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SUMMARY

Two midpoint-trapezoid pairs of dynamically equivalent (conjugate) algorithms are derived as compositions
of first-order forward Euler and backward Euler integrators as applied to an incremental form of the
initial-value problem of three-dimensional rigid body rotation. The algorithms are related to the recently
developed methodology of the so-called Munthe-Kaas Runge–Kutta methods. Selected examples are used
to illustrate the excellent long-term integration properties. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well-known that for the time integration of vector-space Hamiltonian mechanics the midpoint
rule and the trapezoidal rule are dynamically equivalent [1]. The present paper addresses the
question whether there is a corresponding pair of dynamically equivalent algorithms for the initial-
value ordinary differential equation problem that describes three-dimensional rigid body rotations.
The tool used in the construction of these algorithms is the composition of maps. It is common
knowledge that both the midpoint rule and the trapezoidal rule in the vector-space setting result
from the composition of the forward and backward (backward and forward, respectively) half-step
Euler methods. In the first part, this procedure is reviewed to provide a template for the second
part of the manuscript. Following the template, not one, but two midpoint-trapezoid pairs of
dynamically equivalent (conjugate) algorithms are derived as compositions of first-order forward
Euler and backward Euler integrators as applied to an incremental form of the initial-value problem.
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The properties of these algorithms are investigated using a few previously published integrators
as a reference. In particular, the algorithms are viewed in the context of the recently developed
methodology of the so-called Munthe-Kaas Runge–Kutta methods [2]. A few selected examples
are used to illustrate the excellent properties of the proposed algorithms, especially the stable and
well-behaved response for very long integration intervals.

2. DYNAMICS ON VECTOR SPACES

The initial-value problem for a mechanical system (for instance, a system of interacting particles)
described by a vector of configuration variables (displacements) u∈ Rn may be stated as

ṗ= f, p(0)= p0

u̇=M−1p, u(0) =u0
(1)

where ṗ is the rate of linear momentum, u̇ is the velocity, and f= f(u, t) is the applied force. For
simplicity we shall assume a time-independent mass matrix M. The initial values are p0, and u0.

Using subscripts to indicate the time to which a given quantity belongs, and writing ft+h =
f(ut+h, t + h), we may formulate a forward Euler time step applied to (1) as

pt+h = pt + hft

ut+h = ut + hM−1pt
(2)

and the backward Euler approximation as

pt+h = pt + hft+h

ut+h = ut + hM−1pt+h

(3)

Sequential composition of algorithms (2) and (3) in this order with time steps h = �t/2 yields the
trapezoidal rule [1]

pt+�t = pt + �t

2
(ft + ft+�t )

ut+�t = ut + �t

2
M−1(pt + pt+�t )

(4)

Sequential composition of algorithms (3) and (2) with time steps h = �t/2 yields the midpoint
rule [1]

pt+�t = pt + �tft+�t/2

ut+�t = ut + �t

2
M−1pt+�t/2

(5)

The above algorithms have been derived as forward or backward Euler approximations to the
derivatives in Equation (1), but, importantly, it would equally make sense to understand them as
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INTEGRATION OF RIGID BODY ROTATIONS

approximations of the integrals in these, equivalent, equations

pt+h = pt +
∫ t+h

t
f(�) d�

ut+h = ut + M−1
∫ t+h

t
p(�) d�

(6)

For the vector-space problem there is no advantage to be gained from either form, but as we shall
see next, these two approaches yield different algorithms for the rotational dynamics.

3. DYNAMICS OF ROTATIONS

An excellent discussion of the difficulties of interpolating on the curved manifold SO(3), which is
an appropriate setting for this problem, has been given in Reference [3]. To begin our presentation,
we shall show how to formulate rotational dynamics algorithms to bring out the parallels to the
above vector-space trapezoidal/midpoint dynamically equivalent couple in Equations (4) and (5).

The initial-value problem may be written in the convected description (body frame) as

Ṗ= −skew[I−1P]P+ T, P(0)=P0

Ṙ=R skew[I−1P], R(0)=R0

(7)

where Ṗ is the rate of body-frame angular momentum, R is the rotation matrix (tensor), R−1 =RT

(orthogonal operator), T=T(t,R(t)) is the applied torque in the body frame, skew[•] is defined
by skew[w] ·w= 0, and I is the time-independent tensor of inertia in the body frame.

3.1. Vector parametrization

The second equation (7) is not in a form suitable for forward or backward Euler discretization:
the rotation tensor constitutes points of the Lie group SO(3), which is not a vector space and
linear combinations are not legal operations on the rotation tensors. Therefore, an inevitable loss
of orthogonality of the rotation tensor would result when the time stepping was applied directly.
To transform the initial-value problem to a form suitable for our purposes, we shall introduce the
rotation vector representation of the rotation tensor.

As is standard, the equation of motion is written in the spatial frame as ṗ=RT, where p=RP
is the spatial angular momentum. Integrating the spatial equation of motion, and converting back
to the body frame, we may write the equation of motion in integral form in the body frame as

P(t + �t) = exp[−W]
(
P(t) + RT(t)

∫ t+�t

t
R(�)T(�) d�

)
(8)

where exp[−W]= exp[−skewW]=RT(t+�t)R(t) is the incremental rotation through vector (−W).
By time differentiation of Equation (8), and by comparison with the original differential equation
of motion, we obtain

Ẇ= (d exp−W)−1I−1P
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where d exp−W is the differential of the exponential map [3]

d expH = 1 + 1 − cos‖H‖
‖H‖2 skewH+

(
1 − sin‖H‖

‖H‖
)
skewH2

‖H‖2 (9)

The initial-value problem (in the second equation it is of incremental nature) may be therefore
rewritten as

Ṗ= −skew[I−1P]P+ T, P(0) =P0

Ẇ= (d exp−W)−1I−1P, W(0)= 0
(10)

3.2. Forward and backward Euler algorithms

We may write the forward Euler step for these two differential equations as

Pt+h =Pt − h skew[I−1Pt ]Pt + hTt

Wt+h =Wt + h(d exp−Wt
)−1I−1Pt

Since the incremental rotation vector is such thatWt = 0, and (d exp0)
−1 = 1, we obtain the forward

Euler approximation as

Pt+h =Pt − h skew[I−1Pt ]Pt + hTt

Wt+h = hI−1Pt

(11)

The backward Euler approximation is similarly written as

Pt+h =Pt − h skew[I−1Pt+h]Pt+h + hTt+h

Wt+h = h(d exp−Wt+h
)−1I−1Pt+h

which may be simplified by noting

d expWt+h
Wt+h =Wt+h

to give the backward Euler step

Pt+h =Pt − h skew[I−1Pt+h]Pt+h + hTt+h

Wt+h = hI−1Pt+h

(12)

It is well-known that these two methods in the vector-space setting are mutual adjoints [1]. This
means that for the forward Euler method �fE

h we can undo its step by applying the backward Euler
method with the reversed time step �bE−h :

�bE−h ◦ �fE
h = Id

with Id the identity map, and also the backward Euler step �bE
h may be undone with �fE−h

�fE−h ◦ �bE
h = Id

Since the availability of this property is not obvious for (11) and (12), we present a brief proof.
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First, we show that �bE−h ◦ �fE
h = Id holds. The step �fE

h may be written

P1 =P0 − h skew[I−1P0]P0 + hT0, R1 =R0 exp[hI−1P0]
with the obvious notation •0 =•t and •1 = •t+h . Next, the step �bE−h is applied to the quantities
P1 and R1, and reads

P2 =P1 + h skew[I−1P2]P2 − hT2, R2 =R1 exp[−hI−1P2]
with the notation •2 = •t+h−h . Substituting for P1 one obtains

P2 =P0 − h skew[I−1P0]P0 + hT0 + h skew[I−1P2]P2 − hT2

R2 =R1 exp[hI−1P2] =R0 exp[hI−1P0] exp[−hI−1P2]
(13)

with the obvious solution P2 =P0, R2 =R0. (By definition of the torque, T2 =T(t+h−h,R2) =
T(t,R0) =T0.)

Now, we show that �fE−h ◦ �bE
h = Id holds. The step �bE

h may be written

P1 =P0 − h skew[I−1P1]P1 + hT1, R1 =R0 exp[hI−1P1]
and the step �fE−h is applied to the quantities P1 and R1

P2 =P1 + h skew[I−1P1]P1 − hT1, R2 =R1 exp[−hI−1P1]
Substituting for P1 and R1 it trivially follows P2 =P0, R2 =R0.

3.3. TRAP: trapezoidal algorithm

Composition of the forward Euler step (11) followed by the backward Euler step (12), both with
h =�t/2, yields the following trapezoidal rule:

Pt+�t =Pt + �t

2
(−skew[I−1Pt ]Pt + Tt − skew[I−1Pt+�t ]Pt+�t + Tt+�t )

Wt+�t/2 = �t

2
I−1Pt , Wt+�t = �t

2
I−1Pt+�t

(14)

The second line should be understood as producing two incremental rotation vectors, so that the
update of the orthogonal rotation tensor is

Rt+�t =Rt exp[Wt+�t/2] exp[Wt+�t ]
The trapezoidal rule is formally given in the algorithm TRAP: (note that the torque at time tn
depends on the current configuration, Tn =T(tn,Rn)).

Algorithm TRAP
Given Pn−1,Rn−1,
Solve as a coupled system of equations

Rn =Rn−1 exp
[

�t
2 skew

[
I−1Pn−1

]]
exp

[
�t
2 skew

[
I−1Pn

]]
Pn =Pn−1 + �t

2

(−skew
[
I−1Pn−1

]
Pn−1 + Tn−1 − skew

[
I−1Pn

]
Pn + Tn

)
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3.4. IMID: midpoint algorithm

Similarly, composition of the backward Euler step (12) followed by the forward Euler step (11),
both with h =�t/2, yields the following midpoint rule:

Algorithm IMID:
Given Pn−1,Rn−1,

Solve as a coupled system of equations
P=Pn−1 − �t

2 skew[I−1P]P+ �t
2 Tn−1/2

Rn =Rn−1 exp
[
�t skew

[
I−1P

]]
Pn =Pn−1 − �t skew[I−1P]P+ �tTn−1/2

The torque is evaluated as Tn−1/2 =T(tn + �t/2,Rn−1 exp[(�t/2) skew[I−1P]]).
3.5. Properties of TRAP and IMID

It is easy to ascertain that neither algorithm TRAP nor IMID will conserve spatial momenta in
the absence of external forcing. The reason is evidently our use of the rate balance equation.

It is of considerable interest that the algorithm IMID conserves kinetic energy (in the absence
of forcing). The kinetic energy in time step n is written as

Kn = 1
2P

T
n I

−1Pn

Using the first equation in IMID we may express

P−Pn−1 = − �t

2
skew[I−1P]P (15)

which upon substitution into the last equation in IMID yields

Pn = 2P−Pn−1

Therefore, the kinetic energy in time step n may be rewritten

Kn = 1
2P

T
n I

−1Pn = 1
2P

T
n−1I

−1Pn−1 + 2P
T
I−1P− 2P

T
I−1Pn−1

= Kn−1 + 2PTI−1(P−Pn−1) (16)

and we can show that the last term is identically zero by substituting from (15) and using
aTskew[a]= 0 (product of a skew-symmetric matrix with its axial vector)

2PTI−1(P−Pn−1) = 2PTI−1
(

−�t

2
skew[I−1P]P

)
= 0

The algorithm TRAP does not conserve energy at the time stations tn−1, tn . However, TRAP
and IMID are conjugate algorithms [1] as we have

�T
�t = �bE

�t/2 ◦ �fE
�t/2, �M

�t = �fE
�t/2 ◦ �bE

�t/2

and consequently

�M
�t = (�bE

�t/2)
−1 ◦ �T

�t ◦ �bE
�t/2
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where �T is TRAP, �M is IMID, �fE is the forward Euler (11), and �bE is the backward
Euler (12). Thus, the algorithm TRAP produces at the time instant tn quantities that can be pushed
to time tn+1/2 by one half-step of the forward Euler (11). These same quantities are available by
stepping with the IMID algorithm starting from the initial values at t1/2, and then advancing with
the midpoint algorithm by a full step. Therefore, the trapezoidal rule algorithm TRAP actually
conserves the ‘midpoint’ energy exactly in torque-free motion. In this sense, both IMID and TRAP
are energy-conserving methods.

3.6. Momentum-conserving TRAPM and IMIDM algorithms

Concerning the conservation of angular momentum: there is an alternative, since Equation (8)
expresses evolution of the body-frame momenta in integral form (this device has been also used
by Simo and Wong to derive a momentum-conserving integrator [4]). Writing the initial-value
problem in the integral form

P(t + h) = exp[−W(t + h)]
(
P(t) + RT(t)

∫ t+h

t
R(�)T(�) d�

)
, P(t) =Pt

W(t + h) =
∫ t+h

t
(d exp−W)−1I−1P(�) d�, W(t) = 0

(17)

we therefore arrive, with the simplifications discussed below Equation (11), at the momentum-
conserving form of the forward Euler discretization as

Pt+h = exp[−Wt+h](Pt + hTt )

Wt+h = hI−1Pt

(18)

The momentum-conserving form of the backward Euler approximation is similarly written as

Pt+h = exp[−Wt+h](Pt + h exp[Wt+h]Tt+h)

Wt+h = hI−1Pt+h

(19)

Therefore, composing Equations (18) and (19) with time step h = �t/2, we can write themomentum-
conserving trapezoidal rule as

Pt+�t = exp[−Wt+�t ] exp[−Wt+�t/2]
(
Pt + �t

2
Tt

)
+ �t

2
Tt+�t

Wt+�t/2 = �t

2
I−1Pt , Wt+�t = �t

2
I−1Pt+�t

(20)

Evidently, the trapezoidal rule exactly conserves spatial momenta in the absence of external torques.
It is summarized in the algorithm TRAPM:

Algorithm TRAPM:
Given Pn−1,Rn−1,
Solve as a coupled system of equations

Rn =Rn−1 exp
[

�t
2 skew

[
I−1Pn−1

]]
exp

[
�t
2 skew

[
I−1Pn

]]
Pn =RT

nRn−1

(
Pn−1 + �t

2 Tn−1

)
+ �t

2 Tn

Copyright q 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (in press)
DOI: 10.1002/cnm



P. KRYSL

Analogously, we may formulate the dynamically equivalent momentum-conserving midpoint rule
by composing Equations (19) and (18) with time step h = �t/2, arriving at the algorithm IMIDM.

Algorithm IMIDM:
Given Pn−1,Rn−1,
Solve as a coupled system of equations
Wn =�tI−1(exp[− 1

2W̃n]Pn−1 + �t
2 Tn−1/2)

Rn =Rn−1 exp[W̃n]
Pn = exp[−W̃n]Pn−1 + �t exp[− 1

2W̃n]Tn−1/2

Note that the midpoint torque is calculated as Tn−1/2 =T(tn + �t/2,Rn−1 exp[ 12W̃n]). The
algorithm IMIDM has been analysed in the open literature; see for instance [5–7]. It was also
introduced in References [8, 9] as LIEMID[I] to serve a discussion of explicit composition
algorithms for the rigid body rotation.

3.7. Properties of TRAPM and IMIDM

Their behaviour in long-term integrations depends on which quantities (if any) are conserved. The
design of the algorithms equipped both with the conservation of the spatial angular momentum.
Let us now look at the other properties.

A quick calculation shows that neither of the algorithms conserves exactly kinetic energy in
torque-free motion. It appears from numerical evidence (the fact that the energy error oscillates
but is bounded for long times, and also that the scaling of the energy error with the time step
squared yields approximately the same magnitude of the energy error), and from an incomplete
proof, that the algorithm IMIDM is symplectic (for a readable discussion of the symplecticity
of some dynamics algorithms see Reference [10]). Similar to the IMID/TRAP pair, the pair
TRAPM/IMIDM is a composition of forward and backward Euler steps. Therefore, TRAPM
and IMIDM are also conjugate algorithms. TRAPM may or may not be symplectic, but it shares
the excellent long-term behaviour with IMIDM.

Integration on manifolds is currently attracting much attention in the mathematical literature.
It will be useful to analyse the algorithms TRAPM/IMIDM in the setting of the so-called
Munthe-Kaas Runge–Kutta methods that have been formally described by Munthe-Kaas [2].
Paraphrased in our notation these methods read (an actual algorithm requires the specification
of a tableau)

Algorithm MKRK:
Given Pn−1,Rn−1,
for k = 1, . . . , s stages
W(k) =�t

∑s
j=1 ak j (d exp−W( j)

)−1I−1P( j)

R(k) =Rn−1 exp[W(k)]
P(k) = exp[−W(k)]

(
Pn−1 + �t

∑s
j=1 ak j exp[W( j)]T(k)

)
end
Wn = �t

∑s
j=1 b j (d exp−W( j)

)−1I−1P( j)

Rn =Rn−1 exp[Wn]
Pn = exp[−Wn]

(
Pn−1 + �t

∑s
j=1 b j exp[W( j)]T( j)

)
Copyright q 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (in press)
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where T( j) =T(tn−1 + c j�t,R( j)), and ak j , b j , and c j are the coefficients of the Runge–Kutta
tableau.

The forward and backward Euler sub-algorithms (18) and (19) may be recognized as Munthe-
Kaas Runge–Kutta methods with the tableaus

0 0

1

for the forward Euler, and

1 1

1

for the backward Euler. These methods are mutual adjoints, as proven in Section 3.2, and therefore
the midpoint algorithm IMIDM is self-adjoint (symmetric)

(�∗
−�t/2 ◦ ��t/2)

∗ = �∗
−�t/2 ◦ ��t/2

This method is being discussed by Celledoni and Owren [7] (referred to as implicit midpoint) in
relation to time-symmetry and long-term properties of integrators on manifolds. The conjugate
algorithm TRAPM is also symmetric.

The IMIDM algorithm is a composition of two Munthe-Kaas Runge–Kutta methods, and it is
itself also classified as a Munthe-Kaas Runge–Kutta method with the tableau

1/2 1/2

1

The conjugate algorithm TRAPM does not seem to be associated to any Munthe-Kaas Runge–
Kutta method. In particular, the trapezoidal Runge–Kutta rule in the context of the Munthe-Kaas
Runge–Kutta method yields the Bottasso and Borri algorithm BBTRAPWD [11] to be discussed
next as one of the reference methods.

4. COMPARABLE INTEGRATORS

We shall be comparing the present two pairs of methods with three well-known second-order
algorithms. Simo and Wong [4] derived an ad hoc momentum- and energy-conserving algorithm.

Algorithm SWC1:
Given Pn−1,Rn−1,

Solve as a coupled system of equations
Wn = �t

2 (I−1Pn + I−1Pn−1)

Rn =Rn−1 exp[Wn]
Pn = exp[−Wn]Pn−1 + �t exp[− 1

2Wn]Tn−1/2

Austin et al. [12] proposed the following spatial momentum- and energy-conserving algorithm
(it was shown to conserve the Hamiltonian even for the heavy top, not only for torque-free motion).
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Algorithm AKW:
Given Pn−1,Rn−1,

Solve as a coupled system of equations
Pn =Pn−1 − �t skew[I−1P]P+ �t

2 (Tn−1 + Tn)

Rn =Rn−1 cay[�t skew[I−1P]]
where P= 1

2 (Pn +Pn−1)

Bottasso and Borri [11] proposed an energy-conserving algorithm based on a modification of
the classical Runge–Kutta. It is really a Munthe-Kaas Runge–Kutta method [2] with the tableau
(the trapezoidal rule)

0 0 0

1 1/2 1/2

1/2 1/2
and truncation of the (d exp•)−1 operator. Written out in full, but with the stages of the
Runge–Kutta algorithm compressed whenever possible, the algorithm with the (d exp•)−1

operator reads

Algorithm BBTRAPWD (with the map (d exp•)−1):
Given Pn−1,Rn−1,

Solve as a coupled system of equations
Wn = �t

2 ((d exp−Wn
)−1I−1Pn + I−1Pn−1)

Rn =Rn−1 exp[Wn]
Pn = exp[−Wn](Pn−1 + �t

2 Tn−1) + �t
2 Tn

Bottasso and Borri have shown that truncating the (d exp•)−1 furnishes energy conservation, while
preserving the asymptotic rate of convergence.

Algorithm BBTRAP (truncation: (d exp•)−1 ≈ 1):
Given Pn−1,Rn−1,

Solve as a coupled system of equations
Wn = �t

2 (I−1Pn + I−1Pn−1)

Rn =Rn−1 exp[Wn]
Pn = exp[−Wn](Pn−1 + �t

2 Tn−1) + �t
2 Tn

Interestingly, the algorithm BBTRAP is almost identical to the algorithm of Simo and Wong [4]
(in fact, for torque-free motion it is identical). BBTRAP differs from the proposed TRAPM in
subtle, but evidently important, ways.

5. EXAMPLES

5.1. Torque-free motion

This example is discussed in the report [13] in the context of discrete Moser–Veselov integrators for
the rigid body. The initial condition is X= (0.45549, 0.82623, 0.03476), and the diagonal entries
of the inertia tensor are diag I= (0.9144, 1.098, 1.66).
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Figure 1. Free body rotation; on the left-hand side convergence in the norm of the error in body-frame
angular momentum; on the right-hand side convergence in the norm of the error in the attitude matrix:
AKW: implicit midpoint rule of Austin et al. [12]; BBTRAP: Bottasso and Borri [11]; SWC1: implicit
Simo and Wong algorithm ALGO C1 [4]; TRAP: trapezoidal rule; IMID: midpoint rule; TRAPM:

momentum-conserving trapezoidal rule; IMIDM: momentum-conserving midpoint rule.
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Figure 2. Slow Lagrangian top; on the left-hand side convergence in the norm of the error in body-frame
angular momentum; on the right-hand side convergence in the norm of the error in the attitude matrix:
AKW: implicit midpoint rule of Austin et al. [12]; BBTRAP: Bottasso and Borri [11]; SWC1: implicit
Simo and Wong algorithm ALGO C1 [4]; TRAP: trapezoidal rule; IMID: midpoint rule; TRAPM:

momentum-conserving trapezoidal rule; IMIDM: momentum-conserving midpoint rule.

Figure 1 illustrates the second-order accuracy of all the algorithms introduced above in the
norms ‖R−Rconverged‖2 and ‖P−Pconverged‖2, where the orientation matrixRconverged =R(t = 100)
and the angular momentum Pconverged =P(t = 100) have been obtained with an extremely small
step size of 0.001. Interestingly, the most accurate algorithm both in the body-frame momentum
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Figure 3. Fast Lagrangian top; on the left-hand side convergence in the norm of the error in body-frame
angular momentum; on the right-hand side convergence in the norm of the error in the attitude matrix:
AKW: implicit midpoint rule of Austin et al. [12]; BBTRAP: Bottasso and Borri [11]; SWC1: implicit
Simo and Wong algorithm ALGO C1 [4]; TRAP: trapezoidal rule; IMID: midpoint rule; TRAPM:

momentum-conserving trapezoidal rule; IMIDM: momentum-conserving midpoint rule.

and in the error in the attitude matrix is the energy-conserving IMID, even though it does not
conserve spatial angular momentum. The algorithm AKW matches IMID in the body-frame
momenta, but is in order of magnitude less accurate in the attitude matrix. The conjugate algorithm
TRAP is slightly less accurate than IMID in the body-frame momenta because of the half-step
shift. The energy- and momentum-conserving pair BBTRAP/SWC1 is rather inaccurate in the
body-frame momenta.

5.2. Slow Lagrangian top

In the next example we consider the slow symmetrical top in a uniform gravitational field. The
body-frame tensor of inertia is diagonal, diag I=[5, 5, 1]. The spatial torque is

t= − 20R(:, 3) × [0; 0; 1]
where R(:, 3) is the third column of the attitude matrix, and [0; 0; 1] is the ‘up’ vector. The initial
conditions are

R0 = exp[skewW0]
where W0 =[0.05; 0; 0], and X0 =[0; 0; 5].

The good behaviour of the present algorithm is also corroborated by convergence data shown
in Figure 2. The global convergence is assessed using a numerical reference solution (obtained
with an extremely small time step �t = 0.0001) for the attitude matrix and the body-frame angular
momenta at time t = 20. We measure the norm ‖R−Rconverged‖2 and the norm ‖P−Pconverged‖2,
where the reference values are the orientation matrix Rconverged =R(t = 20) and the body-frame
angular momentum Pconverged =P(t = 20). Clearly, the present algorithm converges at a quadratic
rate, as all the others algorithms do, and its absolute accuracy is also outstanding.
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Figure 4. Body in Coulombic potential with soft wall contact, normalized Hamiltonian, step �t = 0.5,
40 000 steps;AKW: implicit midpoint rule of Austin et al. [12]; BBTRAP: Bottasso and Borri [11]; SWC1:

implicit Simo and Wong algorithm ALGO C1 [4].

5.3. Fast Lagrangian top

In the next example we study the fast Lagrangian top. The data for this example appear to be due
to Simo and Wong [4]. It had also been investigated by Hulbert [14]. The data are as for the slow
top above, except for the initial conditions which are W0 = [0.3; 0; 0] and X0 =[0; 0; 50].

The kinetic energy for the fast top is dominant, and a numerical method has to effectively deal
with precession and nutation which are motions of distinct frequencies. We show convergence
graphs for the fast spinning heavy top in Figure 3. The present IMIDM/TRAPM pair are
significantly more accurate than the other algorithms. Perhaps the conservation of the spatial
momentum combined with the time-symmetry properties are a decisive advantage here.

5.4. Body in Coulombic potential with soft wall contact

This problem has been investigated by Holder et al. [15]. It is a pinned rigid body that rotates
under an external torque coming from an attractive Coulombic potential coupled with a repulsive
potential with steep gradient that represents a soft wall from which the rotating body is repeatedly
repelled. As the authors point out, the repelling torque is troublesome from the point of view of
time resolution: the sharp knock imparted to the body when it hits the wall needs to be accurately
represented, which calls (typically) for a relatively short time step. Note that none of the algorithms
discussed in this paper is able to conserve the Hamiltonian of this system exactly.
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Figure 5. Body in Coulombic potential with soft wall contact, normalized Hamiltonian, step �t = 0.5,
40 000 steps; present algorithms TRAP: trapezoidal rule; IMID: midpoint rule; TRAPM: momen-

tum-conserving trapezoidal rule; IMIDM: momentum-conserving midpoint rule.

The body-frame tensor of inertia is diagonal, diag I=[2, 3, 4.5]. The components of the spatial
torque are

[t]= (−(1.1 + R3,3)
−2 + 0.01(1.1 + R3,3)

−11)[−R2,3; R1,3; 0]
where Ri j are the components of the attitude matrix. The initial conditions are R0 = 1 and
p0 = [2; 2; 2].
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Figures 4 and 5 investigate the long-term representation of the computed Hamiltonian using a
relatively long time step, �t = 0.5. This leads to rotations within a time step of well over 30◦.
Consequently, the sharp repelling action of the potential near the wall is likely to be represented
rather poorly. Figure 4 illustrates the three reference algorithms, AKW, BBTRAP, and SWC1.
Clearly, even though none of the solutions blow up, the long-term behaviour displays an irregular
pattern. Figure 5 illustrates the present algorithms; note that the vertical scale in this figure is 1

5 that
of Figure 4, that is the error in the Hamiltonian is generally much smaller. The present algorithms
yield very clean and well behaved solutions. The trapezoidal rules display more pronounced
periodic pattern of lower frequency and somewhat higher error than the midpoint rules. In the
overall quality of the representation of the Hamiltonian, all of the present algorithms are superior
to the reference algorithms.

6. CONCLUSIONS

Two midpoint-trapezoid pairs of dynamically equivalent (conjugate) algorithms were derived for
the dynamics of rigid body rotation. Both pairs are constructed as compositions of first-order
forward Euler and backward Euler integrators as applied to an incremental form of the initial-
value problem.

The first pair, IMID/TRAP, is energy-conserving for torque-free motions (the latter at the
midpoint). The spatial momenta are not conserved. Both are time symmetric.

The second pair, IMIDM/TRAPM proceeds from an integral form of the equation of motion
(as opposed to the differential form for the first pair), which endows both algorithms with the
conservation of the spatial momenta (for torque-free motion). Again, both algorithms are self-
adjoint.

The performance of both pairs is excellent, in terms of absolute accuracy and behaviour for
larger time steps. An especially attractive feature is the stable and bounded response for large
steps and very long time integrations, as demonstrated on the example of a rigid body rotating
in an attractive Coulombic potential coupled with a repulsive potential with steep gradient that
represents a soft wall.

It is of interest to note that composition of first-order algorithms (explicit midpoint Lie and its
adjoint, which in a way are the analogues of the symplectic Euler and its adjoint) has also been
used previously in References [8, 9] to derive a high-performance explicit (Newmark) algorithm
for the rigid body rotation. The present work continues this line of inquiry, effectively yielding as
one of the variants the implicit version of the Newmark algorithm.
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