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Abstract

A constitutive theory is proposed for FRP laminated composite
materials that is designed to account for both temperature and strain
rate dependent response, such as would occur during, and after, expo-
sure to the elevated temperatures due to fire. The theory is physically
based, and in particular, is based on a kinematical framework fixed
on the fabric laminates; full accounting of laminate reorientation and
anisotropic response is thus achieved. The theory is numerically imple-
mented and FEM analysis of compressive deformation of a sandwich
panel, given as an example, demonstrates how common material fail-
ure modes such as kinking are naturally included in the theory and in
analyses using the theory. The theory accounts for finite strains and
thus extent of deformation is arbitrary. The theory and its numerical
implementation are designed specifically to perform numerical analysis
of structural response of FRP structures subject to fire degradation.
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1 Introduction

The single greatest impediment to the use of FRP composites in the design
and construction of advanced ship systems and ship structures is their suscep-
tibility to degradation due to exposure to the elevated temperatures caused
by exposure to fire. On the one hand, FRP materials degrade through the
direct loss of material by ablation and char formation, and on the other hand
they degrade just by exposure to elevated temperatures in the range of say,
60oC < T < 125oC. Losses in material strength result from such exposures
while the materials are at these temperatures and they undergo losses even
after the materials are returned to ambient temperatures. Residual material
properties fare better and for FRP material systems currently proposed for
use for load bearing structures, residual properties can be maintained at near
100% even after exposures to temperatures of up to 200oC. Some examples
of material data are shown below. A constitutive framework is therefore
required for describing the elastic-viscoplastic response of FRP materials to
elevated temperatures that can be used to analyze the observations of ma-
terials behavior during laboratory testing and that can be used to perform
full-scale structural analyses of structures subjected to fire. This paper is a
first report on the development of such a constitutive framework.
The development described herein was guided by the dual needs of developing
a theory that could embody the phenomenology of material loss as well as
degradation in properties of intact material, yet be analytically tractable
and computationally efficient to allow for engineering design. The material
model would, in addition, have to be amenable to implementation along
with the algorithms being co-developed for describing phase transformations
as occur during material ablation. Topics such as ablation, char formation,
and material loss will be described in other reports; here we confine our
attention to the material theory describing time and temperature dependent
elastic-plastic material response.
In many of its aspects our new theory borrows from the successful develop-
ment of the theory for crystal plasticity, especially as laid out by Asaro and
Rice (1977), Asaro and Needleman (1985), and Harren and Asaro (1989);
specific citations in context are given where appropriate in the text. The
theory will account fully for the anisotropy of FRP laminate elastic behavior
as well as for the highly anisotropic inelastic response that occurs due to
interlaminar shear. The latter process is strongly influenced by temperature.
As noted above, there is the very real need for computational efficiency and
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this has led us to avoid constructing a discrete aggregate model, which while
attractive in its ability to separately describe the roles of polymer matrix and
fabric, would inevitably lead to a far more computationally expensive imple-
mentation that would render performing (many) engineering design simula-
tions inviable. The framework for constructing such models, in fact, already
exists as the need may arise and a particularly relevant foundation lies in the
cell models recently proposed by Gu and Asaro (2002).
Of particular interest is the ability to describe common failure mechanisms
that occur in FRP materials. Along with general elastic-viscoplastic de-
formation at elevated temperature these are seen to arise particularly as a
result of compressive loading. One such failure mode is micro-buckling or
kinking, which typically leads to rapid, often localized, degradation and frac-
ture. We desire, therefore, a theory that naturally contains the occurrence
of such phenomena. The model need also contain an accurate description of
the temperature dependence of material stiffness and material resistance to
interlaminar shear - these are accordingly key focuses of our development.
The plan of the paper is as follows. We review some important features
of time and temperature response of FRP composites exposed to elevated
temperature in the next section. There we also describe key features of the
mechanisms and kinematics of elastic and plastic deformation that will have
to incorporated within a continuum theoretical framework. The constitutive
theory is then presented in the next section. Some applications of the theory
are made in Section 4 and conclusions are given in Section 5.

2 Temperature Dependent FRP Behavior

Figure 1 illustrates the in-situ temperature dependent properties of a typ-
ical vacuum bagged E-glass vinylester FRP composite. As noted, several
properties are listed but as it happens they conveniently fall within a tight
enough band that a single curve adequately represents their dependence on
temperature.
It should be noted, however, that at temperatures above, say 50oC the prop-
erties are also somewhat dependent on time as well as temperature itself.
The specific properties shown were recorded after approximately 30 min of
exposure to temperature. Also shown in the figure are properties for two
common core materials, viz. balsa wood and a PVC foam. For this particu-
lar material nearly all strength and stiffness is lost above about 125oC. It is
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Figure 1: Temperature dependent properties

also important to note that the losses in material properties shown in Fig. 1
do not involve material ablation, i.e. do not involve material loss through
combustion. Clearly the degradation shown in Fig. 1 must be attributed to
a reduction in strength and/or stiffness of intact, but degraded material.
Property degradation comes about essentially due to a loss in the stiffness
properties of the resin matrix and this process needs to be understood at
more fundamental levels than it is at present. For the purposes of the present
development, however, it is sufficient to calibrate moduli values to match the
behavior shown. This is what is proposed as described below in Section 3.

3 The Constitutive Model

3.1 Nomenclature & Conventions

Standard notations are used throughout. Bold-faced symbols are used to
denote vectors and higher order tensors, the order of which will be clear in
context. Products are indicated with dots, which denote summation over re-
peated Latin indices, and products without dots are dyadic products. Latin
indices range from one to the number of spatial dimensions (usually three),
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and repeated Latin indices are always summed. Inverses, transposes, and
transpose inverses are denoted with a superscripted −1, T , and −T , respec-
tively, and superposed dots indicate differentiation with respect to time, t.
For instance,

A ·B = AikBkjbibj, A : B = AijBji,

cd = cidjbibj, c · d = cidi,

H : A = HijklAlkbibj, A : H = AklHlkijbibj,

Ḃ =
∂Bij

∂t
bibj, B · c = Bikckbi,

where the base vectors b are Cartesian and independent of time. Greek
indices are slip system identifiers ranging from one to two for the case of an
orthotropic laminate such as considered herein and as explained below.

3.2 The Laminate Model

We consider the FRP material to be composed of an essentially orthotropic
laminate, and to contain a sufficient number of plies so that homogenization is
a reasonable way to describe the material behavior. The principal directions
of the fibers are described by a set of mutually orthogonal unit base vectors,
a, as depicted in Fig.2. The resulting orthotropic
elastic response of the laminated composite will, thus, be fixed on, and de-
scribed by these vectors. The material can also deform via slipping in the
plane of the laminate, i.e. via interlaminar shear, and this slipping is con-
fined to this interlaminar plane. Slipping is possible in all directions in the
plane, but not necessarily with equal ease. We thus introduce two slip sys-
tems aligned with the slip directions s1 and s2. The normal to the laminate
plane is m, and clearly s1 ·m = 0 and likewise s2 ·m = 0. It may well be
natural, but not necessary, to take s1 and s2 to be orthogonal, i.e. s1 ·s2 = 0,
but note that due to elastic distortions they may not remain so during de-
formation. These vectors will be called s∗1, s∗2, and m∗ in the deformed state,
but since m∗ is to be the normal to the slip plane, i.e. the plane of the
laminate, it will always be the case that s∗1 · m∗ = 0 and s∗2 · m∗ = 0 as
shown to be naturally described by our expressions for the kinematics of
laminate deformation. In fact, it is possible to take the slip system vectors
to be coincident with the laminate base vectors, a and insure that they are
convected so that the above stated orthogonality is preserved; there is no
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Figure 2: Kinematics

need to do this however. Even though both slip systems have the same slip
plane normal, i.e. m, it will be convenient for symmetry of expression to
refer to m1 and m2 in the expressions below. This makes it easier as well
to establish correlations with the body of theory for crystal plasticity. Fig-
ure 2 illustrates the total deformation from the reference configuration, B0,
to occur in two stages producing a viscoplastic and an elastic deformation,
respectively. The viscoplastic deformation occurs by the flow of the material
through the framework, i.e. the lattice, of the laminate via the interlaminar
shears. The spatial velocity gradient of this plastic flow is thus written as

Ḟ
p · Fp−1 =

2∑
1

γ̇αsαmα, (1)

where Fp is the plastic deformation gradient and γ̇α is the rate of shearing
on the αth slip system. The value of Fp is obtained by the path dependent
integration of (1). This process produces an intermediate configuration, Bp.
Next the current, i.e. deformed, configuration Bc is reached from Bp by
elastically distorting and rigidly rotating the laminate (i.e. lattice) along
with material, i.e. fabric and matrix, embedded on it. This second step of
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deformation is described by the elastic deformation gradient, F∗. Hence the
decomposition of F,

F = F∗ · Fp (2)

is obtained, where F is the total elastic plus plastic deformation. This de-
composition was introduced in this context for crystal plasticity by Asaro
and Rice (1977) and for phenomenological plasticity by Lee (1969).
The driving force for slip on the αth system is taken to be primarily caused
by the resolved shear stress, τα on that system. This is written as,

τα = m∗
α · τ · s∗

α, s∗
α = F∗ · sα, m∗

α = mα · F∗−1, τ = Jσ, (3)

where J = det{F} is the Jacobian, τ is the Kirchhoff stress, and σ is the
Cauchy stress (i.e. true) stress. Here, in the current state (i.e. deformed
state), s∗α and m∗

α are respectively along the αth slip direction and the slip
plane normal. Note that s1 and s2 are made to convect with the lattice
framework whereas m is the reciprocal base vector that remains normal to the
plane that contains both s1 and s2. This definition of τα as discussed by Asaro
(1983) is used because it makes τα conjugate to γ̇α, i.e.

∑2
α=1 ταγ̇α is precisely

the plastic dissipation rate per unit reference volume. On the other hand it
is entirely possible that the shear resistance of interlaminar zones is sensitive
to the normal stress that acts on the plane, the shear rate would depend
on the stress component, τmm = m∗ · τ ·m∗. In this case a more general
load parameter might be prescribed for the αth slip system, viz. τ̂α = ‖τα‖+
βτmm, but where τ̂ ≥ 0. The parameter β represents are frictional resistance
due to the compaction of fabric due to normal compressive stresses. Note
that as shown by Asaro and Rice (1977) and then again by Dao and Asaro
(1996) the appearance of such terms in the loading parameter represents
a deviation from the law of normality which, in turn, has implications for
localized deformation.
The constitutive description of the plasticity on each slip system is cast in
terms of the resolved shear stress on that system and on the current slip rate
on that system as,

γ̇α = γ̇0sgn{τα}
{
‖τα

gα

‖
}1/m

, (4)

where τα is the current value of the resolved shear stress and gα is the cur-
rent value of the slip system hardness. Note that when frictional effects are
important τα should be replaced by τ̂α in (4). In (4), m is the strain rate
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sensitivity exponent, γ̇0 is a reference shear strain rate, and sgn{•} means
the sign of {•}. Note that as m → 0 rate independent behavior is achieved,
and that in that limit gα corresponds to the slip system strength, τα at least
in absolute value. This limit is unlikely for the polymer resin systems of in-
terest here. Also, for creep-like behavior we expect 0.15 ≤ m ≤ 1.0, whereas
for viscoplastic response m ≤ 0.1.
In general, we expect the possibility that there may be hardening of the
interlaminar layers following slip and this is described by a path dependent
evolution equation of the form,

ġα =
2∑

β=1

hαβ(γa)‖γ̇β‖, γa =

∫ t

0

∑
α

‖γ̇α‖dt, (5)

where hαβ is a hardening matrix of (non-negative) hardening moduli and γa

is the accumulated sum of the slips. The initial conditions for this evolution
are specified as gα(γ̇α = 0) = g0 and the form of hαβ is,

hαβ(γa) = g′(γa)qαβ, (6)

where the prime denotes differentiation with respect to γa, and qαβ is a matrix
that describes the cross hardening between the two slipping directions. A
possible, and quite general form for g(γa) is,

g(γa) = g0 + h∞γa + (g∞ − g0) tanh

{
(h0 − h∞)

(g∞ − g0)

}
. (7)

If the laminate is subjected to a monotonically increasing shear strain γ > 0
along one direction, then γ = γa and the relation g = g(γa) can be interpreted
as being the relation of hardness vs. shear strain for that slip system. Also,
in (7), g0 = g(γa = 0), h0 = g′(γa = 0), and h∞ = g′(γa → ∞). If h∞ ≡ 0,
then g∞ = g(γa →∞). At present there is little data to guide the calibration
of hardening laws such as (7), but its flexibility should provide the ability to
do so.
The description of the laminate’s constitutive response is completed with a
specification of its elasticity, which is expressed in terms of the Green strain
of the fabric framework, viz. E∗ = (1/2)(F∗T · F∗ − I) and the laminate
framework-based second Piola-Kirchhoff stress, S∗ = F−1 · τ · F∗−T , where I
is the second-order identity tensor. For anisotropic elastic solids the elastic
response may be written as S∗ij = (∂Φ/∂E∗

ij), where S∗ = S∗ijaiaj, E∗ =
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E∗
ijaiaj, and Φ = Φ(E∗

ij) is the free energy of the fabric framework per unit
reference volume. Alternatively, in rate form, we have

Ṡ
∗

= K : Ė
∗
, K = Kijklaiajakal, Kijkl =

∂2Φ

∂E∗
ij∂E∗

kl

(8)

On the other hand (8) can, and typically will, be constructed from a laminate
theory based on discrete analysis of the layering of thin plies.

3.3 Additional Kinematical Perspective

The decomposition of (2) results in the total velocity gradient taking the
form,

Ḟ · F−1 = Ḟ
∗ · F∗−1 + F∗ ·

2∑
α=1

γ̇αsαmα · Ḟ∗−1
. (9)

By forming symmetric and antisymmetric parts of the above velocity gradient
we obtain the decomposition of the rate of deformation and the spin rates,
viz.

D = D∗ + Dp Ω = Ω∗ + Ωp, (10)

where

Dp =
2∑

α=1

Pαγ̇α Ωp =
2∑

α=1

Wαγ̇α. (11)

In (11), the symmetric and antisymmetric tensors Pα and Wα are given as,

Pα =
1

2
{s∗αm∗

α + m∗
αs
∗
α} Wα =

1

2
{s∗αm∗

α −m∗
αs
∗
α} . (12)

The elastic parts of D and W, viz. D∗ and W∗ are formed by taking the
symmetric and antisymmetric parts of (9). Note that the interpretations of
how s and m convect with the laminate framework, as introduced in (3), are
a natural outcome of the kinematical scheme shown in Fig. 1.

3.4 Final Constitutive Forms

The description of the single crystal’s constitutive response is completed with
a specification of its elasticity, which is expressed in terms of the Green
strain of the framework, E∗, as given in (8). Having the description of this
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response the entire constitutive theory can be expressed in terms of the Green
strain, E = 1/2{FT · F − I} and the second Piola-Kirchhoff stress, S =
F−1 · τ · F−T . Straightforward tensor manipulations of the above relations
yield the governing constitutive rate form,

Ṡ = L : Ė−
2∑

α=1

γ̇αXα, (13)

where
Lijrn = F p−1

ik F p−1
jl KklpqF

p−1
rp F p−1

nq , (14)

and where
L = Lijklaiajakal, Fp−1 = F p−1

ij aiaj. (15)

In (13)
Xα = Fp−1 · {K : Aα + 2Bα} · Fp−1, (16)

with

Aα = sym
{
F∗T · F∗ · sαmα

}
, Bα = sym {sαmα · S∗} . (17)

Finally, we note that it is useful to express the constitutive relations in terms
of the nominal stress, n and its conjugate, F itself. The transformation is
also straightforward since n = F−1 · τ = S · FT and consequently ṅ =

Ṡ · FT + S · ḞT
, which then yields

ṅ = M : Ḟ−
2∑

α=1

γ̇αYα, (18)

with

Mijkl = F p−1
ia F ∗

jbKabcdF
p−1
kc F ∗

id + Sikδjl (19)

F∗ = F ∗
ijaiaj, S = Sijaiaj (20)

I = δijaiaj, M = Mijklaiajakal, (21)

with
Yα = Xα · FT . (22)
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3.5 Calibration of the constitutive model

To account for the loss in material stiffness at elevated temperatures we will
take, as a first step, the curve shown in Fig. 1 to be a master degrada-
tion function for all components of moduli. This means that in (8) Kijkl ←
f(T )Kijkl, where f(T ) is the monotonically decreasing function shown in
the figure. It should be possible to improve on this simple representation of
stiffness degradation with further experimental study of the effect of temper-
ature on anisotropic stiffness. Losses in shear strength are handled, again
as a first step in our modelling, by replacing g(γa) in (4) with η(γa), where
η = r(T )g(γa). The function r(T ) is to be determined by experimental doc-
umentation of the effect of temperature on the resistance to interlaminar
shear. Thus, the shearing rates are calculated from,

γ̇α = γ̇0sgn{τα}
{
‖ τα

ηα

‖
}1/m

, (23)

In the examples shown in the next section r(T ) is taken to be of the same
general monotonically decreasing form as f(T ).
In general, orthotropic elastic symmetry is presumed although the materials
will often possess transverse isotropy. Thus the elastic constants will have
components, when phrased on the orthotropic axes of the form,

K = Kijklaiajakal. (24)

If the common convention of index contraction is used, i.e. 11 ® 1, 22 ® 2,
33 ® 3, 23, 32 ® 4, 13, 31 ® 5, and 12, 21 ® 6, the matrix of components
becomes, 




K11 K12 K13 0 0 0
K12 K22 K23 0 0 0
K13 K23 K33 0 0 0
0 0 0 K44 0 0
0 0 0 0 K55 0
0 0 0 0 0 K66





the elements of this stiffness matrix may be formed directly from experimen-
tal measurement of the elastic moduli, or from standard laminate theory.
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4 Applications

We consider below the compressive deformation of a sandwich panel, as an
example application of the constitutive model. The example is specifically
chosen to illustrate the ability of the model to predict failure modes such as
kinking. We note, as discussed above, that with degradation due to elevated
temperatures, interlaminar shear, i.e. slip, is induced and this will lead to
an early onset of failure modes such as kinking. Of course, other failure
modes such as skin wrinkling are also likely to be triggered and these will
compete with failure modes such as structural buckling and kinking. Our
constitutive and numerical framework is capable of describing these modes,
as they compete, en toto. In the present example, however, we will focus on
kinking as described below.

4.1 Kinking of sandwich composite skin

4.1.1 Problem description

The sandwich is taken to be symmetric and consists of a relatively compliant
core (balsa wood) and skins of symmetric lay-up with respect to the mid-
plane of the sandwich, held together by an adhesive layer. In the particular
case examined, the core is 50 mm thick, and the skins are of 1.75 mm thick-
ness. Figure 3 shows a schematic view and the finite element mesh and also
helps to explain the model. The specimen is further taken to be 100 mm tall,
and is modeled with plane-strain constraint in the y direction (into the plane
of the drawing) with one layer of solid hexahedral 8-noded finite elements.
Only one half is discretized as symmetry is assumed. It is noted here, and
below, that the specimen is purposely taken to be ”stubby” so as to effec-
tively preclude the appearance of structural buckling. This is done so that
the appearance of kinking modes, that are inherent in the theory, would be
highlighted. As discussed below, when more slender specimens are analyzed,
kinking modes would compete with structural buckling modes and indeed a
typical specimen, or structure, would display combinations of such modes.
The core is modeled as an isotropic elastic material. The constitutive model
outlined above is used for the skin of the composite with slip plane normal
parallel in the reference configuration to the surface of the skin. There is,
however, a geometrical imperfection in the slip plane normal at about the
midpoint of the panel. In particular, between z = 45 mm and z = 45 mm,
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the direction of the normal is assumed to have components Ñx = 1, Ñy = 0
and

Ñz = − π

10
sin

( π

20
(z − 35)

)
cos

( π

20
(z − 35)

)
. (25)

(The actual slip plane normal is normalized to unit length, Ni = Ñi/||Ñ||.)
When the specimen is subjected to compression in the z direction, we there-
fore expect to see kink(s) formed in the skin(s) of the sandwich composite.
The core and skins are held together by a single layer of thin elements,
designed to replicate the adhesive layer. These elements have properties de-
signed to simulate the debonding of the skin once the maximum strength of
the adhesive (or tensile strength of the core) is reached. In particular, when
the positive principal stress value exceeds a given limit, the element’s inter-
nal stress is assigned a zero value, thus effectively deactivating the quadra-
ture point. This limiting decohesive stress is σmax = 1 MPa. Alternate, and
more elaborate, cohesive models can be implemented, see for example Varias,
O’Dowd, Asaro and Shih (1990); and also Xu and Needleman (1996).

Figure 3: View of the overall geometry and the zoom-in of the imperfection
area.
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4.1.2 Material Parameters

For computational economy, in this example, only the center part (35 mm <
z < 65 mm) of the specimen skin is elasto-viscoplastic; other parts of the
skin are assumed to remain (hyper-) elastic. The constitutive parameters of
the skin material are as follows: elastic constants are c11 = 204000 MPa,
c12 = 68000 MPa, c44 = 68000 MPa, (implying isotropy), isotropic or Taylor
hardening parameter q = 1, initial hardening rate h0 = 1, reference shear
strain rate γ0 = 300, initial flow stress g0 = 27 MPa, saturation strength
ginf = 30 MPa, strain-rate sensitivity exponent msrs = 0.05, material density
ρ = 1.6 × 10−9 ton m−3. Note that it has been assumed that the skins are
elastically isotropic for the example shown.
The core is elastic, and the material parameters are as follows: Young’s
modulus E = 17000 MPa, Poisson’s ratio ν = 0, material density ρ =
0.6×10−9 ton m−3. The adhesive layer elements are assigned a tensile cut-off
strength of 1MPa.

4.1.3 Initial and Displacement Boundary Condition

The top surface is made to move downwards at 100 mm/s, and the bottom
surface of the specimen is fixed in the z direction. Therefore, the initial
condition is a linearly interpolated velocity distribution in the z direction.
The plane-strain constraint is applied in the y direction, and the skins at
the top and bottom portions of the model are prevented from moving in
the x direction to prevent global buckling mode of failure. We note that in
general global buckling is a failure mode that competes with kinking. We
preclude it here because we are more interested at this point at examining
the phenomenology of materials, rather than structural, failure modes.

4.1.4 Results

The results are reported in several ways. In particular, the resolved shear
stresses and plastic slip strains are reported at nodes along mesh line through
the thickness of the composite skin, viz. at z = 50 mm, which is shown in
Figure 4. There are nine (9) nodes on the plane. The first node on the line
is at the interface between the core and the adhesive layer. The second lies
between the adhesive layer and the skin, and the ninth is at the surface of
the skin.
Figure 5 shows the nominal load vs. axial displacement for this example
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Figure 4: Sampling line drawn next to the deformed geometry with the
contours of the slip strains.

calculation. Note the behavior is quite linear up to the point where slip
begins as noted by the contours shown in Figure 6, discussed next. After
yielding, and eventually the development of a kinking mode, the load drops
rapidly. We note, however, that there is no overall ”spring back” as the
specimen is under displacement control.
Figure 6 shows the evolution of the plastic slip strain γ2 on a series of snap-
shots from the time history, namely snapshots 198, 208, 218, 228, and 238
(238 is the last). These points are marked on Figure 5. As noted, Figure 6
illustrates the development of the inelastic deformation. The color range of
the slip strain is fixed as 〈−0.05; 0.05〉. Figure 7 displays the corresponding
series of images for the resolved shear stress for time snapshots 198, 208,
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218, 228, and 238. We note some interesting trends, namely that after gen-
eral yielding in the imperfect region, and following kink formation, there is a
drop off of the magnitude of the resolved shear stress, τ2. Figure 8 shows the
curves of the time evolution of the resolved shear stress at the nodes along
the sampling line. Figure 9 shows the corresponding evolution of the plastic
slip strains at the nodes along the sampling line.
Figure 10 illustrates how the axial stress evolves along the fibers at positions
along the sampling line at z = 50 mm. As expected, the stresses are compres-
sive at first during what is essentially a more-or-less uniform compression.
Following the onset of kinking, and then full kinking, the stresses start to
adjust to reflect the bending of the skin. This type of phenomenology is typ-
ical of kinking and the resulting tensile stresses promote fracture and thus
failure of the skin. On the other hand, there are tensile stresses developed
on the skin-core interface, and these will induce rupture of the adhesive layer
(de-bonding of the skin from the core).
Finally, Figure 11 illustrates the σxx stress in the adhesive layer at the 50 mm
sampling line, as well as 2 mm below that sampling line. It is clear that at
the location 2 mm below the sampling line, the composite skin is pulling
away from the core. The tensile stress in the x direction builds until it
reaches the adhesive layer strength of 1 MPa. The stress then drops to zero,
indicating that debonding has occurred. The stress at the sampling line,
on the other hand, initially is in compression. This couple at the adhesive
layer balances the couple formed in the skin due to the eccentricity at the
kink. The compression force at the sampling line increases up until the point
of debonding in the tensile region, at which point the resisting couple in
the adhesive layer shifts upward, resulting in its quick reversal. This force
immediately rises to the 1 MPa tensile limit and then itself debonds. As
can be seen in the figure, debonding begins at a stage in the loading history
proceeding the load drop in the record of Figure 5. It tends to propagate
quickly once begun as the specimen begins to undergo compressive failure.

5 Summary and Future Work

The approach taken here is capable of describing failure due to a wide variety
of failure modes, that themselves occur over a wide variety of physical size
scales. Such modes include structural buckling, skin wrinkling (that leads,
in turn, to skin delamination), and material failures such as the kinking we
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Figure 5: Load vs. displacement along z-direction

have explore in the example described above. We note, again, that in that
example we purposely precluded structural modes by making the sandwich
specimen suitably ”stubby”. This was done since our expressed aim was to
demonstrate the ability of the constitutive theory to predict, and quantita-
tively describe, the onset and progression of material failures. Had we chosen
a more slender geometry, and one more typical of a structural member, we
would undoubtedly observed structural modes preceeding the kinking like
modes described in the above example.
It should also be noted that the material properties used are those repre-
sentative of ”intact”, essentially damage-free material. In the case of fire,
and consequent material degredation, we expect to observe transitions in
failure modes along with the earlier onset of failure modes that would have
occurred only after attaining the anticipated—and designed for!—loads. It is
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precisely this sort of phenomenology that our approach is designed to handle
in a natural and seamless fashion. That is, we developed herein an approach
that does not require ad hoc input from extraneous failure models as post-
processing but rather naturally contains a physically based description of the
entire gamut of failure modes. The theory we developed here also provides
for a clear, tractable path to calibration.
The approach taken above to describe the time and temperature response
has, however, been approximate in that it is based on a homogenized treat-
ment of what is actually a discrete interaction between the constituents of
FRP composites. It is obvious that much more work is required aimed at
documenting the behavior of such composite materials that are subject to
the elevated temperatures due to fire. It is also clear that the development
of more physically based models for the temperature dependence will benefit
from the co-development of micro-mechanical models for the interaction that
takes place between laminates and the polymer resin matrices comprising the
composites. As noted in the Introduction, the recently developed cell model
of Gu and Asaro (2002) may represent a particularly good point of departure
for such models as they have formulated an aggregate model that accounts
for the discrete distribution of distinctly different phases within a coherent
composite. Finite strains and rate dependent behavior are accounted for in
what amounts to something more than just a self-consistent scheme. In fact
in the their approach, both traction continuity and displacement continuity
are prescribed between all sub-cells, that is distinct phases, of the compos-
ite. We are currently pursuing the refined development of such models and
correlated experiments aimed at documenting the effects of temperature on
the full 3D material response. There is, however, the need to retain com-
putational tractability vis-á-vis the goal of performing engineering design
computations. Thus whereas the micro-mechanically based models will be of
great use in exploring complex phenomena and understanding failure, they
are also likely to be used to guide the development of more accurate, but
tractable, models of the type presented above.
As a final note, the authors have developed a detailed model for the ther-
mal profile development in FRP composite materials subject to incident heat
fluxes, or elevated surface temperatures (Krysl, 2003). The model accounts
for thermal degradation caused by both elevated temperatures and material
loss due to pyrolysis. It is, therefore, natural to combine that ability with the
constitutive framework described herein to provide a complete description of
thermal profiles, material degradation, and structural degradation caused by
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fire. As an example, Figure 12 shows results for the temperature distribu-
tion that developed during a simulation of the thermal loading of a sandwich
panel similar to the type analyzed above. In the example, material is actu-
ally lost through pyrolysis which produces a ”char” that has minimal, and
even vanishing, properties. The temperature profile is obviously nonuniform
and thus would, with reference to Figure 1, cause a severe and nonuniform
degradation in material properties. The thermal analyses, such as illustrated
in Figure 12, coupled through the properties described by Figure 1 and the
constitutive calibration described in Section 3.5, to the thermo-mechanical
theory described here would provide a complete structural analysis frame-
work.
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Figure 6: Distribution of γ2 at the imperfection area of the deformed speci-
men. The range of the color map of the contours is fixed at < −0.05; 0.05 >.
(Displacement in the x direction magnified 10 times.)
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Figure 7: Distribution of τ2 at the imperfection area of the deformed speci-
men. The range of the contours is fixed at < −31; 31 > MPa. (Displacement
in the x direction magnified 10 times.)
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Figure 8: Resolved shear stress at the nodes on sampling line (z = 50 mm)
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Figure 9: Shear strain γ2 at the nodes on sampling line (z = 50 mm)
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Figure 10: σzz at the nodes on sampling line along fibers (z = 50 mm)
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Figure 11: σxx at the adhesive layer
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Figure 12: Thermal evolution of composite panel exposed to fire
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