 3-D crack propagation. The discrete model is apparently updated manually
after each increment.

Cervenka® describes the MERLIN system for 3-D fracture simulation. The composition of the
system follows the general rules outlined in Figure 1, with a boundary representation of the cracked
structure, FE mesh generator and FE solver. The update of the boundary representation is manual.
Geubelle and Rice*® proposed a spectral technique for elastodynamics of planar cracks, and applied
the approach to the propagation of a crack through a row of circular asperities.

Wawrzynek ez al.” propose a fracture simulation system in the form depicted in Figure 1. The
system is equipped with a built-in solid modelling system, mesh generators and fracture prediction
component. Potyondy et al.* report an application of the FRANC3D system in simulations of frac-
tures in aircraft. Carter et al*! and Carter et al. % and Desroches and Carter’ describe new capabili-
ties in the FRANC3D system, allowing for an automatic treatment of multiple, non-planar, surface,
internal and surface-breaking cracks, in or across material interfaces, and intersecting cracks.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)
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Galdos*? has applied the FEM to the propagation of planar cracks. The FE mesh is regenerated
after a crack increment through a solution of a Laplace equation designed to produce gradual
transition between successive meshes. The technique is applicable only to a succession of meshes
with the same connectivity (topology).

2. DISCRETE EFG MODEL

2.1. Main assumptions

In this paper, we adopt the physical model of Linear Elastic Fracture Mechanics (LEFM) in a
dynamic setting. The representational model of crack growth can be treated to a considerable extent
separately from the physical model. The physical and the representational models described here
can treat multiple, non-interacting cracks. We do not model branching of the crack surface. While
the representational model could be extended to handle interacting fronts, branching surfaces, and
corners, the physical model is not so easily extended for these capabilities.

The present framework allows for internal or surface-breaking cracks. However, the crack evo-
lution laws available in the literature do not apply in general to arbitrarily propagating surface
cracks, so the approach presented here is a rough model synthesized from what is available.

The numerical model consists of a set of nodes, a representation of external surfaces and a
representation of the crack. The crack is represented by triangular 3-node elements which provide
a piecewise linear representation of the crack surface, see Figure 2. The external surfaces are
represented by a union of patches which enclose the volume. The patches may be curved, but in
most cases planar patches are used.

2.2. EFG shape functions

The approximation is constructed by the Element-Free Galerkin (EFG) method.** The shape
functions in the EFG method are constructed by the moving least-squares technique, or alternatively
on the basis of reproducibility conditions. Both approaches arrive at the same expresfons for the
shape function. The moving least-squares technique can be traced to scattered data fitting, where it
has been studied under different names (local regression, ‘loess’, and moving least-squares) since
the 1920s; cf. References 43 and 44. The use of reproducibility conditions to modify the weight
function to produce a shape function was described by Belytschko et al*> and Liu et al* The
EFG shape functions in the present work are evaluated using the ESFLIB library, described by
Krysl and Belytschko.?’

To make the paper self-contained, we present a brief account of the moving least square ap-
proximation functions. Each EFG node is associated with a positive weight function of compact
support. The support of the weight function defines the domain of influence of the node; the
shape function associated with the node assumes non-zero values in the domain of influence. In
mathematical terms, the domain of influence of node I is given by

B ={x€R*: wi(x)=w(x,x;)>0} (1)

The approximation at a point % is affected by only those nodes whose weights are non-zero at
that point. We call the set of such nodes the active set, (X).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)
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Figure 2. Through-crack under combined torsion and tension. The discretization

The approximation to a function u(x,?) in Q is

u(X) = up(x,t)= 3 ¢1(X)u1(t)=1§ a(x, 1) g(x)w(X, X;) (2)
. Ie

Test(x) (x)

where g(x) is a column matrix of the linear basis in a 3-D space: g(x)={1,x,y,z}T; u are
coefficients (nodal unknowns). Note that the nodal coefficients are not necessarily the values of
the function u at the nodes, u(x;) # u;. The weight functions are time dependent in the vicinity
of the crack path, but we neglect this time dependence.

The coefficients a(x,¢) are obtained by minimizing a weighted least square form,2! yielding the
linear equations

A(x)a(x, 1) =g(x) (3)
where A is given by
A= 3 w(x1,)gi(x1)g;(x;) 4
1€ (x)

The matrix A is symmetric. Under certain conditions it is positive-definite,*” and is often called the
moment matrix. The matrix A is usually factorized by pivoting LU factorization, QR or singular
value decomposition (the latter two are indicated for ill-conditioned matrices).

The spatial derivatives of the shape functions are obtained by noting that the differentiation
of (3) yields*®

A,ia+Aa,i=g,i (5)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 ( 1999)
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where g ; denotes 0g/ox;. Thus, we can obtain the derivatives of a; by solving
Aa;=g;—A;a (6)

For this purpose, the factorization of A in (3) can be reused, so the computation of the derivatives
involves little extra effort.

2.3. Weight function

We have used truncated Gaussian weight functions on spherical supports. In crack problems,
we have obtained consistently better results with the discontinuous shape functions which result
from the visibility criterion (see Sections 3 and 4) and the truncated Gaussian weight function:

exp(—p2r2) — exp(—f*)
1 — exp(—p?)

In the above expression, = ||X; — X||/dmi, with d,,; being the radius of the spherical support. The
parameter § governs the shape of the weight function bell, we have used f=4.

The reasons for the better performance of the truncated Gaussian weight function when combined
with the discontinuous shape functions seem to be due to the interplay of the weight function and
of the interior discontinuities arising from the crack when the visibility criterion is used; see Section
3. We have noticed in our numerical experiments that the stress intensity factors converge from
above for the discontinuous approximation, since this leads to a non-conforming approximation.49
This is not unexpected since non-conforming approximations relax the constraints. One can infer
intuitively that as the jumps in the shape functions decrease, the loss of compatibility becomes
less pronounced. The jumps in the shape functions depend on jumps in the weight functions. The
parameter § makes it possible to change the shape of the truncated Gaussian weight, so it is
narrower, or, in other words, to increase its decay towards the circumference. (This is not possible
with the polynomial weight functions.) Faster decay decreases the discontinuities. This could be
one reason for the improved performance of the Gaussian weight functions with discontinuous
approximations.

The discrete equations are obtained from the standard Galerkin weak form of the momentum
equation

w(xp,X)=w(r)=

()

®
/ p®;®; Ay + 0 d2 — / &;4,dT =0 (8)
Q 2 I,

ox j
where p is the density, o;; the stress and # the applied traction. The mass matrix resulting from
the first integral in the above is diagonalized by the row-sum technique. The mass matrix in the
vicinity of the crack front needs to be updated as the crack progresses since the shape functions
change due to the change of the domains of influence of the nodes.

2.4. EFG superelement

The EFG method is inherently more expensive (per degree of freedom) than the FE method.
When modelling cracks, the flexibility of the EFG method is typically needed only in a restricted
volume, i.e. close to the expected path of the crack; the rest of the domain can be modelled

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)
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conveniently by finite elements. For situations where nothing is known about the crack path in
advance, the EFG subdomain can be generated adaptively.

We use the blending (coupling) technique to construct the approximating space on the
domain.’® 547 This allows us to discretize with finite elements, and treat a subdomain as an EFG
superelement; see Reference 52 for details. This technique not only contributes to the economy
of the computation, but also permits convenient enforcement of the essential boundary conditions.
The EFG shape functions are modified to be identical to the FE shape functions near the inter-
faces with finite elements; see Reference 47. The EFG superelement makes use of two types of
nodes: internal nodes, which are associated with internal degrees of freedom, and the nodes at the
interfaces of the EFG superelement with the rest of the FE domain, which are just aliases for the
global FE nodes. The EFG superelement is integrated seamnlessly with the finite element system,
including parallelization (see Reference 53).

2.5. Volume quadrature

The present work uses hexahedral FE meshes as the initial discretization of the domain. The
volume of the EFG superelement is also subdivided into hexahedral cells, which are called back-
ground cells.>*

In the initial model, the nodes are placed at the vertices of the background cells. They could be
also placed anywhere else, e.g. at the centres of the background cells. Our numerical experiments
suggest that the difference is not important. The integration is performed on the background cells
by Gaussian quadrature. Quadrature in EFG is at present not well understood. The two usual
objectives, accuracy and cost, conflict to a certain extent. Drawing from our experience, we have

interface cells
EFG superelement

O...EFG nodes
FE elements

Figure 3. Coupled FE/EFG discretization
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DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS 775

chosen 2 x 2 x 2 quadrature. Since the EFG shape functions are non-polynomial, we do not use
a high-order rule, but when necessary we subdivide the background cells into smaller ones. The
subdivision of a cell is a very simple operation, because the refinement of a cell is completely
independent of adjacent cells (see Figure 3).

2.6. Boundary description

The description of the external and internal boundaries, i.e. cracks, of the body finds twofold use
in the present approach. First, the crack surface is essential in the modelling of the displacement
discontinuity. Second, the external boundary limits the motion of the crack surface during its
growth. The crack faces are described in the form of a triangulation. The roles played by the
external surfaces are discussed in Section 4.

2.7. Time integration

The explicit version of the Newmark algorithm® is used. In each step we perform a series
of actions such as the time step change, output, graphics update, and propagation of the crack
surfaces.

3. EFG SHAPE FUNCTIONS ON NON-CONVEX DOMAINS

Crack surfaces and corners of the domain require a modification of the domains of influence of
the nodes, i.e. the weight function, in their vicinity because they introduce discontinuities in the
displacements fields. Let the surface of discontinuity, such as a crack, be T and the domain of
influence (support) of node / be B;. )

The first step in the treatment of discontinuities is to decide whether a node should be included
in the active set o/(X) (described in Section 2) of a given point X. Reference 49 lists two criteria:
According to the visibility criterion, (see Section 3), if the unmodified domain of influence of the
node I covers the point X, node / is included in the active set &/(X) if node I is visible from the
point X with the discontinuity surface considered to be ‘opaque’. In the contained-path criterion,
node I is included in the set #/(X) if node I can be reached from X by a path C without leaving
the intersection of § and B;, and without crossing the discontinuity I'.

When the visibility criterion is used, the domains of influence are truncated by the exclusion of
the ‘shadows’ and the resulting shape functions are discontinuous along rays emanating from the
crack tip. However, as shown in Reference 49, the EFG approximation is still convergent; the dis-
continuous approximations give very good results, often better than the continuous approximations
with a linear basis.

3.1. Implementation of the node inclusion criteria
The node inclusion/exclusion is decided by ESFLIB using the algorithm summarized in
Figure 4. The following comments regarding the algorithm of Figure 4 apply:

(1) The ‘node qualifies by weight?’ predicate is expressed simply as wi(x)>0, where wy(x) is
the value of the weight function associated with node ' at point X.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)




776 P. KRYSL AND T. BELYTSCHKO

if “node qualifies by weight?” or “node is at interface cell vertex?”
if “node is at interface cell vertex?”
include node in the active set
else
if “procedure to check for exclusion by boundary defined?”
if not “excluded by boundary?”
include node in the active set
endif
else
include node in the active set
endif
endif
endif

Figure 4. Check for inclusion of a node in the active set

(2) If the shape functions are evaluated inside a blending region, the predicate ‘node is at
interface cell vertex?’ evaluates to TRUE if the node J is located at one of the vertices of
the blending region; otherwise, it evaluates to FALSE.

(3) The predicate ‘excluded by boundary?’ is the value returned by the function checking for
exclusion by the boundary (cracks). Either of the above criteria apply.

4. IMPLEMENTATION OF THE VISIBILITY CRITERION

While the visibility criterion is apparently simple, we have encountered difficulties in implementa-
tion related to degenerate positions of the line segments and triangles. To illustrate the difficulties,
let us consider the situation depicted in Figure 5. Note that nodes / and K lie on the external
boundary surface. If one postulates that the external surface is opaque, then according to the visi-
bility criterion, node / should not be included in the active set of point x. On the other hand, when
performing the visibility check for the node K » the result will depend on round-off: node X can
be determined to be either outside, inside or on the boundary depending on the round-off error.In
Figure 6, nodes 7, J and K are located on the boundary. Both 7 and J should be members of the
active set o/(xx ). However, either of the nodes can be excluded when finite precision arithmetic
indicates that the segment xxx intersects part of the boundary.

Another, ambiguous situation occurs when a point is located on an opaque surface such as a
crack, as shown in Figure 7. Depending on the precision of the arithmetic operations, the nodes
located directly on the crack surface are assigned to active sets of points on either side of the
crack. Note that we cannot avoid points which are located on an opaque surface, since the points
we are dealing with are quadrature points, nodes, vertices of the background mesh and vertices
of the boundary patches. While the first two types of points are related to the Galerkin proce-
dure, the latter describe the discontinuity surface and are used in post-processing. These problems
in the intersection test could be resolved by introducing a topological model in which all points
are classified with respect to the bounding surfaces and interiors. However, that is precisely
what we wish to avoid, due to the associated complexity and cost. We have resolved the dif-
ficulty by treating the bounding surfaces as three-dimensional bodies, i.e. surfaces with a non-zero
thickness.

Copyright © 1999 John Wiley & Sons, Ltd.
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Figure 6. Evaluating the shape functions near a concave boundary. Nodes 7, J and X lie on the boundary
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Figure 7. Evaluating the shape functions near the crack surface. Node I is located on the crack surface
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© \ auxiliary opc’zﬂu

e ceemcccmaaan ' boundary surface

Figure 8. Use of an auxiliary opaque surface to enforce a concave corner. Node I is located on the surface of the domain,
node KX is located outside of domain

opaque N
surface -

Figure 9. Extended segment connecting the evaluation point X and the location of the node 7, x;

We consider only true crack surfaces in the visibility checks; all other external bounding surfaces
are assumed transparent, and therefore are ignored in visibility checks (for external boundaries in
which it is desirable to truncate domains of influence, for example a reentrant corner, an auxiliary
opaque surface can be used as shown in Figure 8. The ‘solid’ model of the crack is achieved by
creating a halo or envelope around the surfaces. Points are classified as being on the crack surface
if they are found to be located inside the halo of the crack surface.

In the test an adjustment is made of the segment tested. Consider the end-points of a straight-
line segment connecting the evaluation point and a node. The segment is extended as illustrated in
Figure 9. The original segment XX; is replaced by the segment S€, with end-points s and e displaced
from the original end-points by small distances, d:(x) and d(x;) along the connecting line.

When the visibility criterion is applied, the intersection denoted by i of the extended segment
with the crack surface is computed. If the distance between the intersection point i and the point
X or x;, d=|x — |, and d=||x; — i, respectively, is less than the tolerance d,(x): d <d,(x),
the point x or x; is classified as being located on the crack surface. The point or node x; is then
split into two points which are moved outside the halo.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)
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G

edge 1

vertex 2

Figure 11. Topological information maintained for the crack surface entities

Nodes seldom appear in the halo, because we check for nodes in the path of the crack. If there
are any, we split them and move them sufficiently far away from the anticipated crack path as
illustrated in Figure 10; see also Reference 56. After the split, the state variables are associated
with the same kinematic quantities, but with a portion of the mass.

5. REPRESENTATION OF THE CRACK SURFACE

The crack surface is represented by a collection of flat triangles, and the crack front consists of
straight-line segments. A smooth representation is not used because there may be kinks and creases
in the crack surface, which would have to be identified as features in a smooth crack model.

The triangulation of the crack is kept topologically consistent during the crack evolution to
allow for efficient and accurate adjacency and geometry queries. Thus, each entity (vertex, edge,
triangle) refers to a number of other entities through references, which in Figure 11 are represented
by arrows. In addition to the topology information, a vertex carries flags that indicate whether it
is located on the crack front, whether it is bound to an exterior surface of the body, etc.
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] algorithm PROPAGATE

i do

Y if crack is stationary return

foreach crack front vertex /* (i) */
compute SIF’s in a local coordinate system

endforeach

foreach crack front vertex /* (ii) */
advance vertex

endforeach

foreach crack front vertex bound to boundary /* (iii) */
trim edge

endforeach

foreach crack front vertex /* (iv) */
adjust vertex status

endforeach

j foreach crack front edge /* (v) */

‘ adaptively adjust front subdivision
endforeach

enddo

Figure 12. Algorithm of crack propagation

5.1. Crack propagation algorithm

The crack propagation algorithm is summarized in Figure 12.

1. The stress intensity factors at the crack front are used to drive the advance of the crack; we
call the advance at a vertex an advance vector. The advance vector generate new vertices, from
which additional triangular elements and crack edges are generated.

2. The locations of the new vertices which are adjacent to exterior surfaces are adjusted by
trimming the advance vectors. In preparation for trimming, the advance vectors of vertices
which are already on exterior surfaces are projected onto the exterior surface. Then, for each
vertex on the crack front, if its advance vector intersects an exterior surface patch, it is trimmed
by the surface and the vertex is marked as bound to the boundary patch. The algorithm allows
vertices to pass around corners in the surface of the body; see Figure 13, where the vertex at
the left boundary surface follows the vertical part of the boundary until the comer is reached,
then it follows the horizontal surface and continues to the right.

3. For each vertex on an exterior surface, the edge emanating from it is trimmed by the ex-
terior surfaces. This means it is either cut or extended to the intersection of the edge with
the boundary. The reason for this operation is that the boundary faces are not necessarily
planar, so the projection of the advance vector may not yield a point on the boundary sur-
face.

4. The status of the vertices on the front is updated to determine whether a crack can advance.
Subsequently, if a vertex is bound to a boundary patch, the crack can advance at the vertex
only if it is connected by an edge to an unbound vertex. If a vertex is bound to the boundary,
and both edges emanating from it are bound to the boundary, the crack cannot advance at this
vertex.

ﬂ‘; Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)
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............. external boundary

\ original advance vector

[front vertices

\/

Figure 13. Modification of the advance vector when the front moves through a convex comer of the domain

Step N
predict advance

S, Step N+1
,rti‘:f: N+l <: predict advance

Figure 14. Two steps of crack propagation. Only the operations of advance prediction and trimming are shown

crack front through two crack steps. The solid circle (o) denotes a vertex which is completely
free. Vertices denoted by a square box () are constrained to stay on the exterior surface. An

! The procedures described above are illustrated in Figure 14, which shows the advance of a
| empty circle inside a box denotes a vertex on the crack surface which can no longer move.
|

5.2. Adaptive front discretization

The crack front edges can become too long or too short in some cases. Since the domains for
stress intensity factor evaluation are set up to correspond to crack front edge lengths, it is desirable

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)
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e
o

Figure 15. Adaptive discretization of the crack front to avoid excessively long or short edges

to avoid this. A simple adaptive approach is illustrated in Figure 15. Excessively long edges are
subdivided into two shorter ones, and edges which are too short are deleted.

5.3. Recomputation of shape functions

If any part of the crack surface has advanced, the shape functions in its vicinity need to be
updated. In order to recompute the shape functions selectively, we maintain a time stamp for
background cells, the EFG superelement and for the shape functions. A set of rectangular 3-D
boxes whose union defines the region of invalidated connectivities (RIC) is defined. When a
crack advances, i.e. when a new triangle is added to a crack surface, we add a box to the RIC
corresponding to the bounding box of the triangle, inflated by the largest support size.

When some connectivities have been invalidated by a crack advance, each shape function that
may be effected is checked to see if it needs updating. This check is made as follows: at each
quadrature point inside the RIC, rays XX; for each node I are checked for intersection with the
new triangles. If any ray was severed, the shape function is re-evaluated at that point. This strategy
is designed to take advantage of the fact that the number of new triangles in the crack surface
representation is considerably lower than the total number of triangles in the current crack, and
avoids the time-consuming task of cheking all points against all crack surface elements in every
time step.

6. PHYSICAL CRACK PROPAGATION MODEL
6.1. Physical model

The crack growth model is based on energy release rates. We estimate the dynamic energy
release rate of a moving crack G(C) from the energy release rate for a stationary crack G(0).”

C
G(C) = (1 - C—) G(0) )

R
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where C is the crack front speed and Cg is the Rayleigh wave speed, given as a root of the
equation D(C) =418, — (1 + f3)* =0, where B2 =1-(Clcg)?, and f5=1— (Cles)?, with ¢ the
shear wave speed, and cq the dilatational wave speed.

The crack speed is given by the following:

0 for G(C)< Gere(0)
C=< Cr (1 - %"('—(CCS)) otherwise (10)

The critical energy release rate depends on the dynamic fracture toughness for a mode-/ crack:

(€)= XA (an

where E* is the effective Young’s modulus proposed by Cherapanov:®

1 v &t
E*=E|—— 12
[1—V2+1+V8n+8f} (12)

where &, ¢,, and & are strains measured close to the crack front along the tangent, normal, and
binormal to the crack front (surface). The dynamic fracture toughness is a function of the crack

speed given by

Kic for C=0
Kin(C)= {KIA [1- (C%)m]_l for C>0 (13)

In the above, Kic is the fracture initiation toughness,”® Kia is the fracture arrest toughness.

Equations (9) and (10) with (13) yield a non-linear equation for the crack speed C. For the
simplest case of crack-speed independent fracture toughness, Kip(C)=Kip, the crack speed is
obtained from a quadratic equation.

6.2. Crack extension

Let €, be the normal to the crack surface, €; the tangent to the crack front, and €; the binormal.
Figure 16 shows these vectors for a continuously differentiable crack front. At the vertices on the
crack front in the plane 0¢,¢,, the crack surface and crack front are not differentiable, since the
crack surface is piecewise linear. The normal and binormal are therefore obtained by averaging

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)
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Figure 16. Local co-ordinate system at the crack front

the weighted normals of the triangular areas and crack front segments by

Ei/é’ili
Zi l;

~ Y4
e = ———— 15
2 S 4, (15)

where 4; are the areas of the triangular elements connected to the vertex and /; are the lengths of
the line segments connected to the vertex; since €, computed by the above is not orthogonal to €,
the projection of €, on €, is removed and €; is renormalized. The tangent vector €; is computed
by 83 =€1 X /62.

Two-dimensional cracks extend in brittle materials so that the shearing (mode II) stress inten-
sity factor (SIF) Ky is minimized.*® All the criteria (maximum circumferential tensile stress,®
maximum energy release rate,%' critical strain energy density’2) commonly adopted in fracture
mechanics give similar results for relatively small ratios of Kn/K;. However, in three-dimensional
situations, the tearing mode may become important. There is no consensus yet on how the crack
extends for a general 3-D mixed-mode situation, mainly because the relationship between the tear-
ing mode and the tendency of the crack front to twist is not known. To simplify matters, we
assume that only modes I and II affect the direction of the crack; mode III is assumed not to
affect the direction of crack growth, only its speed.

The direction of motion of the vertices is based on the maximal circumferential tensile stress
criterion® according to which the angle 6 with respect to the plane Oeje, (see Figure 16) of the
crack advance is given by

e =

(14)

60 = 2arctan } (Ki/Knt + v/(Ki/Ku ) + 8) (16)
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where the SIFs are evaluated in the local-coordinate system at the crack front as defined in
Figure 16. The sign in equation (16) is chosen to correspond to an opening (positive) mode 1
stress intensity factor for the direction given by 0.

Substituting the angle 6 into the appropriate expression for the mode I stress intensity factor,
we arrive at the equivalent mode 1 SIF,

K equiv = K1 c0s*(8/2) — 3Ky cos(6/2) sin 6 (17
€q 2

The energy release rate of a stationary crack, G(0), is expressed in terms of the equivalent mode
I SIF and the unmodified mode III SIF by

Klz,equiv KIZII
G(0)= T + 2 (18)
where u is the shear modulus.

To summarize, the advance of the crack front at the vertices is in the plane determined by the
normal and binormal vectors, in the direction given by the angle 6, with a speed which depends
on the ratio of the critical energy release rate to the current energy release rate; both quantities
are determined for a moving crack. The crack advances in a time step only if the crack growth
criterion is satisfied. The crack front advance (or displacement) is given by the product of the
crack speed and the time increment.

6.3. Stress intensity factors

The stress intensity factors are computed from interaction energy integrals, see References
65-67. The interaction energy corresponding to mode M per unit length of the crack front may
be written for the dynamic case as®’

M M . (M M M
S0 = | [=(oye” + pii* g+l i oyt My

+ p(i™Musy i, M =iy~ M0 g) AV / / gds (19)
F

Here Vgp is the volume in which the virtual extension domain, ¢ is an arbitrary function which
is positive over the domain Vgp but vanishes on the boundary, F is the crack front, and oy, &;,
and u; are the stresses, strains, and displacements; the quantities superscripted with (M) are the
asymptotic fields. We have assumed that to a first approximation the interaction energy is constant
within the domain used for the interaction integral, hence the scaling by the line integral /; rqds
in equation (19). We do not include crack face tractions in equation (19).

The SIFs are related to the interaction energy through

E*

Ku=" S for M=L1II (20)
where
Kn=pf0) 1)
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~ background cells
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virtual extension
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. weak-form quadrature points

using re-interpolation

Figure 17. Integration scheme for the interaction energy

6.4. Asymptotic fields

The asymptotic displacement and stress fields for a stationary crack are well-known from linear
elastic fracture mechanics.®® We neglect the effects of the crack front curvature on the stress
intensity factors. As has been pointed out by Gosz et al.,5” curvature effects can result in non-
negligible changes in the computed SIFs.

6.5. Interaction integral implementation

To evaluate the integrals of equation (19), a virtual extension domain Vgp needs to be established
around the crack front. The usual approach in the finite element method is to define the virtual
extension domain as a union of finite elements near the crack front.5” An alternative approach is
to define the virtual extension domain as a rectangular box in the local coordinate system of the
crack front vertex. Since the integration cells in EFG are independent of the crack surface, we
prefer the latter. The question is then, how to integrate equation (19) without having to evaluate
the EFG shape functions at a large number of integration points (while the required number of
shape function evaluations would pose no problems for the FEM, it would be costly for the EFG
method). At the same time we want to make the evaluation sufficiently accurate when the virtual
extension domain and the integration cells are misaligned.

Figure 17 shows an arrangement of background cells, a crack, and a virtual extension domain.
The 2 x 2 x 2 Gaussian rule we use to evaluate the weak-form integrals in the background cells
is not fine enough for cells only partially covering the virtual extension domain. Therefore, we
interpolate the primary and derived mechanical fields by the tri-linear shape functions of the
hexahedral cells, subdivide each cell into 4 x 4 x 4 subcells, and integrate on these subcells with

Copyright © 1999 John Wiley & Sons, Ltd.
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a 4 x 4 x 4 Gaussian rule using the interpolated fields. The cost of the trilinear interpolation is
relatively low, and the accuracy gained (4096 integration points per cell, instead of only 8) is
satisfactory.

However, the trilinear interpolation is not possible for background cells intersected by the crack.
Therefore, on these cells we use only the weak-form quadrature points. This procedure is illustrated
in Figure 17. The filled cells are those overlapped by the virtual extension domain. There are two
types of cells: in the darker cells the interaction integrals are evaluated at the weak-form quadrature
points, and in the lighter-colored cells re-interpolation is used.

6.6. Surface-breaking cracks

When the crack front breaks a free surface at a right angle, the square root singularity is no
longer present, Benthem,%® and consequently, the energy release rate of equation (10) cannot be
based on SIFs. For a crack front not normal to the free surface, no analytical solutions are available,
but it has been suggested that the cracks may grow to become inclined with respect to the free
surface so as to restore the square root singularity,” because that would maximize the energy
release rate. Since we cannot deal with these complexities in the present work, we neglect the
difference in the order of singularity, and as a temporary expedient we drive the crack at the free
surface by the same SIFs as in the interior. However, the computation of the interaction integrals
is rather imprecise at the boundary; therefore, we extrapolate the SIFs at the free surface from the
closest two interior crack front vertices.

6.7. Crack effect resolution

The interaction integrals give good results when the domain of integration is sufficiently large.
However, for a surface-breaking crack, the domain needs to be adjusted so that it remains inside
the body, and the results for this situation may be inaccurate. An additional difficulty is the loss
of resolution when the gap between the crack front and exterior surface is closing.

7. NUMERICAL RESULTS
7.1. Inclined centre crack in a finite plate

The first example deals with the determination of Stress Intensity Factors (SIFs) of 3-D cracks.
The crack is inclined at 45° in a finite rectangular plate as shown in Figure 18. Tensile tractions
& =400 GPa (step function in time) are instantaneously applied at two opposing faces. The material
is linear elastic with £ = 200000 GPa, v=0-3 and p = 5000 kg/m>. Plane strain solutions have been
reported by Murti and Valliappan”® using quarter-point FEM, Dominguez and Gallego’' using time
domain BEM, Fedelinski et al.”

We have studied the problem as 3-D (the depth of the plate being set to 10) with a grid of
21 x 37 x 9 cells: 3780 hexahedral finite elements and an EFG model with 3213 background cells.
The support size is 1-25+/3h, where h is the length of the longest edge of the background cell. The
results are summarized in Figure 19; they can be seen to be in good agreement with the solution
by Dominguez and Gallego,”' and in even better agreement with the more recent numerical results
of Fedelinski et al.”?

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)




788 P. KRYSL AND T. BELYTSCHKO

A A A% A4

V¥ dol VY

Figure 18. Inclined centre crack in a finite plate under a tensile load
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Figure 19. Inclined centre crack in a finite plate under a tensile load. Stress intensity factors of a stationary crack

Next, the crack was grown dynamically. The fracture toughness is 300 GPa/m. Figure 20 shows
the initial crack and the final crack. Figure 21 depicts the triangulation of the final crack surface.
The crack grows almost uniformly, although the growth is a little slower near the free surfaces.
A slight amount of roughness develops. This is probably due to the complicated pattern of waves
which develops.
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Figure 20. Inclined centre crack in a finite plate: the initial and final stage of crack propagation
7.2. Centre penny-shaped crack in a finite solid

The analytical solution for a mode-I penny-shape crack in an infinite medium loaded by a static

traction ¢ at infinity is
a
Ki=204/— 22
1=204/— (22)

where a is the radius of the crack. A crack in a finite cylinder was studied by Jia et al.” by a
singular element BEM technique.

We consider here a penny-shaped crack in a cube. The ratio of the diameter of the initial crack
D and the cube edge length w is D/w = 0-3. We investigate two cases: (i) a stationary crack with
a quasi-static loading, and (ii) a propagating crack with a step load. The discretization, consisting
of 1350 hexahedral finite elements and 1536 EFG nodes, is shown in Figure 22.

The total number of degrees of freedom was 9216, of which 3072 were internal to the EFG
superelement. The cube is 20m x 20m x 20m and the radius of the crack is 2m.

First, to assess the accuracy achievable with the EFG model, we compute the distribution of
the mode-I SIF for a quasi-static loading. We compare with the analytical solution, equation (22),
and with the solution of Fedelinski et al’® for a finite cylinder with the ratio D/r = 03 (r
is the cylinder radius, 2r =w), which yields mode-I SIF approximately 2 per cent higher than
equation (22). The comparison is shown in Figure 23 and is quite good.

The main goal of this simulation is to demonstrate the ability of the crack representation to model
a surface breaking crack. The same material properties and fracture toughness as in Example 7.2
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Figure 21. Inclined centre crack in a finite plate: crack surface discretization for the final crack shape

a a & a L] e & & o o o . o e o L ]

(a) top view (b) front view

Figure 22. Grid for the penny-shaped crack under remote tension
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Figure 23. Centre penny-shaped stationary crack. Stress intensity factor along the circumference normalized by the analytic
value for an infinite medium

were used. Tensile tractions of 144 GPa are applied as step functions in time at both ends. As
can be seen from Figure 24, the crack propagates internally until it reaches the free surfaces of
the cube faces. Then the crack front advances to the corners, and severes the cube completely.
Figure 24 shows eight stages at equally spaced time intervals (the process takes approximately
2 x 1073 s for complete separation).

7.3. Inclined penny-shaped crack

We consider a penny-shaped crack of radius a which is loaded by a remote uniaxial tension g,
inclined at angle w with respect to the plane of the crack. The analytic expressions for the stress
intensity factors of a crack in an infinite domain are’™

. a
Ki=20 sin? w\/j
s

4
an———a— sin w cos w\/E sin 8 (23)
2-v) i1
4(1 —
KHI:—(—ﬂ sin w cos w\/gcosﬂ
2-v 7

The angles are defined in Figure 25. Numerical solutions for this problem have been presented in
Nikishkov and Atluri,”® Jia et al.,”> Xu and Ortiz,** and Young.7®

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 44, 767-800 (1999)




792

P. KRYSL AND T. BELYTSCHKO

i e

(a) Snapshot 10 (b) Snapshot 20 (c) Snapshot 30 (d) Snapshot 40

(e) Snapshot 50 (f) Snapshot 60 (g) Snapshot 70 (h) Snapshot 80

Figure 24. Snapshots from the propagation of the centre penny-shaped crack

0

Figure 25. Inclined penny-shaped crack under tension

We consider a finite solid. As shown by Jia er al.,”? the difference between the solution for
the unbounded domain and for the finite solid of dimension R is negligible for a/R =~ 1/10,
and small for a/R ~ 1/5. We solve for the stress intensity factor in a cube of side length 20,
with a penny-shaped crack inclined by w=60° from the vertical of radius @ =2 under a uniform
tension applied to opposite faces of the cube. The solution was obtained via explicit dynamic
program by increasing the load slowly and using a mass-proportional damping to remove the
kinetic energy from the system. The simulation was run until the oscillations in the SIFs were
negligible.

The model consists of 34 x 34 x 34 uniformly spaced nodes. The coupled FE/EFG discrete model
contained 27812 hexahedral finite elements and an EFG superelement with 8125 background cells.

Copyright © 1999 John Wiley & Sons, Ltd.
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Figure 26. Initial discretization of the crack surface and distribution of EFG nodes around the crack
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Figure 27. Stress intensity factors of a stationary crack

The support size was set to 1:25x V/3h (h is the cell size). The results are summarized in Figure 27.
While better results have been reported in the literature, it is essential to note that the nodes were
uniformly spaced and did not even respect the circular shape of the crack front. In view of this,
the resulting accuracy of the SIFs is acceptable.
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(a) Time t = 2.0 x 10~8 (b) Time t = 2.94 x 10~¢

(¢) Time t = 3.88 x 10~8 (d) Time t = 4.82 x 10~¢

Figure 28. Snapshots from the propagation of the inclined penny-shaped crack

The same model was used to model the dynamic propagation of the crack under tensile load.
Tensile tractions of magnitude 144 GPa are applied on the horizontal faces of the cube as step
loads. The crack starts propagating at ¢t =1-92 x 107, The same material properties as in Example
7.2 were used. Figure 28 shows four snapshots of the propagating crack.

7.4. Through-crack under combined torsion and tension

This example concerns the evolution of a planar centre crack in a rectangular bar loaded by
combined tensile force and torsion, see Figure 29. The authors are not aware of any previous
numerical solution. The problem illustrates the ability of the present method to model complex
three-dimensional crack shapes.

The applied force and torque are step functions in time. The same material properties as in
Example 7.2 were used. Figure 2 depicts the discretization. The middle third on the bar was
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Figure 29. Through-crack under combined torsion and tension. Loading and dimensions

Figure 30. Centre crack in a rectangular bar. Final crack shapc: () overall view of the deformed bar; (b) closeup of the
crack surface

discretized as an EFG superelement, with 18 x 18 x 18 nodes, and the rest with finite ¢lements.
Figure 2 also shows the triangulation of the crack surface in the final stage of the crack growth.
Figure 30 shows the final shape of the crack.

8. CONCLUSIONS

We have presented a representational model for the growth of arbitrary three-dimensional cracks
in the framework of the EFG method. The proposed crack representation is applicable to
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non-interacting cracks. The crack front is piecewise linear; we do not allow for crack surface
branching.

By using the EFG method, we were able to avoid remeshing. The update of the discrete model
consists of the recomputation of the shape functions near the crack front; the integration cells are
not changed. Since the methodology does not need automatic mesh generators, we can dispense
with an autonomous solid modeling database required for the operation of automatic meshers.

The present crack surface description is based on a triangulation of the crack surface. The
physical evolution model relies on stress intensity factors, which are computed from the interaction
energy integrals. The crack is propagated in each time step if a crack growth criterion is satisfied.
The crack surface vertices are constrained to remain inside the volume or on the boundary faces
of the cracked body.

We have demonstrated the method on a number of examples: simulation of mixed-mode growth
of centre-through crack in a finite plate, mode-/ surface-breaking penny-shaped crack in a cube,
penny-shaped crack growing under general mixed-mode conditions, and torsion-tension rectangular
bar with centre through crack.

To conclude, we review the potential of this method by comparing it with the finite element
method with remeshing. (It seems to be a widely accepted view that the FE method with continuous
remeshing is a powerful approach to crack propagation problems.) The EFG method has the
following advantages for modeling arbitrary crack growth:

8.1. Simple update of the discrete model

Since the geometry of the crack changes with time, the discrete model needs to be updated
for each time increment. This is true for all numerical models. However, the update of the EFG
model is less extensive than in the FE method. The change in the approximation functions due
to crack growth arises from the changes in the nodal supports, whereas in the FE method a new
mesh which is compatible with the new crack surface must be constructed.

Since remeshing in any method should be automatic, there is a need to maintain a description of
the cracked body which is independent of the mesh, and incorporates the evolving geometry while
satisfying the topology and geometry queries of the mesh generator. This has been discussed by
Ingraffea and his collaborators.® 74146 The technique they propose is based on a non-manifold
topologically-based BRep (boundary representation) system, which is integrated with the mesh
generators.

An FE system for crack growth requires the availability of three components, the mesh generator
(M), the analysis package (S), and the solid modeler (U) (refer to Figure 1). The data structures
neded in FE systems, their manipulation operators and the communication of information between
cooperating components, require a substantial programming effort. This approach is further com-
plicated by the special demands of meshing in the presence of crack surfaces. Crack surfaces
are material entities, which means that a material point whose neighbourhood has been split by
a running crack needs to assume two distinct identities, one for each of the crack faces. This
distinction needs to be preserved in the solid model, so that the mesh generated from the repre-
sentational model correctly represents the discontinuity surface. To minimize the cost of remeshing
and projections between meshes, the mesh outside the neighbourhood of the crack front should
be reused. Therefore, the mesh generator must be able to accept part of the old mesh as input in
conjunction with the solid model. Another complicating factor in remeshing is that the FE method
usually requires the elements to be of a certain shape (e.g. hexahedra) and well-shaped in order
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to have good approximating properties. Furthermore, if an embedded singularity is desired in the
crack front finite elements, it is necessary to mesh the immediate neighborhood of the front with
a special arrangement of elements.'s 7

8.2. Approximation properties of EFG solutions

Numerical studies show that the EFG method can yield solutions of better accuracy for the same
number of degrees of freedom than the FE method. Thus, it becomes possible to avoid the need
for excessive refinement near the crack front.

The quadrature cells in the EFG method are independent of the positions of the nodes. Therefore,
the numerical integrations of the Galerkin weak form uses the same integration points throughout
the simulation. We disregard the effects of the crack in numerical integration of the weak form.
This is not possible for the FE method, because when an element is intersected by a crack the
element is also used for the construction of the approximation.

To summarize, in the present approach we avoid remeshing of the numerical model in the
usual FEM sense. With the moving least-squares construction of the EFG shape functions we
can recompute the shape functions without recourse to a mesh generator. Therefore, a topology
and geometry representation independent of the mesh is also eliminated. This makes it possible
to implement the functionality of a crack propagation modeling system in a single component,
working with simple data structures.
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