
Petr Krysl

Finite Element
Modeling
with Abaqus
and Python
for Thermal and
Stress Analysis

Pressure Cooker Press
San Diego
c© 2018 Petr Krysl

Contents

1 Introduction . 1
1.1 Goals and Approach . 1
1.2 Coverage . 1
1.3 Organization of the book . 2
1.4 Software . 2

1.4.1 Abaqus software . 3
1.4.2 Cloud computing . 3
1.4.3 Local Python environment . 3
1.4.4 Running Python in Abaqus . 4
1.4.5 Standing assumptions for Python code . 4

1.5 Units . 5
1.6 Abbreviations . 6

2 Getting acquainted with the FEM . 7
2.1 High-level explanation of the principles of FEM . 7
2.2 Thermally driven micro-actuator . 10
2.3 The heat transfer problem . 11
2.4 Concrete column . 13

2.4.1 Boundary value problem solved . 14
2.4.2 What are finite elements? . 17

2.5 Hexahedral elements . 18
2.6 Using symmetry . 19
2.7 More symmetry: axisymmetric model . 20
2.8 Even more symmetry: 2-D model in the cross-section . 21
2.9 Modeling with film condition . 22
2.10 Background, explanations, details . 24

3 FEA for 2-D Heat conduction with Triangles . 31
3.1 Model in two coordinates . 31
3.2 The discrete model: Method of Weighted Residuals . 32
3.3 Weighted residual method for the heat conduction problem . 36
3.4 Test and trial functions and finite elements . 37
3.5 The standard triangle . 38
3.6 Interpolation over the x, y triangle . 41
3.7 Elementwise calculations . 42
3.8 Derivatives of the basis functions; Jacobian . 46
3.9 Jacobian matrix for the triangle . 47
3.10 Bookkeeping . 48
3.11 Concrete-column example continued . 49

3.11.1 Element 1 . 50

4 Contents

Elementwise conductivity matrix . 51
Elementwise heat load . 53

3.11.2 Element 2 . 54
Elementwise conductivity matrix . 54
Elementwise heat load . 55

3.11.3 Element 3 . 55
Elementwise conductivity matrix . 55
Elementwise heat load . 56

3.11.4 Assembled equations . 56
3.12 Concrete-column example: nonzero boundary temperature . 56

3.12.1 Element 1 . 58
3.12.2 Element 2 . 58
3.12.3 Element 3 . 59
3.12.4 Assembled equations . 59
3.12.5 Natural boundary conditions . 60

3.13 Layered wall example . 60
3.14 Prescribed heat flux on the boundary . 65

3.14.1 The L2 element . 66
3.14.2 Using the L2 element . 66
3.14.3 Layered wall: Heat flux boundary condition . 68
3.14.4 Layered wall: Heat flux boundary conditions only . 69

3.15 Concrete column with film boundary condition . 74
3.16 Background, explanations, details . 78
3.17 Code listings . 88

4 FEA for 2-D Heat conduction with Quadrilaterals . 103
4.1 Quadrilateral element . 103
4.2 Example: using Gaussian quadrature for a rectangle . 105
4.3 Concrete column example again . 108

4.3.1 Conductivity matrix . 108
4.3.2 Heat load vector and solution . 110
4.3.3 Postprocessing . 111

4.4 Effects of element distortion . 112
4.5 Effects of the choice of the numerical quadrature rule . 113
4.6 Example finite element program . 115
4.7 Background, explanations, details . 118
4.8 Code listings . 123

5 FEA for 2-D Stress Analysis . 131
5.1 Bracket plane-stress model . 131
5.2 Bookkeeping for plane stress FE models . 135
5.3 Weighted residual equation for plane stress . 136
5.4 Elementwise quantities for the three-node triangle . 137

5.4.1 Strains from displacements . 137
5.4.2 Stiffness matrix . 140
5.4.3 Singularity . 141

5.5 Quadratic triangle T6 . 142
5.5.1 Basis function gradients and strains . 144

5.6 Quadratic curve element L3 . 146
5.6.1 Distributed traction on the boundary . 147

5.7 Case study: applying boundary conditions . 148
5.7.1 Free-floating structure . 148
5.7.2 Point supports . 148
5.7.3 Reduction using symmetry . 150

Contents 5

5.7.4 Graded mesh . 151
5.8 Boundary conditions of the “Contact” type . 152

5.8.1 Prescribed displacement of the circumference of the hole A 153
5.8.2 Rigid-body constraint applied to the hole A . 153
5.8.3 Modeling the contact of the hole A with the pin . 154
5.8.4 Summary. 155

5.9 Thermal loading . 156
5.9.1 Thermal loads example . 156
5.9.2 Thermal strains in a bimetallic assembly . 157

5.10 Background, explanations, details . 159
5.11 Code listings . 191

6 How to deal with errors . 193
6.1 Where is this applicable? . 193
6.2 Simple examples . 193

6.2.1 Uniformly heated wall . 194
6.3 Interpolation errors . 196

6.3.1 Interpolation error of temperature . 197
6.3.2 Interpolation error of temperature gradient . 198

6.4 Estimation of True Solution . 199
6.4.1 The uses of the element-size control . 200

6.5 Richardson extrapolation . 202
6.6 Graded meshes . 203

6.6.1 Thin aluminium slab: estimation of maximum tensile stress 204
6.7 Meshes and Mesh generation . 208

6.7.1 Mesh generation . 208
6.7.2 Element distortions . 209
6.7.3 Interior mesh and Boundary mesh . 211

6.8 Lumping: How the FEM works . 212
6.9 Background, explanations, details . 215
6.10 Code listings . 220

7 Further Developments of FEA for General Stress Analysis . 223
7.1 Stress analysis in three dimensions . 223
7.2 Weighted residual equation for three dimensions . 224
7.3 Tetrahedra . 225

7.3.1 Tetrahedron T4 . 225
7.3.2 Simplex elements . 227
7.3.3 Tetrahedron T10 . 227

7.4 Hexahedra . 228
7.4.1 Eight-node hexahedron (H8) . 228
7.4.2 Thin simply-supported square plate with uniform distributed load 229
7.4.3 Shear locking . 229
7.4.4 Quadratic element H20 . 231
7.4.5 Quadratic element Q8. 233

7.5 Model reduction for plane strain . 233
7.6 Model reduction for axial symmetry . 235
7.7 Free vibration (frequency) analysis . 237

7.7.1 Modal analysis of a circular clamped plate . 238
7.8 Principle of equivalent loads (Saint-Venant’s principle) . 239
7.9 Supports applied to nodes . 241

7.9.1 Metal strip: example of free-floating structure . 241
7.10 Advanced three-dimensional elements . 244
7.11 Analyzing shell structures with hexahedra and tetrahedra . 245

6 Contents

7.12 Harmonic Forced Vibration Analysis . 246
7.12.1 Response of a thin plate . 247

7.13 Analysis of a composite plate . 249
7.13.1 Strain-displacement matrix for anisotropic materials . 250
7.13.2 Cross-ply plate results . 251

7.14 Background, explanations, details . 253

8 Interpretation of FEA Results . 261
8.1 Singularities . 261
8.2 Interpretation of stresses . 263
8.3 Stress concentrations . 267
8.4 Errors, validation, and verification . 267

8.4.1 Verification and Prediction . 267
8.4.2 Validation . 268
8.4.3 Errors . 268
8.4.4 Using modeling to make predictions . 269
8.4.5 Using benchmarks . 270

8.5 Writing FEA reports . 270
8.6 Background, explanations, details . 272

References . 287

Index . 289

1

Introduction

1.1 Goals and Approach

The goal of the present textbook is to introduce the basics of the finite element analysis for thermal
and deformation problems that can be analyzed with linear models.

In this book we focus on the following aspects of which we believe the user of finite element
analysis must have a basic understanding:

1. Understanding of the mathematical models: what are the underlying assumptions, how is the
model properly defined, what are the solutions of elementary models.

2. How is the finite element model related to the mathematical model: what is the effect of the
conversion of the continuous mathematical model to the discrete finite element model, what is
the accuracy, how to control the accuracy.

3. How to use results from finite element modeling: interpretation of results, estimation of errors,
verification and validation, proper formulation of reports.

In this respect the present textbook differs from the current popular engineering textbooks on finite
elements. The mathematics is also presented as simply as possible, so that the present textbook is
also quite different from state of the art the mathematical treatments of the finite element method.

1.2 Coverage

The finite element models are in this book derived from the method of weighted residuals (the
Galerkin form). This has the advantage of being very general and applicable, not only in linear
modeling but also in nonlinear modeling.

Only linear models are discussed. The thermal analysis will not consider radiation boundary
conditions. These conditions leads to a nonlinear model which is outside of the scope of this book.
In stress analysis we will not consider contact conditions, which are again a nonlinearity-generating
boundary condition.

The finite element method is developed for the so-called continuum finite elements. Structural
finite elements are not considered: beams, shells, and various types of discrete elements (connectors,
dampers, ...) are not used in our examples and they are not discussed at all. The structural finite
elements are reduced versions of the continuum finite elements, but contrary to expectations, this
makes the structural elements much more complicated to describe and use. They are probably best
left to an advanced finite element course. (The trivial structural elements— two-node truss elements
and two-dimensional beams— are an exception to the rule: they are simple. They are also quite
limited in what they can do.)

2 FEM for Thermal and Stress Analysis

1.3 Organization of the book

Important bits of information are boxed:

This is how important information will be set off. For instance, here is an important
equation

exp iφ = cosφ+ i sinφ

At times there will be a warning:

This is a common mistake!

Note that there are two versions of this book: the electronic one and the printed one. The elec-
tronic book has more material, and it has built-in links to additional information and resources. The
printed book excludes this material, and, for understandable reasons, it does not provide hypertext
links to outside material.

The material in the regular sections presents the basic information. At the end of each
chapter, there is a special section with detailed background information, additional
explanations, tables, and such. This is not required reading at the basic level: if you
need it or if you are plain interested, go for it; otherwise you can leave it till it becomes
useful.

1.4 Software

The software used in this textbook consists of a finite element program with a graphical user interface,
Abaqus/CAE, and the open-source object-oriented language Python.

The PDF version of the textbook includes links to outside sources of information: model
files, tutorials, Python source files, ... Note: until you reach the box that says
otherwise, the links in the margin are only examples of what the linking to
external resources looks like later in the book: these few links don’t work!

Abaqus
- CAE file

Abaqus examples are typically accompanied by a model database. The link to such a database
(extension “.cae”) is provided in the margin. The web browser should open such data bases with
Abaqus.

Abaqus
- CAE file
- tutorial

Oftentimes the Abaqus example comes with a tutorial. The tutorial is a PDF file which shows
the process step-by-step. The web browser would typically open the PDF file when you click the
link.

Abaqus
- CAE file
- INP file
- tutorial

In a few instances the Abaqus model is derived from an input file (extension “.inp”). Then one of
the links will point to an INP file. This is a plain-text file which can be edited with any text editor
(notepad++ is a free offering on Windows and Linux). If the file is opened in a web browser instead
of saved to your local disk storage (which depends on your particular computing platform), save
the file with the “.inp” extension. As an example, in the Chrome browser, right-click on the text
displayed in the browser and select “Save as...”. In the selection box “Save as type” choose

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/ThisIsADummyFileWhichDoesNotExist.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/ThisIsADummyFileWhichDoesNotExist.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/ThisIsADummyFileWhichDoesNotExist.pdf
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/ThisIsADummyFileWhichDoesNotExist.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/ThisIsADummyFileWhichDoesNotExist.inp
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/ThisIsADummyFileWhichDoesNotExist.pdf

1.4 Software 3

“All Files”, and make sure to delete the “.txt” extension, if there is one attached to the name.
Then in the folder where the file was saved you have the “.inp” file which can be now edited with
any text editor. The tutorials will explain how to use the INP file.

Python
- script

Some detailed finite element calculations are carried out with Python. Links to the Python
script files (extension .py) are available in the margin. Save the file and then load it in development
environment of choice (see Section 1.4).

Animation
- video

Some points are illustrated with animations. Links to video files are available in the margin, and
are typically opened in a web browser. If that is not the case, locate the file in your Downloads
folder and drag it to a browser window. (There are also specialized applications that can display
video files.)

Links to outside files below this box should all work. If you find a problem with the
downloads, please let the author know (pkrysl@ucsd.edu).

1.4.1 Abaqus software

Abaqus is a suite of commercial finite element codes. It consists of Abaqus Standard, which is a
general purpose finite element software, and Abaqus Explicit for dynamic analysis. It is now owned
by Dassault Systèmes and is part of the SIMULIA range of products, see

www.simulia.com/products/unified fea.html

In this book we will interact with the finite element analysis in Abaqus Standard through the
Abaqus/CAE, a graphical user interface. Abaqus R© is a registered trade mark of Dassault Systèmes.
For product information, please refer to the website http://www.3ds.com.

Abaqus is tightly coupled to Python, a very popular and widely used scripting language. The
Abaqus software can be driven by scripts, which makes it a very flexible and powerful tool. In
addition, many exercises in this book will be supported by numerical or symbolic computations with
Python in the form of script files.

1.4.2 Cloud computing

The easiest way of running most Python examples from the textbook (except those that require
Abaqus/CAE) may well be provided by the cloud computing environment try.jupyter.org. Select
from the “New” menu to create “Python 2” or “Python 3” notebook, and then paste blocks of code
or in fact the entire code of an example into the first cell of the notebook and select for instance
“Run all” or “Run Cells”. This will create an output cell, with printouts and graphics.

1.4.3 Local Python environment

The examples in this book were written with modules from the so-called SciPy stack (SciPy =
Scientific Python). For those interested in having a local Python environment, a good option is
to visit www.scipy.org/install.html. At the top of the page there is a list of comprehensive
packages for Linux, Windows and Mac. All come with free versions, and as of 2017 there were five:

1. Anaconda: A free distribution for the SciPy stack. Supports Linux, Windows and Mac.
2. Enthought Canopy: The free and commercial versions include the core SciPy stack packages.

Supports Linux, Windows and Mac.
3. Python(x,y): A free distribution including the SciPy stack, based around the Spyder IDE. Win-

dows only.
4. WinPython: A free distribution including the SciPy stack. Windows only.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/ThisIsADummyFileWhichDoesNotExist.py
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/mov/ThisIsADummyFileWhichDoesNotExist.py
http://www.simulia.com/products/unified_fea.html
http://www.3ds.com
https://try.jupyter.org/
https://www.scipy.org/install.html

4 FEM for Thermal and Stress Analysis

5. A free distribution based on Anaconda and the IEP interactive development environment. Sup-
ports Linux, Windows and Mac.

Download, install, and run the provided Integrated Development Environment (IDE). Then down-
load the script file by clicking one of the links in this textbook, open the file in the IDE, and run
it.

1.4.4 Running Python in Abaqus

The examples in this book are worked with the Abaqus/CAE program. This program can be driven
by a Python script. When the user operates the Graphical User Interface (GUI), for instance to
partition a face, Abaqus/CAE writes the commands to accomplish this to a few files: the main ones
being the replay file, abaqus.rpy, the journal file (with extension .jnl), and the recovery file (with
extension .rec). These are all Python scripts that can be executed from the “File” menu.

Abaqus/CAE Student Edition does not write the replay file and the journal file. Also,
the recovery file is erased once the user quits the GUI.

These Python scripts can be edited by the user to accomplish slightly modified tasks, for instance
the dimensions of the part may be changed, or the material properties can be defined to work with
user inputs, etc.

The Abaqus Scripting Interface is an application programming interface (API) to the modeling
and model data. The scripting interface is an extension of the Python object-oriented programming
language: the interface scripts are Python scripts. One can (a) create and modify the components
of an Abaqus model (including, but not limited to, parts, materials, loads, and steps); (b) manage
analysis jobs; (c) manage output databases; (d) postprocess the results of an analysis.

An even nicer facility is part of Abaqus/CAE: the “Macro Manager”. Invoke the “Macro
Manager” from the “File” menu, and start recording the macro. Then execute a few Abaqus com-
mands, such as create a sketch and extrude it into a part. Then stop the recording of the macro,
and voilà: the file called abaqusMacros.py appears in the working folder (typically c:\temp). The
macro is named, and its name should now appear on the list of the “Macro Manager”. Should it not
appear automatically, feel free to click “Reload”. The contents of the abaqusMacros.py script file
may now be inspected with a an editor of your choice. It consists essentially of definitions of Python
functions. Each function is a macro.

As an example, here’s a link to a sample macros file. When this file is copied to the working
Python
- script

folder, and the “Macro Manager” is opened, two macros should be listed:

• MakeCylinderPart to create a cylindrical solid part; and
• MakeUsefulMaterials to create several material models.

1.4.5 Standing assumptions for Python code

Working with arrays and linear algebra in Python is best done with the array module numpy. The
functions array, dot, and so on are part of this module, as is the submodule linalg for linear-
algebra operations. When we present Python code we usually don’t state that explicitly, but these
objects need to be imported, for instance as

from numpy import array, dot
from numpy import linalg

Similarly, when we work with the symbolic-math module sympy, we import the objects we need
from this module

from sympy import symbols, simplify, Matrix, diff

or, alternatively, we can import the module and then refer to the objects as for instance

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/abaqusMacros.py

1.5 Units 5

import sympy
A, B = sympy.symbols(’A, B’)

Some modules are not installed for the Abaqus Python environment. Code referenced
in this book which relies on these modules will not run in the Abaqus command line.
For instance neither sympy, nor matplotlib are available. It is easiest to use these
modules in the cloud (in a Jupyter notebook), or with a local Python installation.

1.5 Units

Abaqus puts the onus of inputting the data in consistent units on the user. It is not alone in this, as
typical finite element programs do not allow for explicit provision of physical units. This means that
input data is only typed in as numbers, without any indication of the physical units. The program
will assume that the numbers that were input by the user were all in consistent units.

In thermomechanical problems one must choose four units, for example for length, mass, time,
and temperature. For instance, in SI units for these quantities, we use m for length, kg for mass, s
for time and oK for temperature; then the units for forces will be in N, the stresses and the pressure
will be in Pa, the mass density will be in kg ·m−3, the thermal conductivity in W ·m−1 · oK−1 , and
the specific heat in J · kg−1 · oK−1.

One should usually choose physical units that make the numerical values of the quantities with
which the program calculates (typically the stiffness coefficients, the forces, the displacements) not
too small and not too large. In analyses of systems of small spatial extent, a possible choice of units is
mm for length, N for force, s for time and oK for temperature. Then mass density would be supplied
in the surprising units of metric tons (tonnes) per millimeter cubed, so that the mass density of steel
(let us say 7850 kg.m−3) would need to be input as 7.85 × 10−9tonne ·mm−3 (so actually type in
7.85e-9 for the material Density property). However, elastic moduli, stresses, and pressure would
be in the convenient units of MPa. Table 1.1 lists four sets of consistent units.

Many unit conversion utilities are available on the web, for instance at
www.translatorscafe.com.

- URL

Quantity SI SI (mm) US Unit (ft) US Unit (inch)

Length m mm ft in
Force N N lbf lbf
Mass kg tonne (103 kg) slug lbf s2/in
Time s s s s
Stress Pa (N/m2) MPa (N/mm2) lbf/ft2 psi (lbf/in2)
Energy J (N × m) mJ (10−3 J) ft lbf in lbf
Density kg/m3 tonne/mm3 slug/ft3 lbf s2/in4

Table 1.1. Consistent sets of units (after the Abaqus Analysis User’s Guide)

http://www.translatorscafe.com/cafe/EN/units-converter/description/toc/

6 FEM for Thermal and Stress Analysis

1.6 Abbreviations

Abbreviation Meaning

CAE Complete Abaqus Environment
CTE Coefficient of Thermal Expansion
DOF degree of freedom
FE Finite Element
FEA Finite Element Analysis
FEM Finite Element Method
H8 Finite element with eight nodes (brick, solid)
H20 Finite element with 20 nodes (brick, solid)
L2 Finite element with two nodes (curve)
L3 Finite element with three nodes (curve)
Q4 Finite element with four nodes (quadrilateral, surface)
Q8 Finite element with eight nodes (quadrilateral, surface)
T3 Finite element with three nodes (triangle, surface)
T6 Finite element with six nodes (triangle, surface)
T10 Finite element with 10 nodes (tetrahedron, solid)
WR Weighted Residuals
WRM Weighted Residuals Method

Table 1.2. Abbreviations

Acknowledgments

Charlie Wilcox and Dick Rotelli of SIMULIA Academia were instrumental in the formation of the
project and their feedback is also sincerely appreciated. University of California, San Diego, provided
support with a Course Development and Instructional Improvement Program (CDIIP) award for
2015/2016. Mark Case of UCSD is thanked for careful reading of the manuscript and a long string of
constructive comments and suggestions. Poorya Mirkhosravi and Juting Chenhuang had a number
of useful suggestions as the TAs of the course that used various versions of the book. Many thanks
to Bill Ramroth for several technical remarks. Mark Stabb of Quartus Engineering Inc. is thanked
for multiple comments and excellent suggestions. Changjian Wang of Dassault Systèmes provided
very useful assistance with Abaqus scripting.

2

Getting acquainted with the FEM

2.1 High-level explanation of the principles of FEM

Consider the mechanical part of the heavy-duty ball bearing housing of Figure 2.1. Without doubt
Abaqus
- CAE file

the geometry of the part is fairly complex. If we wish to find for instance the natural frequencies,
in order to judge how stiff the housing really is, we are unlikely to be able to find an analytical
solution. Even approximate methods such as Rayleigh-Ritz where we have to guess the response
of the structure in some way will not be successful because guessing the shape of vibration of this
complicated mechanical part is not easy. This is where the finite element method (FEM) may step
in to make the solution not only possible, but also automateable (and hence easily accomplished
through computer modeling).

Fig. 2.1. Rexnord Heavy Duty Ball Bearing housing. The dimensions of the flange are approximately 100
mm on the side.

Figure 2.2 shows a snapshot from the animation of the mode shape corresponding to the 24th
natural frequency at approximately 24.8 kHz. (The animation is provided as a video: follow the
link on the right.) The shape of the vibration mode is complicated. It would be a nontrivial matter

Animation
- video

(impossible?) to express this shape analytically (i.e. as a function of the three space coordinates that
satisfies all the balance equations exactly). The vibration mode shape is color coded: dark blue color
corresponds to places with very little displacement, while large displacements are marked with dark
red color. So we can see for instance that the corners of the flange moved by a large amount (out
of the plane of the flange), while there are multiple dark-blue spots (corresponding to the so-called
nodes of the vibration mode shape).

Figure 2.3 shows the close-up of the top right corner of the flange. The color indicates that
the neighborhood of the bolthole experiences displacements of both the lowest (dark blue) and
the highest magnitude (dark red). The lines that separate colors (level curves of the displacement
magnitude) are decidedly curved. That speaks to the complexity of the displacement pattern. The

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/Rexnord-rigid-sleeve-bearing-flange.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/mov/Rexnord-bearing.mp4

8 FEM for Thermal and Stress Analysis

Fig. 2.2. Rexnord Heavy Duty Ball Bearing housing. Shape of vibration corresponding to the 24th natural
frequency at approximately 24.8 kHz. The grey transparent surface is the undeformed shape, which is overlaid
with the solid surface where magnitude of displacement is encoded as color: from blue (little to no motion)
to red (large displacement).

hole is sheared, while at the same time the flange bends out of plane. Such a motion would be difficult
to describe as some function of X,Y, Z over the entire neighborhood of the hole. For this reason the
finite element method does not attempt to do this, but approaches the solution differently.

Fig. 2.3. Rexnord Heavy Duty Ball Bearing housing. Close-up of Figure 2.2, top right corner.

Animation
- video

The first step is to cover the geometry with suitable simple shapes. In the present case they are
solids with four triangular faces, the so-called tetrahedra (tetra= 4, hedron = base). The covering
must be without gaps or overlaps and such that two tetrahedra can share either a face, an edge,
a vertex, or nothing (when the tetrahedra are not next to each other). Figure 2.4 shows such a
covering: this is the finite element mesh , where each tetrahedron is one finite element. Of course
the figure actually shows only those triangular faces of the tetrahedra that are part of the outer
surface.

Of the tetrahedra shown in Figure 2.4 we select one, which is shown in Figure 2.5 by highlighting
the selected tetrahedron in thick red line. If we focus on that single tetrahedron, we notice that

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/mov/Rexnord-bearing-closeup.mp4

2.1 High-level explanation of the principles of FEM 9

Fig. 2.4. Rexnord Heavy Duty Ball Bearing housing. As in Figure 2.3, but with the tetrahedral finite
element mesh shown.

the displacement across that single element is apparently much simpler than across the hole in the
flange or even across the entire part. This is easily seen from the level curves of the displacement
magnitude: within the extent of the single triangle that we can see facing us we have a few level
curves between darker green color, lighter green color, and yellow. That is a much smaller range
of variation of displacement than from blue to red. Also the level curves are nearly parallel, which
also indicates a relatively simple relationship for the displacements. The animation of the movement
of the selected tetrahedron shows this quite well: the tetrahedron stretches, shears, rotates, and
translates, but those are relatively simple motions. Compared to the motion shown for instance in

Animation
- video

Figure 2.3 it seems quite plausible that we would be able to describe the displacements across the
single element in relatively simple terms.

Fig. 2.5. Rexnord Heavy Duty Ball Bearing housing. As in Figure 2.4, but with the one tetrahedral finite
element highlighted in thick red line.

That is indeed the case. The motion within any single tetrahedron is entirely described by
giving the displacements of the so-called finite element nodes (shown with dots in Figure 2.6),
with the displacements of the material at any point within the element being determined from the
displacements of the nodes using interpolation with very simple, polynomial, functions: the so-called
basis functions. So for the tetrahedron element, the task of describing any deformation of this
element boils down to giving the displacements of ten points (nodes), and interpolating with known
(given) functions of very simple form to obtain the displacement at an arbitrary point within the
element. That is the essence of the finite element method.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/mov/Rexnord-bearing-single-tet.mp4

10 FEM for Thermal and Stress Analysis

Fig. 2.6. A single tetrahedral finite element. The dots indicate the locations of the finite element nodes.

The finite elements also come in handy for a couple of other tasks. Firstly, we may wish to
describe how the properties of the materials of the considered structure are distributed. In the
present case, the bearing was made of a single material, but built-up structures are common (for
instance reinforced-concrete/steel decks, or sandwich plates), and then we need to describe how
the properties of the materials vary within the volume. The tiling with the simple shapes of the
finite elements enables the description of how the material properties are distributed throughout
the volume. In this context we may also mention composite materials where in addition to the
distribution of the material we may also need to describe the orientations of the reinforcing fibers
throughout the volume.

Secondly, the finite element method relies on the ability to evaluate volume and surface integrals.
Also for this task the finite elements are perfect. They are very simple shapes for which simple
integration rules exist, and therefore evaluating arbitrarily complex integrals becomes possible.

In the next section we will begin looking at some of the details of this process, but to simplify
the setting somewhat we will consider the problem of heat conduction instead of stress analysis.

2.2 Thermally driven micro-actuator

Understanding the phenomena of heat transfer in solid structures is of considerable interest. The
effects of the temperature that varies from point to point across the structure are twofold:

1. The change of the temperature from the reference value leads to the so-called thermal strains,
which cause deformation and generate stresses.

2. The properties of the material may depend on temperature. As an example we may mention high-
temperature softening of metals. Therefore also the deformation and the stress in the structure
will change as a result of the change of the properties of its material.

Introduction to the simulation of the processes of heat transfer is the subject of the present chapter.
Let us start with a motivating example: simulation of the function of a thermally driven micro-

actuator. The micro-actuator is an example of a structure of geometrical dimensions that are tiny
compared to human scale. The entire actuator would fit into the space of 1 mm cubed (Figure 2.7).
The actuator is etched from crystalline silicon, produced layer-by-layer. The termini are attached to
contact plates which are part of the substrate, and the actuator is cantilevered from the termini. It is
actuated by thermally-generated strains. The heat is produced by running electric current through
the structure, either through the loop that consists of the inner legs, or through the loop that consists
of the outer legs. When the voltage to generate the current is applied on the termini of the inner
legs, the inner legs warm up more than the rest of the structure, and since the inner legs are on a
lower level then the outer legs and since they get longer, the actuator bends upwards. If the voltage
is applied to the termini of the outer legs, the outer legs warm up more than the inner legs, and
since they get longer and since they are on a higher level than the inner legs the actuator bends
downwards. Given the tiny size, the thermal inertia is very small, and the actuation can be performed
at the rate of hundreds of cycles per second. Mechanical inertia can also be ignored, at least in the
first approximation. Finally, we may assume that the silicon material properties do not change very
much when the silicon is heated. Thus, the task of simulating the response of the actuator under
various conditions, may be broken down into

2.3 The heat transfer problem 11

Fig. 2.7. Geometry of the micro-actuator

1. Find the distribution of temperature within the structure.
2. Find the deformation of the structure and the associated stresses.

The continuum mechanics models for these two tasks are well-understood. However, it is very unlikely
that we will be able to find a closed-form solution. The shape of the structure is much too complicated
for that. This is where the finite element method comes in. It does not find the exact solution to
the mathematical problems posed by the two models, but it does find good approximations. And, it
can do that for an arbitrarily complicated geometry. Also, it can do it even when the mathematical
models become more complex still by inclusion of further mechanical and thermal effects: geometrical
and material nonlinearities, temperature dependence of the material properties, and so on.

Abaqus
- CAE file

Figure 2.8 shows the relevant results for the micro-actuator for the loading produced by the
heating of the inner leg loop. The temperature is shown in Figure 2.8(a), and the significant rise in
temperature may be appreciated (roughly 1000oC above reference temperature). Significant thermal
strains are generated as a result, and the actuator deflects upwards by slightly less than 8µm (around
1/30 of the cantilevered length), as shown in Figure 2.8(b). Finally, in Figure 2.8(c) the maximum
principal stress in absolute value is displayed. Checking that the maximum tensile stress remains
below the fatigue limit of the material is a common design check.

Before we are done with this book, you will be able to set up the solution process for similarly
complicated analysis tasks. But first we will start with the heat transfer model alone, as it is the
easier of the two mathematical models.

2.3 The heat transfer problem

In the following sections we will discuss the basics of the finite element modeling in the context
of steady-state heat conduction. The mathematical model of heat conduction is both simple and
important: it is much simpler than the model for stress analysis, and at the same time thermal
loads on structures are the second most important kind of loads (after “mechanical” loads). The
mathematical model of heat conduction is developed in many textbooks, for instance [5]. The
PDF version of this book also includes a description of what is needed to discuss the finite element

solutions. See Box 1
In the examples in this chapter, the heat conduction model is described by the partial differential

equation for the temperature T

−κ div
[
(gradT)T

]
−Q = 0 , (2.1)

that is expected to be satisfied at all points of the volume V . Here T is a function of the Cartesian
coordinates x, y, z and represents the distribution of temperature across the volume of the part; Q
is the rate of heat generation in units of power per unit volume; and κ is the so-called thermal
conductivity, which is a property of the concrete material; the material is assumed to be the same
everywhere within V (i.e. homogeneous). The div and grad are the divergence and gradient operators.
Explicitly we write

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/Actuator_1.cae

12 FEM for Thermal and Stress Analysis

NT11

+2.930e+02
+3.833e+02
+4.737e+02
+5.640e+02
+6.544e+02
+7.447e+02
+8.351e+02
+9.254e+02
+1.016e+03
+1.106e+03
+1.196e+03
+1.287e+03
+1.377e+03

X Y

Z

(a)

U, Magnitude

+0.000e+00
+6.528e−04
+1.306e−03
+1.958e−03
+2.611e−03
+3.264e−03
+3.917e−03
+4.570e−03
+5.222e−03
+5.875e−03
+6.528e−03
+7.181e−03
+7.833e−03

X Y

Z

(b)

S, Max. Principal (Abs)

−2.486e+02
−2.140e+02
−1.795e+02
−1.449e+02
−1.103e+02
−7.576e+01
−4.119e+01
−6.622e+00
+2.795e+01
+6.251e+01
+9.708e+01
+1.316e+02
+1.662e+02

X Y

Z

(c)

Fig. 2.8. Thermally driven micro-actuator. (a) Temperature in degrees Kelvin. (b) Deflection magnitude in
millimeters (shape amplified by approximately a factor of three). (c) Maximum principal stress in absolute
value in MPa.

2.4 Concrete column 13

−κ
(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
−Q = 0 . (2.2)

This equation expresses the balance of heat energy, and if we find a solution, it will hold at every
single point in the volume V .

The boundary conditions are the decisive part of the mathematical model: they can make the
solution unique, and they are crucial in deciding whether or not the solution exists in the first place.
Physically the boundary conditions are an expression of the interaction of the world with a subset
of it that we wish to model. We always limit ourselves to a simple three-dimensional body. The
interaction of this modeled three-dimensional body with the environment in which it exists (other
three-dimensional bodies, the ambient media, and so on) is expressed through the interactions that
the modeled body has with the not-modeled rest of the world. This interaction occurs across the
boundaries.

In the first example we will consider the two simplest kinds of boundary condition, namely the
temperature being known and the zero heat flux condition.(For a thorough discussion of boundary

conditions see See Box 2 .)

2.4 Concrete column

We shall start by inspecting a simple finite element model. Figure 2.9 shows the distribution of
temperature in a section of a concrete column. What is shown is not the geometry of the column
itself, but rather an approximation of the geometry by a finite element mesh. The volume is actually a

Abaqus
- CAE file
- tutorial

perfect truncated cylinder as shown in Figure 2.10 , where on the left is the volume, in the middle the
top circular cross-section is highlighted, and on the right the side (cylindrical) surface is highlighted.
(The volume naturally also has a bottom circular cross-section, but that is not highlighted in this
figure.)

Fig. 2.9. Distribution of temperature in a piece of concrete column

For simplicity, we will call the volume of the actual geometrical shape V , and the volume of the
approximate geometrical shape as represented by the mesh V h.

The temperature visualized with color coding in Figure 2.9 is also an approximation: the finite
element software found an approximate solution of the mathematical model that describes the dis-

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-temp.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/concrete-column-w-temp-tutorial.pdf

14 FEM for Thermal and Stress Analysis

Fig. 2.10. The geometry of the concrete column

tribution of temperature at steady state (steady-state: when the temperature distribution does not
change in time).

In addition to an equation that holds within the volume, the mathematical model also needs
equations that describe how the objects in the space outside of the volume V influence what is
happening inside V . The volume V is influenced by the material outside of it through its boundary.
In particular, in this example we consider the short section shown in Figure 2.10 to be a fraction
of a very long column that is submerged in water. The volume V is therefore influenced along the
surface St by the material of the column above the surface and along the surface Sb by the material
of the column below. Water is adjacent to the volume V along the surface Ss. The adjacent material
can influence the response of the material of the volume V by bringing in or draining off heat energy,
or it could in fact prevent exchange of energy (insulation). Only careful observation of the physical
situation to be modeled can serve as a guide as to how to express the interaction of the volume V
with its surroundings. Since the interaction of the volume with what is around it is described along
its boundary surface, such conditions are called boundary conditions.

Boundary conditions are an expression of our knowledge of the physical situation.

In the present example, the boundary conditions are described as follows: along the surface St and
the surface Sb the derivative of the temperature along the direction of the normal to the surface is
set to zero

∂T

∂n

∣∣∣∣
St

= 0 and
∂T

∂n

∣∣∣∣
Sb

= 0 . (2.3)

Along the surface Ss the temperature is assumed to be known to be equal to a constant, the
temperature of the water, Tw,

T |Ss = Tw . (2.4)

These two mathematical statements are used to express the following conditions: It is deduced by
observation that the temperature of the columns above surface St and below the surface Sb is the
same as the temperature within the corresponding locations of volume V . Therefore the volume
V exchanges no heat energy with the rest of the column and the conditions (2.3) are saying that
the heat flow through the two surfaces is zero. Further, as the temperature of the water can be
reasonably assumed to be constant along the surface of the entire column, and as the volume of
water is assumed to be rather large so that the interaction with the column does not change the
temperature of the water, we can assume that also the wet boundary of the volume V , that is Ss,
will be at the temperature of water, Tw.

2.4.1 Boundary value problem solved

Equations (2.1), (2.3) , and (2.4) are a package that together defines the mathematical model. The
mathematical model is known as a boundary value problem. The significance of the boundaries is
clearly indicated in the name!

2.4 Concrete column 15

Some of these boundary value problems can be solved exactly by clever tricks and sophisticated
mathematical techniques. The point of finite element methods is that they are applicable when no
analytical techniques exist to solve these problems.

The analytical solution can be derived in cylindrical coordinates See Box 3 as T (r) = Q
4κ

(
a2 − r2

)
.

For the temperature distribution in a concrete column of circular cross-section of radius a = 2.5m,
immersed in water at Tw = 0o C, where the concrete gives off hydration heat at the rate of
Q = 4.5 W/m3, and the thermal conductivity of concrete is taken at κ = 1.8W/m/oK, the tem-
perature at the axis of the cylinder is 3.906oC. The temperature varies only in the radial direction,
not in the circumferential direction and not in the axial direction. Therefore the gradient of the
temperature points directly to the axis of the cylinder (the temperature increases from the circum-
ference towards the center). The maximum temperature gradient value obtains at the circumference,
∂T (r = a)/∂r = Q

2κa = 3.125oC/m. The quantity that is used in thermal analyses to measure the
flow of energy per unit area is the heat flux. By definition, the radial component of the heat flux
would in this case be

qr(r) = −κ∂T (r)

∂r
. (2.5)

The radial component of the heat flux at the circumference of the column would be qr(r = a) =
5.625W/m2.

X Y

Z

Fig. 2.11. The arrows corresponding to the calculated heat flux at the nodes, contributions from all elements
connected to a node.

We can see immediately from Figures 2.9 and 2.11 that the finite element solution is not ex-
act. Nevertheless, it is a fairly reasonable approximation. For instance, the maximum temperature
computed in the FE solution is reported as 3.735oC, and a query of the magnitude of the heat flux
reported at the bottom-most node in Figure 2.11 gives the following values

4.57564, 5.05033, 5.23379, 4.66911, 4.63599, 5.23379, 4.71777

These values are not too far off from the analytical solution. At the same time, the approximate
nature of the finite element solution is very clear:

1. The analytical solution is axially symmetric: the temperature does not change in any other
direction but the radial. The finite element solution is not axially symmetric.

16 FEM for Thermal and Stress Analysis

2. The radial variation of the temperature is a parabolic arc analytically, but it is a piecewise
broken line in the finite element solution (refer to Figure 2.12(a)).

3. The analytical radial variation of the heat flux should be a straight line, increasing from zero at
the axis of the cylinder to the maximum value at the circumference. The finite element solution
is apparently piecewise constant (refer to Figure 2.12(b)).

Radial variation of temperature

Distance from center
0.0 0.5 1.0 1.5 2.0 2.5

T
em

p
er

at
u

re

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

NT11: True Dist. along ’center−path’

Radial variation of heat flux

Distance from center
0.0 0.5 1.0 1.5 2.0 2.5

H
ea

t
fl

u
x

m
ag

n
it

u
d

e
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

HFL, Magnitude (Not averaged): True Dist. along ’center−path’

(a) (b)

Fig. 2.12. The finite element solution for the temperature (left), and the heat flux magnitude (right). The
solution is shown along a line at 45o to the x and y axis at the middle of the height of the cylinder.

58

31 30

5
X Y

Z

Fig. 2.13. The mesh. Edges of all the faces of the tetrahedra on the boundary of the domain are shown
in thin solid line. Four tetrahedra are shown shrunken in solid color, and their nodes are shown with blue
squares. One tetrahedron has its nodes labeled with numbers 58, 31, 5, and 30.

2.4 Concrete column 17

2.4.2 What are finite elements?

Let us now focus our attention on Figure 2.13. It shows the finite element mesh. The mesh consists of
150 tetrahedral elements (tetra= four, suffix -hedron= used in geometry to form the names of solid
figures bounded by a certain number of planes). The corners of the tetrahedra all come together
at the so-called nodes – they are the vertices of the tetrahedra. Tetrahedra have four bounding
triangular faces, six edges in-between the faces, and four nodes (vertices). One tetrahedron is shown
with its nodes labeled in Figure 2.13. The elements are specified by listing the nodes that the element
connects together in the proper order (more about the proper order later). Thus the tetrahedron
shown in Figure 2.13 could be defined by listing the nodes 58, 31, 5, and 30.

The temperature is assumed to vary linearly across each element. Consequently we can write for
the temperature variation within any element

T (x, y, z) = α+ βx+ γy + δz (2.6)

where α, β, γ, and δ are coefficients which are particular to each and every element. In other words,
each tetrahedron has its own set of these coefficients. Not all of these coefficients are independent.
The temperature needs to be continuous across the entire mesh (as it is continuous in the analytical
solution), so there must be some relationships between the sets of coefficient in one tetrahedron and
its neighbors. Wherever two tetrahedra meet (at the vertex, along an edge, or along a face), the
temperature described on one tetrahedron must match that described on the other.

X Y

Z

X Y

Z

(a) (b)

Fig. 2.14. The finite element nodes (the circles). (a) Nodes with known temperature values. (b) Nodes with
unknown temperature values.

This becomes much easier if instead of the general expression (2.6), the temperature distribution
is described the “finite element way”:

T (x, y, z) =
∑
i

TiNi(x, y, z) (2.7)

where Ti is the temperature at the location of the node i, and Ni(x, y, z) is the so-called basis
function (a.k.a. shape function). The basis function is a linear function of x, y, z, and its main
properties are that it is either zero or one at each of the nodes of the element.

The main advantages of the form (2.7) are that (i) the value of the temperature at any node
i is the coefficient Ti, (ii) to calculate the temperature at any other point is a matter of linear
interpolation of the values at the nodes, and (iii) the resulting temperature function is naturally
continuous from one tetrahedron to the next.

18 FEM for Thermal and Stress Analysis

For the four node tetrahedron the basis function is linear in x, y, z. The value of a basis
function at a node is either zero or one— this is referred to as having the Kronecker
delta property. The derivatives of the basis function with the respect to x, y, z are
constant within the element.

For the tetrahedron it is relatively straightforward to calculate the form of such linear basis

functions from the Kronecker delta property See Box 4 , but there is a more natural way which will
be discussed later.

Figure 2.14 shows two sets of nodes. (a) The temperature is known for nodes that are located on
the boundary where the temperature value is prescribed (the cylindrical side surface Ss); and (b)
the temperature is unknown at all the other nodes. The quantities that are associated with nodes
are called the degrees of freedom. The degrees of freedom at nodes that are at the boundary are
called fixed, because their value is determined, before the calculation even starts, from the boundary
conditions. The degrees of freedom that are unknown until the calculation finishes are the free degrees
of freedom. Here “free” is used as the opposite of “fixed”.

The degrees of freedom (DOFs) are the values of the temperature at the nodes. Some
DOFs are fixed by the boundary conditions, others needs to be calculated from the
finite element equations: these are free (as opposed to fixed).

The expressions for the basis functions can be also easily differentiated to obtain the gradient
of temperature at any point. For instance, the temperature values at the nodes 30, 31, and 5 are
known to be zero because of the boundary condition (see Figure 2.13). The temperature at node 58

is 2.07121o C as we find by querying the temperature in the Abaqus model. See Box 5 Furthermore
Abaqus
- CAE file

we can query the coordinates of these four nodes, and therefore we can calculate the basis functions
and their gradients. The magnitude of the heat flux can be readily calculated within the element 58,

31, 5, 30 to be 5.0503W/m2. See Box 6 Importantly, the heat flux is the same everywhere within
the element: it is uniform. That actually fits together with our earlier discussion of the temperature
varying linearly across the element: a linear function has constant gradient, and the heat flux is
proportional to the gradient. This explains why in Figure 2.12 there are multiple arrows of heat flux
per node: as there are several elements connected to each node, and as each of the elements has its
own value of the heat flux which is constant across the entire element, including at its nodes, when
the elements are connected to the node, each element contributes an arrow which in general will be
different from that of its neighbors.

The heat flux is proportional to the gradient of the temperature. Taking the gradient means
taking derivatives. It is well known that in computing whenever a derivative is taken, accuracy is
reduced. Compare Figures 2.9 (for the temperature) and 2.15 (for the heat flux magnitude): clearly
the temperature is much better represented than the heat flux: the color coding shows that the
temperature varies across each element, whereas the heat flux is constant within each element.

The more derivatives we need to take, the less accurate the results will be. Temperature
is more accurate than the gradient of temperature, because to get the gradient we need
to differentiate the temperature. Consequently also the heat flux is less accurate than
the temperature.

2.5 Hexahedral elements

The bewildering variety of finite elements available in typical finite element programs is due to a
number of factors: there are no silver bullets, some elements are better than others in one situation,
and the position is reversed in another situation. The 8-node hexahedron is a valuable element to
have in our toolbox.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-temp.cae

2.6 Using symmetry 19

 42, 5.05033

HFL, Magnitude

+8.611e−02
+5.279e−01
+9.698e−01
+1.412e+00
+1.853e+00
+2.295e+00
+2.737e+00
+3.179e+00
+3.621e+00
+4.063e+00
+4.504e+00
+4.946e+00
+5.388e+00

X Y

Z

Fig. 2.15. The heat flux magnitude displayed with color coding for the entire mesh, and with annotation
label for the element with nodes [58, 31, 5, 30] (heat flux magnitude 5.0503).

NT11

+0.000e+00
+3.222e−01
+6.444e−01
+9.666e−01
+1.289e+00
+1.611e+00
+1.933e+00
+2.256e+00
+2.578e+00
+2.900e+00
+3.222e+00
+3.544e+00
+3.867e+00

X Y

Z

HFL, Magnitude

+3.313e−01
+7.356e−01
+1.140e+00
+1.544e+00
+1.949e+00
+2.353e+00
+2.757e+00
+3.161e+00
+3.566e+00
+3.970e+00
+4.374e+00
+4.779e+00
+5.183e+00

X Y

Z

(a) (b)

Fig. 2.16. The temperature and heat flux computed on a hexahedral mesh with elements of roughly the
size of half the thickness of the slice.

Figure 2.16 shows the temperature distribution and the heat flux magnitude for the finite element
simulation using hexahedral elements of roughly half the size of the tetrahedra in Figure 2.9. Two

Abaqus
- CAE file

important observations: Firstly, the result quality is better with the hexahedra, and that is a general
observation that one can make with respect to the relative merits of these elements. Secondly, the
smaller the elements (the more of them that we use), the more accurate the results become. Accuracy
is measured in terms of how close we can get with the finite element solution to the true solution.
The process of getting closer to the true solution is called convergence, and without convergence
there would be no point in using the finite element method, because we couldn’t rely on the results
being relevant to our investigations.

We will consider the hexahedral (and their 2-d counterpart, quadrilateral) elements later. To
start with tetrahedral (triangular, in 2-d) elements is preferable, as they are so much simpler.

2.6 Using symmetry

The geometry and the heat-transfer conditions (the material, the body load, the boundary condi-
tions) possess two kinds of symmetry. Firstly, axial symmetry: the axis of the cylinder is an axis of
symmetry. Secondly, translational symmetry: the solution is independent of the z coordinate.

Since the column has an axis of symmetry, any plane passing through the axis of symmetry is
a plane of symmetry. This is important: the temperature distribution being symmetric with respect
to the plane of symmetry means that the gradient of temperature through the plane of symmetry

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-temp-c3d8.cae

20 FEM for Thermal and Stress Analysis

is zero. This means that the heat flux through the plane of symmetry is known to be zero. Thus we
get a natural boundary condition that we can use, we only have to be able to identify a plane of
symmetry.

Since any plane passing through the axis is a symmetry plane, which one of the infinitely many
planes do we pick? We can pick a single plane, effectively slicing the column in half. This is nice, the
size of the problem is immediately reduced with a factor of two. But we can do better, we can pick
two planes. The pie slice generated in this way could be of any interior angle. The smaller the angle
the smaller the model (the fewer the elements in the mesh). However, we should not make the angle
too small: small angle means poorly shaped elements, and poorly shaped elements lead to errors. So
let us make it 15o.

Abaqus
- CAE file
- tutorial

Figure 2.17 illustrates the temperature distribution in two ways: (a) as a banded surface plot,
and (b) as a collection of isosurfaces. Both plots highlight that the results from the FE calculations
will converge towards the analytical representation. The level surfaces of temperature should be
concentric cylinders of various radii. The level surface at temperature T = 0oC is the outer surface
of the concrete column (i.e.the interface between the column and the water).

NT11

+0.000e+00
+3.275e−01
+6.550e−01
+9.826e−01
+1.310e+00
+1.638e+00
+1.965e+00
+2.293e+00
+2.620e+00
+2.948e+00
+3.275e+00
+3.603e+00
+3.930e+00

X Y

Z

NT11

+0.000e+00
+3.275e−01
+6.550e−01
+9.826e−01
+1.310e+00
+1.638e+00
+1.965e+00
+2.293e+00
+2.620e+00
+2.948e+00
+3.275e+00
+3.603e+00
+3.930e+00

X Y

Z

(a) (b)

Fig. 2.17. The temperature for the 3-D model with two planes of symmetry used, element size 0.25 (maxi-
mum temperature 3.930).

Importantly, using the symmetry in this way leads to considerable savings. The number of ele-
ments is reduced by a factor of 360/15 = 24.

Using symmetry can lead to significant efficiencies.

2.7 More symmetry: axisymmetric model

We can think of an axially symmetric geometry as being generated by rotating the so-called gener-
ating section through 360o. The generating section for the column part is a simple rectangle.

Since the temperature in the column example does not vary in the circumferential direction,
we could formulate the finite element model in the two coordinates in the plane of the generating
section, radial r and axial z. (Actually, the temperature does not vary in the z direction either in
the present example, but we shall ignore that for the moment.)

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-temp-pie.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/concrete-column-w-temp-pie-tutorial.pdf

2.8 Even more symmetry: 2-D model in the cross-section 21

The finite element used in the axially symmetric model is based on the quadrilateral shape, as
can be seen in Figure 2.18.

Abaqus
- CAE file
- tutorialNT11

+0.000e+00
+3.278e−01
+6.557e−01
+9.835e−01
+1.311e+00
+1.639e+00
+1.967e+00
+2.295e+00
+2.623e+00
+2.951e+00
+3.278e+00
+3.606e+00
+3.934e+00

X

Y

Z

Fig. 2.18. The temperature for the axially symmetric model, element size 0.25 (maximum temperature
3.934).

When we calculate the heat flux at the middle of the height of the rectangle of the generating
section, and plot the heat flux as a function of the radial distance, and we do that for elements of
two different sizes, we get Figure 2.19. The analytical solution for the heat flux should be a straight
line between zero at the axis of symmetry and the maximum at the circumference. Clearly the zigzag
line is an approximation of such a straight line. This simple visualization allows us to say something
about convergence: How far off is the finite element solution for the heat flux from the true value?
Within an element the heat flux is a constant value (horizontal line in the figure). The departure of
an inclined line of the true solution from the horizontal is the error, and we can see that the error is
proportional to the size of the element (we can use the order-of notation: the error is approximately
proportional to the element size h, or in mathematical notation O(h)). The smaller the element, the
smaller the error. It is thus that we get convergence: by using smaller elements, the error is reduced.
We will see later that the error of the temperature itself is proportional to the size of the element
squared. We will understand that the temperature error would therefore decrease much quicker than
the error of the heat flux: The square of a small quantity (element size) is much smaller than the
quantity itself.

2.8 Even more symmetry: 2-D model in the cross-section

The axially symmetric model of the previous section managed to reduce the number of model
coordinates from three to two: the radial distance and the axial coordinate. The present approach
will also manage such a reduction, but in this case the two coordinates will be the in-plane Cartesian
coordinates of points in the cross-section of the column. In a way this is natural, since we already
discussed that the temperature field was independent of the z coordinate.

Abaqus
- CAE file
- tutorial

Figure 2.20 shows the Abaqus solution on a 30o pie-slice shaped model of the cross-section.
Three-node triangles are used with the mesh size of 0.25 (10 element edges along the radius). The
improvement of accuracy with respect to the coarser tetrahedral mesh discussed previously is obvious.

The three-node triangle will be the first finite element discussed in the next chapter. It is really
the simplest element in more than one dimension, and therefore conducive to hand calculations.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-temp-axisymm.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/concrete-column-w-temp-axisymm-tutorial.pdf
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-temp-pie-2d.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/concrete-column-w-temp-pie-2-d-tutorial.pdf

22 FEM for Thermal and Stress Analysis

Heat flux

Radial distance
0.0 0.5 1.0 1.5 2.0 2.5

H
ea

t
fl

u
x

1.0

2.0

3.0

4.0

5.0

Heat flux

Radial distance
0.0 0.5 1.0 1.5 2.0 2.5

H
ea

t
fl

u
x

0.0

1.0

2.0

3.0

4.0

5.0

(a) (b)

Fig. 2.19. The heat flux for the axially symmetric model along the middle of the height, element size 0.25
and 0.0625.

Even so, the technique becomes quickly impossible to use without a computer. Fortunately, the
finite element methodology is ideally suited for computer execution.

NT11

+0.000e+00
+3.260e−01
+6.519e−01
+9.779e−01
+1.304e+00
+1.630e+00
+1.956e+00
+2.282e+00
+2.608e+00
+2.934e+00
+3.260e+00
+3.586e+00
+3.912e+00

X

Y

Z

HFL, Resultant

+3.697e−01
+7.921e−01
+1.215e+00
+1.637e+00
+2.060e+00
+2.482e+00
+2.904e+00
+3.327e+00
+3.749e+00
+4.172e+00
+4.594e+00
+5.017e+00
+5.439e+00

X

Y

Z

(a) (b)

Fig. 2.20. Temperature and heat flux for the 2d pie-slice model, element size 0.25. (a) The temperature,
(maximum temperature 3.912); (b) Heat flux resultant vector.

2.9 Modeling with film condition

Consider again the concrete column from Section 2.4. It is often the case that a solid exposed
to a fluid medium along its surface does not have precisely the same surface temperature as the
temperature of the fluid medium. There is a difference, a temperature jump, and the jump is often
related to how much heat can flow through a layer of fluid right next to the solid surface through the
coefficient that can be determined by experiment, the surface heat transfer coefficient (in Abaqus
called the film coefficient).

This observation leads to a formulation of the convection boundary condition

qn = ho(T − Tw) , (2.8)

where T is the temperature of the surface of the solid, and the normal component of the heat flux
is therefore proportional to the jump of the temperatures between the solid and the surrounding

medium. See Box 2 In this example the convection boundary condition is applied on the side

2.9 Modeling with film condition 23

cylindrical surface. The ambient temperature is again taken as 0oC, and the surface heat transfer
Abaqus
- CAE file
- tutorial

coefficient (film coefficient) is ho = 5.0W/m2/oK.
Figure 2.21 shows the distribution of the temperature. Comparison should be drawn with Fig-

ure 2.9 which shows results for the prescribed-temperature boundary condition. The difference is
really only a shift of the entire temperature field by approximately 1.06oC. The heat flux picture is
essentially the same as for the boundary conditions with fixed temperature.

It is of interest to compare the magnitude of the largest heat flux in the volume of the column
(5.37) with the heat flux through the film condition (i.e. the convection boundary layer): the tem-
perature drop is 1.06oC, which when multiplied with the film coefficient h yields 1.06 × 5.0 = 5.3.
The close agreement of these two numbers is no coincidence: what comes into the boundary layer
must also come out, there is no accumulation of heat possible.

NT11

+1.064e+00
+1.378e+00
+1.693e+00
+2.007e+00
+2.321e+00
+2.636e+00
+2.950e+00
+3.265e+00
+3.579e+00
+3.894e+00
+4.208e+00
+4.522e+00
+4.837e+00

X Y

Z

HFL, Resultant

+8.537e−02
+4.919e−01
+8.984e−01
+1.305e+00
+1.711e+00
+2.118e+00
+2.524e+00
+2.931e+00
+3.337e+00
+3.744e+00
+4.150e+00
+4.557e+00
+4.964e+00
+5.370e+00

X Y

Z

(a) (b)

Fig. 2.21. Concrete column with convection boundary condition. (a) Distribution of the temperature. Note
the nonzero temperature on the boundary. (b) Heat flux displayed as symbols (arrows).

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-conv.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/concrete-column-w-conv-tutorial.pdf

24 FEM for Thermal and Stress Analysis

2.10 Background, explanations, details

Box 1. Heat conduction PDE
The excellent thermal analysis textbook by Lienhard and Lienhard [5] has all the details one might
require to supplement the treatment that follows.

Our first goal is to derive the balance equation that describes heat conduction in solids as a partial
differential equation (PDE). To begin, we pick a control volume, and we keep track of the heat energy
within that volume. The control volume may be the whole structure, part of the structure, or just a
very small chunk of material surrounding a given point in space (Figure Box 1(a)). The amount of
heat energy in the control volume U is expressed as an integral of the volume density of heat energy,
u

U =

∫
V

u dV (2.9)

Fig. 2.22. The domain for the heat conduction problem

The amount of heat energy within the control volume may change by outflow (inflow) of heat
energy via the boundaries, and heat generation (or loss) within the volume. These quantities will
be expressed in terms of rates. Therefore, the amount of energy flowing out of the control volume
through its bounding surface S per unit time is∫

S

n · q dS , (2.10)

where n is the outer normal to the surface S, and q is the heat flux (amount of heat flowing through
a unit area per unit time). The amount of energy generated within the control volume per unit time
is ∫

V

Q dV , (2.11)

where Q is the rate of heat generation per unit volume; for example, heat is released or consumed by
various deformation and chemical processes (as work of viscous stresses, reaction product of curing
concrete or polymer resins, and so on).

Collecting the terms, we can write for the change of the heat energy within the control volume
the rate equation

dU

dt
= −

∫
S

n · q dS +

∫
V

Q dV . (2.12)

Finally, differentiating U with respect to time will be possible if we assume that U = U(T), i.e. if
U is a function of the absolute temperature T . Holding the control volume fixed in time, the time
differentiation may be taken inside the integral over the volume

2.10 Background, explanations, details 25

dU

dt
=

d

dt

∫
V

u dV =

∫
V

du

dt
dV , (2.13)

and with the application of the chain rule, the relationship (2.13) is expressed as

dU

dt
=

∫
V

du

dt
dV =

∫
V

du

dT

∂T

∂t
dV . (2.14)

The quantity cV = du/dT is a characteristic property of a solid material (called specific heat at
constant volume). It is typically dependent on temperature, but we will assume that it is a constant;
otherwise it leads to nonlinear models.

Substituting, we write∫
V

cV
∂T

∂t
dV = −

∫
S

n · q dS +

∫
V

Q dV . (2.15)

This equation consists of volume integrals and a surface integral. If all the integrals were volume
integrals, over the same volume of course, we could proclaim that the integral statement (sometimes
called a global balance equation) would hold provided the integrands satisfied a so-called local
balance equation (recall that to get the local balance equation is our goal). For instance, from the
integral statement∫

V

α
∂M

∂t
dV =

∫
V

µ dV , (2.16)

where α, M , and µ are some functions, one could conclude that

α
∂M

∂t
= µ , (2.17)

which is a local version of (2.16). An argument along these lines could for instance invoke the
assumption that the volume V was arbitrary, and that it could be shrunk around a given point,
which in the limit would allow the volume to be canceled on both sides of the equation.

To execute this program for equation (2.15), we have to convert the surface integral to a volume
integral. We have the needed tool in the celebrated divergence theorem (also known as the Gauss
theorem)∫

V

divq dV =

∫
S

n · q dS , (2.18)

where the divergence of the flux vector is defined in Cartesian coordinates as

divq =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

.

Consequently, Eq. (2.15) may be rewritten∫
V

cV
∂T

∂t
dV = −

∫
V

divq dV +

∫
V

Q dV , (2.19)

and grouping the terms as∫
V

[
cV
∂T

∂t
+ divq −Q

]
dV = 0 . (2.20)

we may conclude that the inside of the bracket has to vanish since the volume could be entirely
arbitrary. Therefore, we arrive at the local balance equation

cV
∂T

∂t
+ divq −Q = 0 . (2.21)

26 FEM for Thermal and Stress Analysis

Equation (2.21) contains too many variables: both temperature and heat flux. Since it is a scalar
equation, the logical step is to express the heat flux in terms of temperature. That is the content
of the Fourier model: heat flows opposite to the gradient of the temperature (downhill). In matrix
form

q = −κ(gradT)T . (2.22)

The matrix κ is the conductivity matrix of the material. The most common forms of κ are

κ = κ1 (2.23)

for the so-called thermally isotropic material, and

κ =

κx 0 0
0 κy 0
0 0 κz

 , (2.24)

for materials that have three orthogonal directions of different thermal conductivities (orthotropic
material); κ is the isotropic thermal conductivity coefficient, 1 is the identity matrix, and κx, κy,
and κz are the orthotropic thermal conductivities. To explain the orthotropic conductivity model
we note that some materials have preferred directions in which heat would like to flow, for instance
along the fibers in a composite. Visually, we can imagine a corrugated steel roof, with the channels
running not directly downhill, but tilted away from the slope – the water would run preferentially
in the channels, but generally downhill.

The funny looking transpose of the temperature gradient follows from the definition: the gradient
of the scalar is a row matrix

gradT =

[
∂T

∂x
,
∂T

∂y
,
∂T

∂z

]
. (2.25)

With the constitutive equation, the balance equation (2.21) is now expressed purely in terms of
the absolute temperature,

cV
∂T

∂t
− div

[
κ(gradT)T

]
−Q = 0 . (2.26)

End Box 1

Box 2. Heat conduction boundary conditions
Here we consider V to be the volume of the whole solid domain. The most important fact about
the boundary conditions is that we need to have a boundary condition at each point of the surface
S which bounds this volume (see Figure Box 1). The heat conduction model is all about tempera-
ture. Correspondingly, the boundary conditions are an expression of our a priori knowledge of the
temperature distribution in the solid and on its surface.

The simplest boundary condition results if we know the surface temperature along one part of
S at all times. This part of the surface will be called S1 (see Figure Box 2(a)). Therefore,

T (x, t) = T (x, t), x on S1 . (2.27)

This type of condition is known as the primary, or essential , boundary condition. Sometimes it
is also referred to as the boundary condition of the first kind, or the Dirichlet boundary condition.

The heat flux entering or leaving the solid may also be known (measured by a heat flux gauge, for
instance). Generally, we do not know the heat flux along the surface, only the normal component,

2.10 Background, explanations, details 27

Fig. 2.23. The partitioning of the boundary surface used in the description of the boundary conditions.
Note that the boundary surface of the volume V may consist of multiple patches of either type S1, or type
S2, or type S3. Together these patches cover the entire surface.

which is available from the normal to the surface and the heat flux vector as qn = n · q. Therefore,
along the S2 part of the surface the normal component of the heat flux may be prescribed

qn = n · q = qn, x on S2 . (2.28)

All quantities are given at a particular point on the boundary as functions of time, similarly to
the first boundary condition. This type of condition is known as the natural (or flux) boundary
condition. Sometimes it is also referred to as the boundary condition of the second kind, or the
Neumann boundary condition.

As the last example of a boundary condition, we will mention heat transfer driven by a temper-
ature difference across a surface. The normal component of the heat flux is given as

qn = n · q = h(T − Ta), x on S3 , (2.29)

where Ta is the known temperature of the surrounding medium (ambient temperature), and h is
the surface heat transfer coefficient. This boundary condition is often used in the so-called forced-
convection situations where a solid body is exposed to a forced flow of some fluid medium at a given
temperature. As a result of the sticking of the fluid to the solid a flow boundary layer develops.
In general yet another boundary layer develops, a thermal boundary layer, over which there will
be a temperature gradient between the fluid outside of the boundary layer and the surface of the
wetted solid body. The inverse of the thermal resistance of the boundary layer is expressed through
the surface heat transfer coefficient which depends on the many parameters involved (the properties
of the surface of the body, the properties of the fluid, the properties of the convection flow, etc.).
Sometimes it is also referred to as the boundary condition of the third kind, or the Newton boundary
condition. In Abaqus this boundary condition is known as the convective film condition. Since this
kind of boundary condition has application also in other situations such as modeling of the thermal
resistance of contact between two solid bodies, or modeling of thin insulation layers, as surfaces
with thermal gradients across them, we will refer to this condition as the surface heat transfer
boundary condition.

End Box 2

Box 3. Analytical solution for the cylindrical domain
Consider a cylinder of radius a. In cylindrical coordinates, where r is the radial distance from the axis
of symmetry, φ is the circumferential angle, and z is the coordinate along the axis of the cylinder,
the differential equation

1

r

∂

∂r

(
κr
∂T

∂r

)
+Q = 0 (2.30)

describes the variation of temperature in the radial direction. The solution for uniform heat gener-
ation rate Q and homogeneous material κ, with the two boundary conditions

28 FEM for Thermal and Stress Analysis

∂T (r = 0)

∂r
= 0, T (r = a) = Tw = 0 , (2.31)

is

T (r) =
Q

4κ

(
a2 − r2

)
(2.32)

End Box 3

Box 4. Basis function for the tetrahedron
The basis functions for the T4 tetrahedron KLMP are linear functions with four coefficients, for
instance

NK(x, y, z) = aKx+ bKy + cKz + dK

The interpolation conditions are written

NK(xJ , yJ , zJ) = aKxJ + bKyJ + cKzJ + dK = δKJ ,

where δKJ is the Kronecker Delta,

δik =

{
1, if i = k;
0, otherwise.

The relationship written for all four nodes results in
xK , yK , zK , 1
xL, yL, zL, 1
xM , yM , zM , 1
xP , yP , zP , 1

︸ ︷︷ ︸

X

aK , aL, aM , aP
bK , bL, bM , bP
cK , cL, cM , cP
dK , dL, dM , dP

︸ ︷︷ ︸

A

=

1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1

︸ ︷︷ ︸

1

Consequently, the coefficients of the basis functions can be computed as

A = X−1

and in particular the matrix of basis function gradients with respect to x, y, z are the first three
columns of AT .

End Box 4

Box 5. Query the coordinates of the nodes 58, 31, 5, 30
Abaqus prints out:

Node: PART-1-1.58
1 2 3 Magnitude

Base coordinates: 1.00788e+000, 1.38768e+000, 1.00000e+000, -
No deformed coordinates for current plot.

Node: PART-1-1.31
1 2 3 Magnitude

2.10 Background, explanations, details 29

Base coordinates: 1.76777e+000, 1.76777e+000, 1.00000e+000, -
No deformed coordinates for current plot.

Node: PART-1-1.5
1 2 3 Magnitude

Base coordinates: 9.56709e-001, 2.30970e+000, 0.00000e+000, -
No deformed coordinates for current plot.

Node: PART-1-1.30
1 2 3 Magnitude

Base coordinates: 9.56709e-001, 2.30970e+000, 1.00000e+000, -
No deformed coordinates for current plot.

End Box 5

Box 6. Calculation of the temperature gradient in element 58, 31, 5, 30
Here is a bit of Python code to calculate the coefficients of the basis functions of element 58, 31, 5,
30 from the known coordinates given in Box 5. This matrix lists those coordinates in the first three
columns.

X = array([[1.00788e+000, 1.38768e+000, 1.00000e+000, 1.0],
[1.76777e+000, 1.76777e+000, 1.00000e+000, 1.0],
[9.56709e-001, 2.30970e+000, 0.00000e+000, 1.0],
[9.56709e-001, 2.30970e+000, 1.00000e+000, 1.0]])

This matrix then will hold the coefficients of the four basis functions as described in Box 4

A = linalg.inv(X)
print(A)

i.e.

[[-0.75259342 1.28043508 0. -0.52784166]
[-1.1263432 0.07106261 0. 1.0552806]
[0. 0. -1. 1.]
[3.32152779 -1.38913707 1. -1.93239072]]

The gradients of the basis functions then follow from

gradN = A[0:3,:].T
print(gradN)

as

[[-0.75259342 -1.1263432 0.]
[1.28043508 0.07106261 0.]
[0. 0. -1.]
[-0.52784166 1.0552806 1.]]

where the first row holds the gradient of the basis function N58 and so on. Given that the tempera-
tures at the nodes are T58 = 2.07121, and T31 = T5 = T30 = 0, the gradient of temperature results
as

gradT = 2.07121*gradN[0, :]
print(gradT)

i.e.

[-1.55877901 -2.3328933 0.]

30 FEM for Thermal and Stress Analysis

and the heat flux magnitude 5.05033399533 as obtained from

print(linalg.norm(-1.8*gradT))

which may be readily compared with Figure 2.11.

End Box 6

3

FEA for 2-D Heat conduction with Triangles

3.1 Model in two coordinates

In this section we show how the originally three-dimensional model can be reduced to just two active
coordinates. The reduced model will still describe the heat conduction through a three-dimensional
domain; the function describing the temperature distribution will depend only on two spatial coor-
dinate variables though.

(a) (b)

Fig. 3.1. The geometry of a domain in which the temperature does not change with the z coordinate. (a)
Slice of a long cylindrical structure. (b) The cross-section: Sc=the interior, C=the boundary curves.

Under certain conditions, the temperature can be assumed to be independent of the z coordi-

nate. See Box 8 Referring to Figure 3.1: the heat flux through the cross section surfaces is zero,
and the temperature throughout the thickness of the disk is uniform (i.e. the temperature does not
vary with z). The surface of the three-dimensional solid consists of the two cross sections, and of the
cylindrical surfaces, the inner and the outer. The two cylindrical surfaces may be associated with
boundary condition of any type. The two cross sections are associated with the boundary condition

of zero normal component of the heat flux, qn = 0 (See Box 8 , where the boundary is referred to
as type S2, Equation (2.28))

n · q = ±qz = 0, on the cross sections . (3.1)

In this section we will refer to a simplified version of the heat conduction model: we will only
consider isotropic materials, steady-state heat conduction, and the boundary conditions of two types:
insulating boundary condition (heat flux zero) and prescribed temperature.

Under these conditions, the BVP is defined by the differential equation (which expresses thermal
power balance, and hence is called the balance equation)

−div
[
κ (gradT)T

]
−Q = 0 , (3.2)

with the boundary conditions on the part S1 of the boundary surface

32 FEM for Thermal and Stress Analysis

T (x, t) = T (x, t), x on S1 , (3.3)

and, along the S2 part of the surface the normal component of the heat flux may be prescribed

qn = n · q = 0, x on S2 . (3.4)

Note that the boundary condition with zero normal component of the heat flux is usually referred
to as the “insulated” boundary.

3.2 The discrete model: Method of Weighted Residuals

The partial-differential-equation model described in the previous section is usually called “contin-
uous”: the solution is expressed in terms of functions that satisfies the balance equation (3.2) and
the boundary conditions when differentiated and substituted. Analytical solutions are unfortunately
rare: only for a very special geometries and fairly simple heat loads can we hope to obtain one.

An alternative is to transition to a discrete model: instead of finding the solution to partial
differential equations we solve systems of linear algebraic equations. This is not only much easier,
but also, thanks to computers, not only tractable but also very efficient.

The methodology for converting the continuous boundary value problem models to discrete
models that is commonly adopted in engineering practice is the weighted residual method (WRM).

To explain the basics we will discuss in this section a really simple BVP model that describes the
deflection of a wire prestressed with force P , which is loaded by a uniformly distributed transverse
load q. For simplicity we shall consider these two quantities chosen to give q/P = 1. The length of
the wire is taken as L = 1, and the wire has a pin support at x = 0 and a roller support at x = 1.
The balance (equilibrium) equation reads

Pw′′ + q = 0 , (3.5)

or, with the force and the transverse loading given as above

w′′ + 1 = 0 . (3.6)

The solution is really easy: On the interval 0 ≤ x ≤ 1 the shape of the wire is described by the
function

w(x) = x− 1

2
x2 . (3.7)

When we differentiate this function twice and substitute into the differential equation (3.6) we can
see that the function satisfies it as well as the two boundary conditions

w(0) = 0 , w′(1) = 0 . (3.8)

Forget that the BVP is so simple, and let us pretend that we need to guess the solution in the
form of the function

wh(x) = sin
(π

2
x
)
, (3.9)

which we will call the trial function . Substituting the endpoints of the interval, we can see that
the boundary conditions are satisfied. However, we obtain by differentiation

w′′h(x) = −
(π

2

)2
sin
(π

2
x
)

(3.10)

so that the differential balance equation is seen not to be satisfied

w′′h(x) + 1 = −
(π

2

)2
sin
(π

2
x
)

+ 1 6= 0 . (3.11)

3.2 The discrete model: Method of Weighted Residuals 33

The expression

r(x) = w′′h(x) + 1 = −
(π

2

)2
sin
(π

2
x
)

+ 1 (3.12)

is called the residual , and because the residual is not identically zero, we can see that wh is not the
exact solution. Figure 3.2 shows the exact and approximate solutions. Evidently, the approximate
solution is quite off.

x
0 0.2 0.4 0.6 0.8 1

w
(x
)

0

0.2

0.4

0.6

0.8

1

Approximate

Exact

Fig. 3.2. The exact and approximate solution of the BVP (3.6), (3.8). The trial function is (3.9)

In addition to the substitution of the function into the differential equation to check whether the
residual (3.9) is identically zero, we can also use the so-called weighted residual test for the same
purpose:∫ 1

0

ϑ(x)r(x) dx = ? (3.13)

where the arbitrary function ϑ(x) is usually called the test function . (What do we mean by
arbitrary? Any function ϑ(x) such that the integral can be evaluated.)

What is the value of the expression on the left telling us?

• If for any arbitrary function ϑ(x) we get as a result zero, the residual must be identically zero,
and consequently wh must be the exact solution;

• otherwise, when we don’t get a zero for some test function ϑ(x), the guess of the solution wh is
not the exact solution, only an approximation.

The attempted solution (3.9) is in fact not very good. Not only the balance equation is not satis-
fied (the residual is nonzero), but also the curve of the exact solution is not matched in magnitude,
the approximate solution is about twice as big. We can improve upon our initial guess by adding a
scalar multiplier

wh(x) = α1 sin
(π

2
x
)

(3.14)

where α1 is called the degree of freedom, and it is to be determined from a condition that the
approximate solution should be somehow close to the exact one. The function sin

(
π
2x
)

is called the
basis function .

The weighted residual statement (3.13) is now brought in again, but this time we demand (rather
than check) the right-hand side to be zero∫ 1

0

ϑ(x)r(x) dx = 0 . (3.15)

34 FEM for Thermal and Stress Analysis

If we now substitute our guess (trial) (3.14), equation (3.15) can be solved for α1, and voilà, there
is our approximate solution.

One more tweak: In order to improve our chances of finding a good trial function, the weighted
residual statement (3.15) is replaced with a simple modification. If we substitute the trial func-
tion (3.14) into (3.15) we see that the trial function must be twice differentiable∫ 1

0

ϑ(x)r(x) dx =

∫ 1

0

ϑ(x) [w′′h(x) + 1] dx =

∫ 1

0

ϑ(x)w′′h(x) dx +

∫ 1

0

ϑ(x) dx = 0 (3.16)

which is easy here, but considerably more difficult for real situations in two or three dimensions.
Therefore, we use integration by parts to reduce the number of derivatives needed for the weighted
residual statement as∫ 1

0

ϑ(x)w′′h(x) dx = −
∫ 1

0

ϑ′(x)w′h(x) dx+ [ϑ(x)w′h(x)]
1
0 (3.17)

So the weighted residual statement (3.16) will be rewritten as∫ 1

0

ϑ(x)r(x) dx = −
∫ 1

0

ϑ′(x)w′h(x) dx+ [ϑ(x)w′h(x)]
1
0 +

∫ 1

0

ϑ(x) dx = 0 (3.18)

Notice that we haven’t changed the rules of the game: this is still the original weighted residual
statement, but now we are allowed to pick a trial function with only one derivative, and in exchange
we now also require the test function to be differentiable. The test function is typically taken in
the same form as the trial function, meaning we would take the test function here to be the basis
function sin

(
π
2x
)
. When we do that, the weighted residual statement (3.18) yields

−
∫ 1

0

[
sin
(π

2
x
)]′ [

α1 sin
(π

2
x
)]′

dx

+ sin
(π

2
× 1
)α1

π

2
cos
(π

2
× 1
)

︸ ︷︷ ︸
0

− sin
(π

2
× 0
)

︸ ︷︷ ︸
0

[
α1
π

2
cos
(π

2
× 0
)]

+

∫ 1

0

sin
(π

2
x
)

dx = 0

(3.19)

and in numbers

−α1
π2

8
+

2

π
= 0 , ⇒ α1 =

16

π3
≈ 0.516 (3.20)

Figure 3.3 shows the approximate solution (3.14) for the calculated value of α1: clearly the
approximate solution now hugs the exact solution fairly closely.

If we wanted to improve the approximate solution further, we could use for instance this function

wh(x) = α1 sin
(π

2
x
)

+ α2 sin

(
3π

2
x

)
(3.21)

with two degrees of freedom, which we can write using the notation φ1(x) = sin
(
π
2x
)

and φ2(x) =

sin
(
3π
2 x
)

as

wh(x) = α1φ1(x) + α2φ2(x) (3.22)

Now we need two equations, because we have two unknown degrees of freedom. So we write the
weighted residual equation once, for ϑ = φ1,

3.2 The discrete model: Method of Weighted Residuals 35

x
0 0.2 0.4 0.6 0.8 1

w
(x
)

0

0.1

0.2

0.3

0.4

0.5

0.6
Approximate

Exact

Fig. 3.3. The exact and approximate solution of the BVP (3.6), (3.8) for the trial function (3.14)

−
∫ 1

0

φ′1(x) [α1φ1(x) + α2φ2(x)]
′

dx+
[
φ1(x) [α1φ1(x) + α2φ2(x)]

′]1
0

+

∫ 1

0

φ1(x) dx = 0 (3.23)

and twice, for the test function ϑ = φ2,

−
∫ 1

0

φ′2(x) [α1φ1(x) + α2φ2(x)]
′

dx+
[
φ2(x) [α1φ1(x) + α2φ2(x)]

′]1
0

+

∫ 1

0

φ2(x) dx = 0 (3.24)

Since the basis functions are known, the above two equations are simply linear algebraic equations
for two unknowns, α1 and α2. Solving for the unknown degrees of freedom we obtain the approximate
solution shown in Figure 3.4: a very considerable improvement of the original guess!

x
0 0.2 0.4 0.6 0.8 1

w
(x
)

0

0.1

0.2

0.3

0.4

0.5

Exact

Approximate

Fig. 3.4. The exact and approximate solution of the BVP (3.6), (3.8) for the trial function (3.22)

Figure 3.5 shows the residuals for the two trial functions (3.14) and (3.22) and for the solution
with three terms (whose details we have not shown here). We can see how the residual gets “molded”
by each additional term in the trial function and by each additional test function. (By the way, the
residual does not diminish at x = 0 because each of the sine terms has zero curvature at that point.
Using only sines will not produce a very good approximation for a function that is supposed to have
constant curvature.)

Let us contemplate a tangible analogy of what we’re trying to do here with the test functions.
Consider the exciting game of Whac-A-Mole. We use the mallet whenever the mole pokes its head

36 FEM for Thermal and Stress Analysis

x

0 0.2 0.4 0.6 0.8 1
R
e
s
id
u
a
l

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) (b)

(a)

Fig. 3.5. The residual of the approximate solutions of the BVP (3.6), (3.8). (a) for the trial function (3.14),
(b) for the trial function (3.22), and (c) for the trial function wh(x) = α1φ1(x) + α2φ2(x) + α3φ3(x)

out of the table to push it back in. If we had five mallets (and five hands to operate them), we could
keep all five moles inside. The residual behaves in places like the mole poking its head out. Each of
the mallets may be thought of as a single test function η that pushes the residual (a mole) down in
some spots.

Evidently, the residual bulges out a little bit in between the mallets. However, we have the option
of add more mallets, and distribute the locations of the mallets wisely, and we will manage to do a
better and better job of keeping the moles underground. Indeed, with an infinite number of mallets,
we can control the critters no matter where they wish to stick their head out. Note that we have to
distribute the mallets in some sense densely and uniformly– no parts of the interval 0 ≤ x ≤ 1
may be left out, since the residual could stay nonzero there.

Recall that this book is about finite element methods, and all the test functions will
be the finite element basis functions, and all the trial functions will be constructed
as linear combinations of the finite element basis functions. The finite element mesh
provides us with an efficient systematic way of constructing the test and trial functions.

3.3 Weighted residual method for the heat conduction problem

The finite element method proceeds from the so-called weighted residual statement instead of the

BVP equations (3.2–3.4) See Box 7∫
V

(gradϑ) κ(gradT)T dV −
∫
V

ϑQ dV = 0, ϑ(x) = 0 for x ∈ S1 . (3.25)

We can compare the weighted residual statement (3.18) with the weighted residual equation
for the heat conduction (3.25): It isn’t difficult to identify terms which belong together, and we
may begin to divine how that equation came about: We formed the residual from the heat balance
equation (3.2) and used integration by parts to shift a derivative from the trial function to the test
function. In the end it is still the same simple principle that was outlined in the previous section.

In (3.25) T (x, y, z) is the function that describes how the temperature varies within the region
V (known as the trial function); κ and Q are given thermal conductivity and the body heat load
(the internal heat generation rate); and finally ϑ is the so-called test function (also called weight
function). The essence of the FEM is the ability to systematically define the trial function and the
test function in a way that leads to an efficient calculation of the unknown coefficients that define
the trial function (the free DOFs).

3.4 Test and trial functions and finite elements 37

First, let us simplify equation (3.25) to accomplish the elimination of the z coordinate. Since the
temperature does not vary with z, the integrals (3.25) may be simplified by pre-integrating in the
thickness direction, dV = ∆z dS. The volume integrals are then evaluated over the cross-sectional
area, Sc, (see Figure 3.1(b))∫

Sc

(gradϑ) κ(gradT)T ∆z dS −
∫
Sc

ϑQ ∆z dS = 0,

ϑ(x) = 0 for x ∈ Cc,1 ,
(3.26)

where Cc,1 is the part of the boundary curve(s) C where the temperature is prescribed (See Box 8 ,
boundary of type 1). Note that the thickness ∆z is a constant and could be canceled without any
effect on the solution. Nevertheless, Equation (3.26) still applies to a fully three-dimensional body.
To maintain this notion throughout the book, we shall not cancel the thickness.

In (3.26) the trial function T (x, y) and the test function ϑ(x, y) no longer depend on z. So the
gradients are now simplified to

gradT =

[
∂T

∂x
,
∂T

∂y

]
, (3.27)

for the trial function and similarly for the test function.

3.4 Test and trial functions and finite elements

Both the test and trial function are functions of x and y only, ϑ = ϑ(x, y) and T = T (x, y). On the
part of the boundary where the temperature is being prescribed, Cc,1, they assume the values

Trial function: T (x, y) = T (x, y), Test function: ϑ(x, y) = 0 , [x, y] on Cc,1 .

Let us consider first the test function. It needs to be defined as a function of x and y over arbitrar-
ily shaped domains. Finite elements have been thought up to make the definition of such functions
easy. The triangle with three nodes is the simplest finite element in more than one coordinate. In
this book we will call this element T3 (Triangle with 3 nodes). In Abaqus it has different names that
change according to the problem being solved. This is the first finite element that we will study.

The domain of the disk with a hole (shown in Figure 3.1) is approximated as a collection of tri-
angles (in other words, it is tiled with triangles, or triangulated), see Figure 3.6. The mesh consisting
of triangles is typically called triangulation, even though sometimes any mesh is called that. The
vertices of the triangulation are called nodes, while the line segments connecting the nodes are
called edges. Evidently, the triangles are the finite elements.

Fig. 3.6. Mesh of the disk domain

Any function on the triangle mesh will be expressed as a linear combination of “tent” functions.
Each individual tent is formed by grabbing one of the nodes (say J) and raising it out of the plane
of the triangulation (traditionally to a unit height). The tent canvas is stretched over the edges that

38 FEM for Thermal and Stress Analysis

connect at the node J , and are clamped down by the ring of the edges that surround node J . The
cartoon of one particular tent is shown in Figure 3.7. The term hat function or shape function is
also commonly used. We will prefer the term basis function: similarly to the space of vectors where
one can pick a set of vectors as a basis, these tent (hat, shape) functions form the basis of some
space.

Basis functions are at the foundations of the finite element method.

Fig. 3.7. Visual representation of one basis function on the mesh of the disk

All the triangles that are connected in the node J support the function NJ , which is another
way of saying that the function NJ is nonzero in these triangles; it is defined to be zero everywhere
else. (If we are inside the “tent”, we are standing on the support of the function.) Mathematically,
the support of the basis function NJ is

suppNJ = {x : NJ(x) 6= 0} .

Since the set suppNJ is a finite piece of the computational domain, it is also called a compact
support .

The compact supports of the finite element basis functions make the finite element
matrices sparse, and hence are crucial for the efficiency of these methods.

It remains to write down the equations that define the function NJ at any point within its
support. That means writing an expression for each triangle within the support separately. Referring
to Figure 3.7, there are only three such functions: the three basis functions associated with the nodes
at the corners of the element; all the other basis functions in the mesh are identically zero over this
element. Thus, our task here is to write down the expressions for the three basis functions over the
domain of a single triangle. In contrast, to express the form of a single basis function, we would put
together pieces of this basis function over each of the triangles in the mesh.

3.5 The standard triangle

On any triangle there are three non-zero basis functions, and each of the three basis functions is zero
along one edge of the triangle: again, refer to Figure 3.7. We can conclude from this that we could
describe such functions as triangular pieces of planes. For a general triangle we would have to solve
some equations, but for some triangles, with their nodes in special positions, the basis functions can
be determined simply by looking at a picture.

3.5 The standard triangle 39

This is the idea behind the isoparametric formulation: the expressions for the basis functions are
derived for elements of particularly simple shapes, such as a right triangle or a square. These are
called standard shapes, hence we will be talking about the standard triangle here. The standard
triangle is described in coordinates ξ, η, and these are not the physical coordinates in which the
BVP is described. These are coordinates used only to describe the standard shape, and they will be
referred to as the parametric coordinates. Refer to Figure 3.8.

Nodes of a single element will be shown with an underline, and are always between
1 and n , where n is the number of nodes of the element (three for the three-node
triangle). Global node numbers (that is numbers within the entire mesh) will always
be shown without an underline (like this: K).

The basis functions associated with nodes 2 and 3 are simply

N2(ξ, η) = ξ , (3.28)

and

N3(ξ, η) = η . (3.29)

As is easily verified, N2 is zero along the edge [3, 1], and assumes value +1 at node 2; analogous
properties hold for N3. If N1 should be equal to +1 at the origin, it must be written as

N1(ξ, η) = 1− ξ − η . (3.30)

Clearly, N1 vanishes at the edge [2,3] opposite node 1. Thus, we see that the three functions we just
formulated satisfy the Kronecker delta property,

Ni(ξk, ηk) = δik , (3.31)

where the symbol δik is known as the Kronecker delta

δik =

{
1, if i = k;
0, otherwise.

In words: basis function Ni associated with node i assumes the value of either 1.0 or 0.0 at node k,
depending on whether it is the same node (i = k) or not.

Fig. 3.8. Standard triangle

Now that we have the three basis functions we can use them to describe functions within the
standard triangle. We simply write

a(ξ, η) =

3∑
i=1

Ni(ξ, η)ai , (3.32)

40 FEM for Thermal and Stress Analysis

to generate a function a(ξ, η) where ai are arbitrary coefficients. So, the function a(ξ, η) is a linear
combination of the basis functions. What are the coefficients? That is what equation (3.31) is for:
write

a(ξk, ηk) =

3∑
i=1

Ni(ξk, ηk)ai =

3∑
i=1

δikai = ak , (3.33)

and we can see that the coefficients ak are simply the values of the function at the nodes, a(ξk, ηk) =
ak. Therefore, we may make the observation that data that sit at the nodes (the corners of the
triangle) are naturally interpolated across the triangle using (3.32). The coefficients ak are called
the degrees of freedom .

Let us now take a triangle in the physical Cartesian space, with corners at locations [x1, y1]T ,
[x2, y2]T , and [x3, y3]T . Consider what happens when we interpolate the values of the x- and y-
coordinates of the corners:

x(ξ, η) =

3∑
i=1

Ni(ξ, η)xi , y(ξ, η) =

3∑
i=1

Ni(ξ, η)yi . (3.34)

This is a mapping from the pair of coordinates (point in the standard triangle) ξ, η to the point
x, y in the physical space. Substituting for the basis functions from (3.28– 3.30), it may be written
explicitly as[

x
y

]
=

[
(x2 − x1) , (x3 − x1)
(y2 − y1) , (y3 − y1)

] [
ξ
η

]
+

[
x1
y1

]
. (3.35)

This matrix equation is accompanied by the picture in Figure 3.9. The two vectors, v and w, are

Fig. 3.9. Interpolating Cartesian coordinates on the standard triangle

the two columns of the square matrix in (3.35):

v =

[
(x2 − x1)
(y2 − y1)

]
, w =

[
(x3 − x1)
(y3 − y1)

]
. (3.36)

If both ξ and η vary between zero and one, equation (3.35) adds the two vectors, ξv and ηw to the
vector [x1, y1]T , and the result then covers the entire parallelogram; on the other hand, if ξ and η
are confined to the interior of the standard triangle, Equation (3.35) produces points to cover the
area of the filled triangle. To summarize, Equation (3.35) is a map from the standard triangle to
a triangle in the physical Cartesian coordinates with corners in given locations. In the next section
and the rest of the book we will also use them to describe any quantities that occur within the BVP
that we wish to solve (heat conduction: temperature, stress analysis: displacement).

3.6 Interpolation over the x, y triangle 41

Finite elements on which the geometrical coordinates x are interpolated in exactly the
same way as the variable(s) of the PDE (temperature, displacements, and so on) are
called isoparametric elements.

It is important to make clear that a single standard triangle is mapped to all the triangles in the
mesh (in x, y). Figure 3.10 shows the mapping of the nodes 1, 2, and 3 to four different triangles.

The x, y triangles are defined by listing their three nodes in counterclockwise order, starting with
the first.

An element is defined by listing the global node numbers that are connected by it. This
array of node numbers is called connectivity.

Thus for the triangle [B,C,A] the nodes in the standard triangle correspond to the nodes in the
mesh as

1→ B, 2→ C, 3→ A (3.37)

as also indicated by the arrows in the figure. A node may be the first in one triangle, the third in
another. The only thing that matters is the counterclockwise order. The important consequence is
that for the counterclockwise order of nodes the area computed from the cross product of the vectors
v and w will not be negative.

Order in which nodes are listed matters! It determines the orientation of the element
(and hence also its volume, area, length).

Fig. 3.10. Mapping the standard triangle to four different x, y triangles. Triangle [B,C,A], the two adja-
cent triangles [G,D,E] and [E,F,G], and triangle [I,K, J]. The labels A,B, . . . , J are node numbers. The
triangles are defined by listing three nodes in counterclockwise order, starting with the first.

3.6 Interpolation over the x, y triangle

Let us talk about the trial function: T (x, y). This represents the possible (hence “trial”) distribution
of the temperature over the entire domain. Using the finite element basis functions, we can write

42 FEM for Thermal and Stress Analysis

T (x, y) =

N∑
i=1

Ni(x, y)Ti (3.38)

provided we knew the expressions for the basis functions in the coordinates x, y, i.e. Ni(x, y) (we
don’t have that at this point, rather we know Nj(ξ, η), j = 1, 2, 3). But let us pretend we do. How
would we actually use it to describe T (x, y)? Have a look at Figure 3.7: each basis function has a
different description over each triangle in its support (i.e. over each triangle where it is nonzero).
So to describe T (x, y) we must do it triangle-by-triangle. The function T (x, y) looks like triangular
facets on the surface of the diamond! It is piecewise linear.

We are being a bit sloppy here: Ni refers to i as the node number, and Ti uses the same
subscript as a degree of freedom number. Since, for simplicity, we temporarily assume
that the nodes and degrees of freedom are one and the same, there is no harm done.
We will have to be more careful later.

At this point we know how to write the basis functions over the standard triangle (3.28– 3.30),
and we know that any triangle in the mesh in the coordinates x, y is an image of the standard triangle
obtained from (3.34). And now we also realize that the describe T (x, y) we have to do it one triangle
at a time. Therefore a perfectly reasonable approach to the expression of the trial function (3.38) is
to express

T (x, y) =

N∑
i=1

Ni(x(ξ, η), y(ξ, η))Ti =

N∑
i=1

Ni(ξ, η)Ti (3.39)

That is, for any point x, y we can say what the value T (x, y) is by finding the corresponding point
ξ, η in the standard triangle, calculating the values of the basis functions at that point, and plugging
into (3.39). If it seems awkward, it is because it is awkward. But we never actually need to go through
with this to express T (x, y) for a given x, y. Rather, all operations are expressed on the standard
triangle, so that we actually know ξ, η (which allows us to calculate x, y, if we’re interested).

In any given triangle of the mesh, the trial functions are expressed for any point x, y
within that triangle by writing

T (x, y) =

N∑
i=1

Ni(ξ, η)Ti

where it is understood that ξ, η is such a point in the standard triangle that is mapped
to x, y by (3.34).

The test function is actually a lot simpler than the trial function. Our choice for a test function will
be a single basis function

ϑ(x, y) = Nj(ξ, η) (3.40)

We will explain how to pick the node number j below.

3.7 Elementwise calculations

Here is a reminder: we wish to solve (3.26) using the finite element method. The finite elements are
useful in two ways: (1) we describe the test and trial function with the help of the basis functions
that are defined on the finite elements, and (2) we evaluate all those integrals by integrating over
the triangles, one by one.

3.7 Elementwise calculations 43

We have seen how to construct the basis functions for triangle meshes in the previous section.
In equation (3.26) we need to take derivatives of the basis functions, and we don’t know how to do
that yet (but we will discuss this soon). At this point we can consider the overall structure of the
evaluation of those integrals, however, and we will work on the details later.

We will explain how things work on an example. Figure 3.11 shows a mesh of a pie-shaped piece
of the cross-section of the concrete column. We consider the boundary conditions of (2.3–2.4). The
mesh consists of three triangles, [1,2,3], [2,4,5], and [2,5,3]. The temperatures along the boundary
with water, i.e. along the edge [4,5], is known to be Tw and that determines the temperature values
at the nodes 4 and 5. Temperatures at the nodes 1, 2, and 3 are unknown: note that here we will take
the degrees of freedom numbers to be identical to the node numbers. So that temperature degree
of freedom at node 2 is T2 and so on. The total number of degrees of freedom is N = 5, and the
number of free (unknown) degrees of freedom is Nf = 3.

Fig. 3.11. Mesh of three triangles for the concrete column with hydration heat load and zero temperature
on the circumference

The trial function is given by equation (3.39) so that its gradient follows as

gradT = grad

(
N∑
i=1

NiTi

)
=

N∑
i=1

Ti gradNi . (3.41)

Furthermore we will take as the test function

ϑ = Nj , for j = 1, . . . , Nf (3.42)

so that gradϑ = gradNj .
Now we take the weighted residual statement (3.26) and substitute the above expressions for the

trial function gradient and the test function gradient∫
Sc

gradNj κ

N∑
i=1

TigradNT
i ∆z dS −

∫
Sc

NjQ ∆z dS = 0, for j = 1, . . . , Nf . (3.43)

This can be further simplified by taking the degree of freedom Ti from underneath the integral sign

N∑
i=1

Ti

∫
Sc

gradNj κgradNT
i ∆z dS −

∫
Sc

NjQ ∆z dS = 0, for j = 1, . . . , Nf . (3.44)

Note that our choice of the test function satisfies the condition ϑ(x) = 0 for x ∈ Cc,1. In the present
example Cc,1 is the edge [4, 5], and all test functions used here, N1, N2, and N3, all vanish along this
edge.

Next we must consider the integrals. The cross-section (or rather a piece of it) Sc is represented
by the mesh. It is therefore natural to carry out the integration over Sc by splitting the integral into

44 FEM for Thermal and Stress Analysis

three pieces, one over each triangle. Therefore, equation (3.44) needs to be rewritten by summing
over all the triangles e in the mesh

N∑
i=1

Ti
∑
e

∫
e

gradNj κgradNT
i ∆z dS −

∑
e

∫
e

NjQ ∆z dS = 0, for j = 1, . . . , Nf . (3.45)

where by
∫
e

we mean integrate over the area of the triangle e. Using these shorthands

gj = gradNj ,

∫
e1

gjκg
T
i =

∫
e=1

gradNj κgradNT
i ∆z dS,

∫
e1

NjQ =

∫
e=1

NjQ ∆z dS (3.46)

in order to fit everything onto the page, we explicitly rewrite (3.45) with the three equations

T1

∫
e1

g1κg
T
1 +T2

∫
e1

g1κg
T
2 +T3

∫
e1

g1κg
T
3 +0 +0 =

∫
e1

N1Q

T1

∫
e1

g2κg
T
1 +T2

∫
e1

g2κg
T
2

+

∫
e2

g2κg
T
2

+

∫
e3

g2κg
T
2

+T3

∫
e1

g2κg
T
3

+

∫
e3

g2κg
T
3

 +T4

∫
e2

g2κg
T
4 +T5

∫
e2

g2κg
T
5

+

∫
e3

g2κg
T
5

 =

∫
e1

N2Q

+

∫
e2

N2Q

+

∫
e3

N2Q

T1

∫
e1

g3κg
T
1 +T2

∫
e1

g3κg
T
2

+

∫
e3

g3κg
T
2

 +T3

∫
e1

g3κg
T
3

+

∫
e3

g3κg
T
3

 +0 +T5

∫
e3

g3κg
T
5 =

∫
e1

N3Q

+

∫
e3

N3Q

(3.47)

We need to realize that the triangles over which one of the gradients is identically zero (gj or gi)
are not carried over from (3.45). For instance, g1 is identically zero over the triangles 2 and 3, which
is why the first equation in (3.47) does not refer to triangles 2 and 3.

We can organize these three equations using the matrix form

∫
e1

g1κg
T
1 ,

∫
e1

g1κg
T
2 ,

∫
e1

g1κg
T
3 , 0, 0

∫
e1

g2κg
T
1 ,

∫
e1

g2κg
T
2

+

∫
e2

g2κg
T
2

+

∫
e3

g2κg
T
2

,

∫
e1

g2κg
T
3

+

∫
e3

g2κg
T
3

 ,

∫
e2

g2κg
T
4 ,

∫
e2

g2κg
T
5

+

∫
e3

g2κg
T
5

∫
e1

g3κg
T
1 ,

∫
e1

g3κg
T
2

+

∫
e3

g3κg
T
2

 ,

∫
e1

g3κg
T
3

+

∫
e3

g3κg
T
3

 , 0,

∫
e3

g3κg
T
5

T1

T2

T3

T4

T5

=

∫
e1

N1Q

∫
e1

N2Q

+

∫
e2

N2Q

+

∫
e3

N2Q

∫
e1

N3Q

+

∫
e3

N3Q

(3.48)

Now realize that all the integrals will evaluate to a real number. Hence, what we have in (3.48) can
be described as linear algebraic equations for the unknowns T1, T2 and T3. Recall that the boundary
conditions fixed T4 = T5 = 0: We can use it to eliminate the fourth and fifth column on the left-hand
side and so the system of linear algebraic equations can be put as

3.7 Elementwise calculations 45

∫
e1

g1κg
T
1 ,

∫
e1

g1κg
T
2 ,

∫
e1

g1κg
T
3

∫
e1

g2κg
T
1 ,

∫
e1

g2κg
T
2

+

∫
e2

g2κg
T
2

+

∫
e3

g2κg
T
2

,

∫
e1

g2κg
T
3

+

∫
e3

g2κg
T
3

∫
e1

g3κg
T
1 ,

∫
e1

g3κg
T
2

+

∫
e3

g3κg
T
2

 ,

∫
e1

g3κg
T
3

+

∫
e3

g3κg
T
3

T1

T2

T3

 =

∫
e1

N1Q

∫
e1

N2Q

+

∫
e2

N2Q

+

∫
e3

N2Q

∫
e1

N3Q

+

∫
e3

N3Q

(3.49)

The abbreviated form is rendered neatly with bold symbols for the matrices and vectors as

K T = L (3.50)

where the matrixK is known as the conductivity matrix, the vector T collects the degrees of freedom
(temperatures at the nodes), and L is the vector of heat loads.

Now we will consider the left-hand side matrix in equation (3.48). We will split it into three
matrices, each one will hold only the contributions from a single element from the mesh:

∫
e1

g1κg
T
1 ,

∫
e1

g1κg
T
2 ,

∫
e1

g1κg
T
3 , 0, 0

∫
e1

g2κg
T
1 ,

∫
e1

g2κg
T
2

+

∫
e2

g2κg
T
2

+

∫
e3

g2κg
T
2

,

∫
e1

g2κg
T
3

+

∫
e3

g2κg
T
3

 ,

∫
e2

g2κg
T
4 ,

∫
e2

g2κg
T
5

+

∫
e3

g2κg
T
5

∫
e1

g3κg
T
1 ,

∫
e1

g3κg
T
2

+

∫
e3

g3κg
T
2

 ,

∫
e1

g3κg
T
3

+

∫
e3

g3κg
T
3

 , 0,

∫
e3

g3κg
T
5

= (3.51)

∫
e1

g1κg
T
1 ,

∫
e1

g1κg
T
2 ,

∫
e1

g1κg
T
3 , 0, 0∫

e1

g2κg
T
1 ,

∫
e1

g2κg
T
2 ,

∫
e1

g2κg
T
3 , 0, 0

∫
e1

g3κg
T
1 ,

∫
e1

g3κg
T
2 ,

∫
e1

g3κg
T
3 , 0, 0

from element 1 (3.52)

+

0, 0, 0, 0, 0

0,

∫
e2

g2κg
T
2 , 0,

∫
e2

g2κg
T
4 ,

∫
e2

g2κg
T
5

0, 0, 0, 0, 0

 from element 2 (3.53)

+

0, 0, 0, 0, 0

0,

∫
e3

g2κg
T
2 ,

∫
e3

g2κg
T
3 , 0,

∫
e3

g2κg
T
5

0,

∫
e3

g3κg
T
2 ,

∫
e3

g3κg
T
3 , 0,

∫
e3

g3κg
T
5

from element 3 (3.54)

46 FEM for Thermal and Stress Analysis

The meaning of this decomposition is: we can easily calculate the overall coefficient matrix (the
conductivity matrix) by going through the mesh element-by-element, calculating the contributions,
and adding them into the overall matrix in appropriate rows and columns. This process is called
finite element assembly .

Similarly the heat load vector can be also composed of the contributions from the individual
finite elements.

∫
e1

N1Q

∫
e1

N2Q

+

∫
e2

N2Q

+

∫
e3

N2Q

∫
e1

N3Q

+

∫
e3

N3Q

=

∫
e1

N1Q∫
e1

N2Q∫
e1

N3Q

︸ ︷︷ ︸

from element 1

+

0∫

e2

N2Q

0

︸ ︷︷ ︸

from element 2

+

0∫

e3

N2Q∫
e3

N3Q

︸ ︷︷ ︸

from element 3

(3.55)

Again, the overall heat load vector would be computed by adding contributions that are calculated
for each element separately.

3.8 Derivatives of the basis functions; Jacobian

The results of this section are much more general than may be expected. While the formulas for the
derivatives of basis functions are derived for the linear triangles, the same formulas (and implemen-
tation) is used for all the so-called isoparametric elements in common finite element software.

Using the chain derivatives we find that the derivative of Ni(ξ, η) with respect to x, y is expressed

using the Jacobian matrix See Box 10[
∂Ni(ξ, η)

∂x
,
∂Ni(ξ, η)

∂y

]
=

[
∂Ni(ξ, η)

∂ξ
,
∂Ni(ξ, η)

∂η

]
[J]
−1

. (3.56)

The elements of [J] are

[J] =

∂x

∂ξ
,
∂x

∂η

∂y

∂ξ
,
∂x

∂η

 =

3∑
i=1

∂Ni
∂ξ

xi ,

3∑
i=1

∂Ni
∂η

xi

3∑
i=1

∂Ni
∂ξ

yi ,

3∑
i=1

∂Ni
∂η

yi

 , (3.57)

as follows from (3.34). The triangle finite element has three basis functions associated with its three
nodes. Thus for a single triangle we will define the matrix of gradients of the basis functions with
respect to ξ, η

[
grad(ξ,η)N

]
=

grad(ξ,η)N1

grad(ξ,η)N2

grad(ξ,η)N3

 =

∂N1

∂ξ
,
∂N1

∂η

∂N2

∂ξ
,
∂N2

∂η

∂N3

∂ξ
,
∂N3

∂η

=

−1 , −1

+1 , 0

0 , +1

 , (3.58)

3.9 Jacobian matrix for the triangle 47

and the matrix [x] to collect the coordinates of the nodes, one pair of x and y per row. For the
triangle with three nodes such a matrix reads

[x] =

x1 , y1x2 , y2
x3 , y3

 . (3.59)

Then the easiest way of computing the Jacobian matrix for the three node triangle is to employ
matrix multiplications to carry out the summations in (3.57):

[J] = [x]
T
[
grad(ξ,η)N

]
. (3.60)

and so, finally, we express the matrix of the gradients of the basis functions with respect to x, y
on the three node triangle

[
grad(x,y)N

]
=

grad(x,y)N1

grad(x,y)N2

grad(x,y)N3

 =

gradN1

gradN2

gradN3

 =

∂N1

∂x
,
∂N1

∂y

∂N2

∂x
,
∂N2

∂y

∂N3

∂x
,
∂N3

∂y

, (3.61)

from (3.56) using (3.58)[
grad(x,y)N

]
=
[
grad(ξ,η)N

]
[J]
−1

. (3.62)

The right-hand side is readily evaluated: the matrix
[
grad(ξ,η)N

]
is easily computed from the defini-

tion of the basis functions on the standard element (for the triangle from (3.30), (3.28), and (3.29)),
and the Jacobian matrix follows from the definition (3.60). When there is no possibility of confusion

we could use the simplified notation gradNj = grad(x,y)Nj and [gradN] =
[
grad(x,y)N

]
.

3.9 Jacobian matrix for the triangle

The computation of the gradient of the basis functions critically depends on the Jacobian matrix. The
Jacobian (determinant of the Jacobian matrix) should be positive. The Jacobian matrix will then
be invertible. The Jacobian matrix for the three-node triangle can be directly obtained from (3.35)

[J] =

[
(x2 − x1) , (x3 − x1)
(y2 − y1) , (y3 − y1)

]
. (3.63)

It really consists of the two vectors shown in Figure 3.9. This can be readily used to see which
conditions guarantee the determinant of the Jacobian matrix (i.e. the Jacobian) to be positive.
Thinking about the geometrical meaning of the cross product in two dimensions, we can see that
the cross product of v and w is in fact equal to the Jacobian, and so as long as these two vectors
are not co-linear the Jacobian will be nonzero.

Another way of thinking about the Jacobian is in terms of area. By inspection of Figure 3.9 we
can conclude that the Jacobian is twice the area of the triangle, to which we will refer to in the
following as Se,

det[J] = 2Se . (3.64)

48 FEM for Thermal and Stress Analysis

3.10 Bookkeeping

We need to start distinguishing between node numbers and degree of freedom numbers. Node num-
bers are visible to the user of the finite element program, but the degree of freedom numbers are
typically internal to the program and cannot be manipulated by the user. There is no reason to
assume that the degree of freedom numbers must be the same as node numbers (typically they are
not). When we talk about stress analysis where any single node carries multiple degrees of freedom,
the one-to-one correspondence will not even be possible.

The following rules will apply in all hand calculations done in this book (such rules do not
necessarily need to apply in all finite element programs: the developers are free to do whatever they
want, as long as the result is correct). We will assume that all nodes are numbered sequentially
from 1 to N , but in an arbitrary fashion. All elements connect some nodes. In a three-node triangle
mesh each element connects three nodes. The so-called element connectivity are the numbers of
the nodes, given in a counterclockwise order.

All the degree of freedom parameters in the model will also be numbered sequentially, indepen-
dently of the nodes. First the free degrees of freedom will be numbered 1, 2, ..., Nf (those degrees
of freedom that are unknown and need to be solved for), and only then the degrees of freedom that
are fixed (known from the boundary conditions) will be numbered.

Fig. 3.12. Triangle [K,L,M] singled out for processing from the overall mesh. The relationship of the
triangle [K,L,M] to the standard triangle is shown. The mapping of the degrees of freedom to the node
numbers on the standard triangle and on the x, y triangle is indicated.

The trial function needs to be written

T =

N∑
i=1

N〈i〉Ti (3.65)

3.11 Concrete-column example continued 49

where Ti is the ith degree of freedom, and N〈i〉 is the basis function at the node 〈i〉. We say that
degree of freedom i is associated with node number 〈i〉. For instance in Figure 3.12 the degree of
freedom 19 is associated with node K, i.e. 〈19〉 = K. We use the angle brackets to refer to a map
from the degree of freedom number to the node number

〈〉 : given DOF number i, give number of the node at which this DOF resides 〈i〉; . (3.66)

Making the distinction between the nodal numbers and the degree of freedom numbers, the
weighted residual statement (3.45) needs to be rewritten as

N∑
i=1

Ti
∑
e

∫
e

gradN〈j〉 κgradNT
〈i〉 ∆z dS −

∑
e

∫
e

N〈j〉Q ∆z dS = 0, for j = 1, . . . , Nf . (3.67)

The operations in the finite element method are centered around the elements. Figure 3.12 is a
pictorial representation of the various maps. We focus our attention on one particular element. This
element has nodes [K,L,M], and its nodes are associated with degrees of freedom T19, T13, and T61.
This element is an image of the standard element, and we will find it very convenient to establish
correspondences for the node numbers and the degree of freedom numbers. We see that there is a
one-to-one correspondence between the node number K (the so-called global node number) and 1
(the so-called local node number), and also between L and 2, and between M and 3. The same
sort of correspondence can be established between the global degrees of freedom, T19, T13, and T61,
and the local degrees of freedom T1, T2, and T3. It is very convenient to calculate all elementwise
quantities using local node numbers and local degree of freedom numbers because they are always
the same, as opposed to the global numbers which change with the triangle that is being worked on.

In the numbering of the local degrees of freedom (DOFs), i.e. the degrees of freedom
on a particular element, we do not distinguish between free DOFs and fixed DOFs.
The numbering of the local DOFs for a particular element type is always the same.
In the numbering of the global DOFs we do distinguish between the free DOFs (they
are numbered first) and the fixed DOFs (they are numbered last). The numbering of
the global DOFs changes from mesh to mesh.

3.11 Concrete-column example continued

Now that we know how to calculate the derivatives of the basis functions, we can continue the
example from Section 3.7. The radius of the circular cross-section is a = 2.5m, and we take the
internal angle of the pie-shaped domain as 15o. The dimensions in Figure 3.11 are then dx = 1.2074m
and dy = 0.3235m. We consider the boundary conditions of (2.3–2.4). The mesh consists of three
triangles, [1,2,3], [2,4,5], and [2,5,3]. The temperature along the boundary with water, i.e. along the
edge [4,5], is known and that determines the temperature at the nodes 4 and 5. Temperatures at
the nodes 1, 2, and 3 are unknown. We will associate the degrees of freedom with the nodes as

Node 1 2 3 4 5
DOF 3 1 2 5 4

The total number of degrees of freedom is N = 5, and the number of free (unknown) degrees of
freedom is Nf = 3.

As shown in Section 3.7, we will proceed by computing contributions to the algebraic equations
element-by-element. The goal is to evaluate integrals such as∫

e

gradN〈j〉 κgradNT
〈i〉 ∆z dS (3.68)

50 FEM for Thermal and Stress Analysis

But rather than iterate i = 1, . . . , N and j = 1, . . . , Nf and compute the integral for all such pairs,
we will calculate the elementwise conductivity matrix for the local k and m, where k = 1, 2, 3,
m = 1, 2, 3, and when the matrix is calculated we will decide to which DOFs i and j it should
contribute and assemble the appropriate numbers to the global (systemwide) quantities.

How do we evaluate the integral in the first place? Let us inspect one of the terms, for instance∫
e=1

gradN〈k〉 κgradNT
〈m〉 ∆z dS (3.69)

By inspecting the individual terms in the expression for the gradients of the basis functions (3.62),
we can see that the gradients of the basis functions with respect to x, y are constant on each
three-node triangle, since they are the product of two position-independent matrices, the gradient
matrix (3.58), and the inverse of the Jacobian matrix (3.63). But that means that the integrand
in (3.69) is a constant number since everything else, κ and ∆z are also uniform on each triangle.
That makes the integral trivial∫

e=1

gradN〈k〉 κgradNT
〈m〉 ∆z dS = Se1gradN〈k〉 κgradNT

〈m〉 ∆z (3.70)

where Se1 is the area of the triangle e = 1. Also recall (3.64) so that∫
e=1

gradN〈k〉 κgradNT
〈m〉 ∆z dS = (det[J]/2)gradN〈k〉 κgradNT

〈m〉 ∆z (3.71)

The actual calculating will be performed here with the help of Python. Evidently, it can also be
Python
- script

done with a calculator. To begin, some required functions are imported from the modules math and
numpy. We define some input quantities with obvious meanings (page 88):

9 a = 2.5 # radius of the column
10 dy = a/2*math.sin(15./180*math.pi)
11 dx = a/2*math.cos(15./180*math.pi)
12 Q = 4.5 # internal heat generation rate
13 k = 1.8 # thermal conductivity
14 Dz = 1.0 # thickness of the slice

The matrix of the gradients of the basis functions with respect to the parametric coordinates is
defined as

28 gradNpar = array([[-1, -1], [1, 0], [0, 1]])

Note that an array is defined row-by-row, for instance [-1, -1] is the first row of gradNpar, and
[1, 0] and [0, 1] are the second and third row.

The locations of the nodes are defined within array of coordinates of the nodes, one node per
row.

30 xall = array([[0, 0], [dx, -dy], [dx, dy], [2*dx, -2*dy], [2*dx, 2*dy]])

and the definition of the degrees of freedom

31 # Numbers of the degrees of freedom
32 dof = array([3, 1, 2, 5, 4])
33 # Number of free degrees of freedom
34 N_f = 3

3.11.1 Element 1

And now we are ready to evaluate the expressions we need for the first element. The element is
defined by listing its three nodes.

41 conn = array([1, 2, 3]) # The definition of the element, listing its nodes

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpConcreteColumn.py

3.11 Concrete-column example continued 51

We can then use this list to extract the coordinates of the three nodes that are connected by element
1. But we need to take into account the Python zero-based indexing: arrays have rows and columns
numbered from 0 to n-1 (where n is the number of rows or columns). Figure 3.13 illustrates the
indexing of the entries of a matrix (an array), both when working with the matrix in hand calculations
and when indexing the matrix in Python code.

Fig. 3.13. Indexing a 2 × 6 matrix A. Numbers at the top and along the left side: one-based indexing, of
the kind that would be used when working with the matrix by hand. Numbers along the bottom and the
right-hand side: zero-based indexing. Python uses this way of referring to the matrix entries by specifying
the offset of the left-hand side or the top boundary of the entry’s box from the top-left corner of the matrix.
So the offset of the box of column 3 of the matrix from the top-left corner is 2. Similar scheme is used to
refer to the rows of the matrix: the offset of the second row is 1. So for instance the entry in row 2 and
column 3 of this matrix is referred to as A23 in hand calculations, and A[1, 2] in Python code.

So the node number 3 is stored in row 2 of the array xall and so on. Therefore, we can create
an appropriate array of Python indexes by subtracting 1 from conn (page 88).

42 zconn =conn - 1 # zero-based node indexes

Then the coordinates of the three nodes of element 1 can be retrieved as

43 x = xall[zconn, :]# The coordinates of the three nodes

to give

x= [[0. 0.]
[1.20740728 -0.32352381]
[1.20740728 0.32352381]]

Now we calculate the Jacobian matrix from (3.60)

45 J = dot(x.T, gradNpar) # Compute the Jacobian matrix
46 Se = linalg.det(J)/2 # The area of the triangle
47 print(’Se = ’, Se)

The area of the triangle prints as Se= 0.390625.
Note the use of the dot function to compute the dot product of two matrices, and the use of the

.T attribute to transpose a matrix. In the above we have also used the numpy.linalg linear algebra
module, namely the function det to compute the determinant of the Jacobian matrix. Elementary
geometry confirms that the area is correct: we calculate 0.390625 from the dimensions as dx*dy.

Elementwise conductivity matrix

Next we calculate the gradients of the basis functions on the first triangle with the respect to the
x, y coordinates from (3.62). We will again use the linear algebra module, numpy.linalg, for the
inverse of the Jacobian matrix (page 88).

49 gradN = dot(gradNpar, linalg.inv(J))
50 print(’gradN=’, gradN)

gradN = [[-0.82822094 0.]
[0.41411047 -1.54548132]
[0.41411047 1.54548132]]

52 FEM for Thermal and Stress Analysis

The first row of this matrix is the gradient gradN1 and so on. Now we can calculate for instance∫
e=1

gradN1 κgradNT
1 ∆z dS (3.72)

as

52 print(Se*dot(gradN[0,:], gradN[0,:].T)*k*Dz)

which yields 0.482308546376, or∫
e=1

gradN1 κgradNT
2 ∆z dS (3.73)

as

53 print(Se*dot(gradN[0,:], gradN[1,:].T)*k*Dz)

which gives -0.241154273188. Note well the use of zero-based indexing of the Python arrays.
In this way we could calculate all nine terms for the various ks and ms one by one. Or, we could

calculate a 3× 3 matrix with a single line of code:

55 Ke1= (Se*dot(gradN, gradN.T)*k*Dz)

which gives the entire matrix as the array

Ke1= [[0.48230855 -0.24115427 -0.24115427]
[-0.24115427 1.8 -1.55884573]
[-0.24115427 -1.55884573 1.8]]

In other words, we can calculate the entire 3× 3 elementwise conductivity matrix by

[K(e)] =

∫
e=1

[gradN] κ[gradN]T ∆z dS = (det[J]/2)[gradN] κ[gradN]T ∆z (3.74)

where [gradN] was already defined in (3.61).
This elementwise matrix will now be assembled into the overall conductivity matrix. The Nf×Nf

matrix is initially full of zeros (page 88):

37 K = zeros((N_f, N_f))

The assembly is directed by the numbers of the degrees of freedom. They can be obtained from
the array dof: don’t forget that we need to use zero-based indexing and hence the array zconn. The
code print(dof[zconn]) prints array([3, 1, 2]). These are the degrees of freedom at the nodes
1, 2, 3, which also need to be adjusted for zero-based indexing, and so the element degree-of-freedom
array needs to read

58 zedof = array(dof[zconn]) - 1

which gives zedof as array([2, 0, 1]).
The elementwise conductivity matrix will be assembled as shown:

column index 2︷ ︸︸ ︷ column index 0︷ ︸︸ ︷ column index 1︷ ︸︸ ︷
row index 2 {
row index 0 {
row index 1 {

 0.4823, − 0.2412, − 0.2412
−0.2412, 1.8, −1.559
−0.2412, −1.559, 1.8

 (3.75)

Note well that the above uses the zero-based indexing suitable for Python coding. In hand calcula-
tions the assembly would be done with the numbers

to col. 3︷ ︸︸ ︷ to col. 1︷ ︸︸ ︷ to col. 2︷ ︸︸ ︷
to row 3 {
to row 1 {
to row 2 {

 0.4823, − 0.2412, −0.2412
−0.2412, 1.8, −1.559
−0.2412, −1.559, 1.8

 (3.76)

3.11 Concrete-column example continued 53

The translation between one-based indexes and zero-based indexes only needs to be
performed in the Python code, not in paper-and-pencil calculations. Here we show
both ways. Later we only show the computer indexing: when solving by hand keep the
original degree of freedom numbers.

The assembly into the two-dimensional global matrix is performed in our Python code using a
double loop. Notice that all three indexes in zedof correspond to the free degrees of freedom, and
hence all the entries of the elementwise conductivity matrix are assembled into the global matrix as
follows (page 88):

60 for ro in arange(len(zedof)):
61 for co in arange(len(zedof)):
62 K[zedof[ro], zedof[co]] = K[zedof[ro], zedof[co]] + Ke1[ro, co]
63 print(’K=’, K)

The function arange generates the indexes 0, 1, and 2, all the way up to (but not including) the
length of zedof (i.e. 3).

The intermediate stage of the global conductivity matrix looks like this

K= [[1.8 -1.55884573 -0.24115427]
[-1.55884573 1.8 -0.24115427]
[-0.24115427 -0.24115427 0.48230855]]

after element 1 was assembled.

Elementwise heat load

To calculate the elementwise heat load vector due to the body-load Q, we need to calculate quantities
such as (refer to equation (3.67))∫

e=1

NkQ ∆z dS (3.77)

This is an exercise in elementary geometry. Consider for instance the basis function N1 over the
first triangle: the function is a plane triangular surface that is clamped down at value zero along
the edge [2,3] and pinned to height one at node 1. The integral

∫
e=1

N1Q ∆z dS is thus seen to be
nothing else but the volume of the pyramid of height 1.0 and base of the triangular shape of element
1. Evidently∫

e=1

NjQ ∆z dS =
Se1∆zQ

3
, j = 1, 2, 3 (3.78)

It is instructive to consider the physical meaning of this formula: Se1∆z is the total volume repre-
sented by the element (Se1 is the area of the triangle and the depth in the other dimension is ∆z).
Multiply this by the rate of heat generation in units of power per unit volume, Q, and the meaning
of Se1∆zQ is the total power generated inside the volume represented by the triangle. When we
divide by three, we are assigning to each node of the triangle one third of the total power.

For element 1, the contribution to each node turns out to be numerically 0.5859, so that to the
right-hand side load vector we assemble

row index 2 {
row index 0 {
row index 1 {

0.5859
0.5859
0.5859

 (3.79)

The following code fragment assembles the contribution from element 1 to the global load vector
(page 88):

66 LQe1 = Se*Q*Dz/3*ones((3,)).reshape(3, 1)
67 for ro in arange(len(zedof)):
68 L[zedof[ro]] = L[zedof[ro]] + LQe1[ro]

54 FEM for Thermal and Stress Analysis

3.11.2 Element 2

The element is defined by its three nodes [2,4,5] (page 88)

71 conn = array([2, 4, 5])

and therefore its nodes are located at

72 zconn = conn - 1 # zero-based node indexes
73 x = xall[zconn, :]# The coordinates of the three nodes

which gives

array([[1.20740728, -0.32352381],
[2.41481457, -0.64704761],
[2.41481457, 0.64704761]])

The Jacobian matrix reads

array([[1.20740728, 1.20740728],
[-0.32352381, 0.97057142]])

and the triangle area is 0.78125.

Elementwise conductivity matrix

The procedure now continues precisely as for element 1. (This is why the finite element method is
so well suited to the computer age: it is very easy to program, the procedure is just repeated for one
more element, and the computer doesn’t care whether it needs to compute the same thing 1000 or
1001 times.) The elementwise conductivity matrix for element 2 results as

array([[0.96461709, -0.72346282, -0.24115427],
[-0.72346282, 1.38230855, -0.65884573],
[-0.24115427, -0.65884573, 0.9]])

The element degree of freedom array of element 2 obtains from the dof map as

82 zedof = array(dof[zconn]) - 1

i.e. array([0, 4, 3]). Notice that the conductivity matrix is of dimension Nf ×Nf = 3 × 3, and
therefore in zero-based indexing we ignore any row and column indexes numbered ≥ 3. Hence from
the conductivity matrix of element 2

column index 0︷ ︸︸ ︷ column index 4︷ ︸︸ ︷ column index 3︷ ︸︸ ︷
row index 0 {
row index 4 {
row index 3 {

 0.9646, − 0.7235, − 0.2412
−0.7235, 1.382, −0.6588
− 0.2412, −0.6588, 0.9

 (3.80)

the only assembled value will be 0.9646 to row 0 and column 0.
In order to implement the assembly in Python code, we need to test the contents of the element

degree-of-freedom array: when both the row index and the column index fall within the boundaries
of the conductivity matrix, the corresponding entries from the elementwise matrix are added to the
global matrix; otherwise they are simply ignored (page 88).

84 for ro in arange(len(zedof)):
85 for co in arange(len(zedof)):
86 if (zedof[ro] < N_f) and (zedof[co] < N_f):
87 K[zedof[ro], zedof[co]] = K[zedof[ro], zedof[co]] + Ke2[ro, co]

For easy reference we also give here the variant of the above Python loop that could be used in hand
calculations. In pseudocode:

3.11 Concrete-column example continued 55

for r in 1, 2, 3
for c in 1, 2, 3

if (edof(r) <= N_f) and (edof(c) <= N_f)
K(edof(r), edof(c)) = K(edof(r), edof(c)) + Ke2(r, c)

for edof=(1, 5, 4), where edof(2) is 5 and so on.

Elementwise heat load

To calculate the elementwise heat load vector due to the body-load Q for element 2, equation (3.78)
is applied again to yield

row index 0 {
row index 4 {
row index 3 {

1.1719
1.1719
1.1719

 (3.81)

Again, as for the conductivity matrix, the second and third rows will be ignored; only the first row
will be assembled row index 0 of the right-hand side vector. In Python code (page 88):

91 LQe2 = Se*Q*Dz/3*ones((3,)).reshape(3, 1)
92 for ro in arange(len(zedof)):
93 if (zedof[ro] < N_f):
94 L[zedof[ro]] = L[zedof[ro]] + LQe2[ro]

3.11.3 Element 3

The third element is dispatched in exactly the same way as the first two. The element is defined by
its three nodes

97 conn = array([2, 5, 3])

The Jacobian matrix is

array([[1.20740728 0.]
[0.97057142 0.64704761]])

and the area is 0.390625.

Elementwise conductivity matrix

The gradients of the basis functions are calculated and the conductivity matrix of element 3 is readily
evaluated as

array([[1.8 , 0.24115427, -2.04115427],
[0.24115427, 0.48230855, -0.72346282],
[-2.04115427, -0.72346282, 2.76461709]])

The zedof array is now array([0, 3, 1]), which means that the assembled value will be those
from the first and third row and column of the elementwise conductivity matrix.

column index 0︷ ︸︸ ︷ column index 3︷ ︸︸ ︷ column index 1︷ ︸︸ ︷
row index 0 {
row index 3 {
row index 1 {

 1.8, 0.2412, − 2.041
0.2412, 0.4823, − 0.7235
−2.041, −0.7235, 2.765

 (3.82)

56 FEM for Thermal and Stress Analysis

Elementwise heat load

To calculate the elementwise heat load vector due to the body-load Q for element 3, equation (3.78)
is applied again to yield

row index 0 {
row index 3 {
row index 1 {

0.5859
0.5859
0.5859

 (3.83)

Again, as for the conductivity matrix, the second row will be ignored; only the first and third rows
will be assembled to rows index 0 and 1 of the right-hand side vector.

3.11.4 Assembled equations

The assembled equations for the free unknown nodal temperatures therefore result as

 1.8000 + 0.9646 + 1.8000, −1.5588− 2.0412, −0.2412
−1.5588− 2.0412, 1.8 + 2.7646, −0.2412

−0.2412, −0.2412, 0.4823

T1

T2

T3

 =

0.5859 + 1.1719 + 0.5859

0.5859 + 0.5859

0.5859

(3.84)

where we show all the individual assembled values from the elementwise quantities. The solution
follows as

T1

T2

T3

 =

2.906
2.763
4.049

 (3.85)

This example has also been solved with Abaqus. The results agree to all reported digits. The ele-
mentwise matrices can be checked by the method outlined below: the input file for the execution
of the job can be supplemented with print directives to generate an output for all elementwise

matrices. See Box 13
Abaqus
- CAE file
- INP file
- tutorial

3.12 Concrete-column example: nonzero boundary temperature

We will modify slightly the conditions of the example of Section 3.11. Instead of the water being at
0oC we will take the temperature along the boundary edge [4,5] to be 10oC. Therefore, as before,
the temperatures at the nodes 1, 2, and 3 will be unknown, but the temperatures at nodes 4 and 5
will be T5 = 10 and T4 = 10.

Our method still works with the same equation, the weighted residual statement (3.67), but the
terms multiplied with T5 and T4 do not drop out anymore. We will indicate this by splitting the
sum over the degrees of freedom in (3.67) (which is for your convenience reproduced again here)

N∑
i=1

Ti
∑
e

∫
e

gradN〈j〉 κgradNT
〈i〉 ∆z dS −

∑
e

∫
e

N〈j〉Q ∆z dS = 0, for j = 1, . . . , Nf . (3.86)

into

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-temp-pie-2d-3elem.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-temp-pie-2d-template.inp
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/concrete-column-w-temp-pie-2-d-3-elem-tutorial.pdf

3.12 Concrete-column example: nonzero boundary temperature 57

Nf∑
i=1

Ti
∑
e

∫
e

gradN〈j〉 κgradNT
〈i〉 ∆z dS︸ ︷︷ ︸

free degrees of freedom i = 1, 2, 3

+

N∑
i=Nf+1

Ti
∑
e

∫
e

gradN〈j〉 κgradNT
〈i〉 ∆z dS︸ ︷︷ ︸

fixed degrees of freedom i = 4, 5

−∑e

∫
e
N〈j〉Q ∆z dS = 0, for j = 1, . . . , Nf .

(3.87)

The first line of this equation are the unknown degrees of freedom Ti multiplied with the entries
of the conductivity matrix (which are the integrals). The second line of this equation contains only
known quantities. The first line is the left-hand side, and the second line is the right-hand side of
the algebraic equations from which we need to solve for the free degrees of freedom. So a good way
of rewriting the above is

Nf∑
i=1

Ti
∑
e

∫
e

gradN〈j〉 κgradNT
〈i〉 ∆z dS︸ ︷︷ ︸

free degrees of freedom i = 1, 2, 3

=

−
N∑

i=Nf+1

Ti
∑
e

∫
e

gradN〈j〉 κgradNT
〈i〉 ∆z dS︸ ︷︷ ︸

fixed degrees of freedom i = 4, 5

+
∑
e

∫
e
N〈j〉Q ∆z dS, for j = 1, . . . , Nf .

(3.88)

The first term in the second line is the loading produced by the nonzero fixed degrees of freedom.
We can also call it “loading due to prescribed nonzero temperatures”.

We have dealt with the term on the first line and the second term on the second line in the previous
section. Here we will include the loading due to prescribed nonzero temperature. Calculation of the
nonzero temperature loading for a generic element e follows: Its conductivity matrix is

[K(e)] =

K
(e)
11 , K

(e)
12 , K

(e)
13

K
(e)
21 , K

(e)
22 , K

(e)
23

K
(e)
31 , K

(e)
32 , K

(e)
33

 (3.89)

and its degrees of freedom are T
(e)
1 , T

(e)
2 and T

(e)
3 . The product of the elementwise conductivity

matrix and the elementwise vector of degrees of freedom is

[K(e)]

T
(e)
1

T
(e)
2

T
(e)
3

 =

K
(e)
11 , K

(e)
12 , K

(e)
13

K
(e)
21 , K

(e)
22 , K

(e)
23

K
(e)
31 , K

(e)
32 , K

(e)
33

T

(e)
1

T
(e)
2

T
(e)
3

 (3.90)

Now consider that for instance the first degree of freedom on the element is fixed (prescribed, known).
Then we can partition the product asK

(e)
11 , K

(e)
12 , K

(e)
13

K
(e)
21 , K

(e)
22 , K

(e)
23

K
(e)
31 , K

(e)
32 , K

(e)
33

T

(e)
1

T
(e)
2

T
(e)
3

 =

K
(e)
11 ,

K
(e)
21

K
(e)
31

[T (e)
1

]
︸ ︷︷ ︸

known

+

K
(e)
12 , K

(e)
13

K
(e)
22 , K

(e)
23

K
(e)
32 , K

(e)
33

 [T (e)
2

T
(e)
3

]
︸ ︷︷ ︸

unknown

(3.91)

The first part is entirely known, and needs to be assembled on the right-hand side as part of the
heat load (with a negative sign, corresponding to the move from the left to the right side). The two

58 FEM for Thermal and Stress Analysis

columns of the conductivity matrix that are multiplied by the unknowns need to be assembled as
usual into the global conductivity matrix.

The actual calculating will be performed here with the help of a simple enhancement of the
Python code used in the previous section. In addition to the previously described variables we also

Python
- script

define Tfix = 10 as the prescribed temperatures at the nodes 4 and 5 (page 90).

3.12.1 Element 1

The elementwise conductivity matrix and the heat load due to the hydration heat are precisely the
same as above: no need to show them again.

Concerning the load due to the prescribed temperatures: The elementwise degree-of-freedom
array is 3, 1, 2 (i.e. 2, 0, 1 in zero-based indexing), which means all degrees of freedom on
element 1 are unknown (there are three unknowns total in this problem). Therefore there is no
prescribed temperature load contribution from this element.

3.12.2 Element 2

The elementwise conductivity matrix was calculated earlier as

column index 0︷ ︸︸ ︷ column index 4︷ ︸︸ ︷ column index 3︷ ︸︸ ︷
row index 0 {
row index 4 {
row index 3 {

 0.9646, − 0.7235, − 0.2412
−0.7235, 1.382, −0.6588
−0.2412, −0.6588, 0.9

 (3.92)

Notice that the zedof=array([0, 4, 3]) array refers to entries 4 and 3 of the dof array which
hold the degrees of freedom 4 and 5, and these are prescribed. Therefore we should split the product

[K(2)][T (2)] into two parts: the first, with T
(2)
1 represents the unknown, while the second part is

entirely known since T4 = T5 = 10 are known:

[K(2)]

 T
(2)
1

T
(2)
2 = T5

T
(2)
3 = T4

 =

 0.9646
−0.7235
−0.2412

T (2)
1 +

−0.7235, −0.2412
1.382, −0.6588

−0.6588, 0.9

[T5
T4

]
(3.93)

The second part (with a negative sign) represents the load vector to be assembled

row index 0 {
row index 4 – ig-
nore

{
row index 3 – ig-
nore

{
(−1)×

−0.7235, −0.2412
1.382, −0.6588

−0.6588, 0.9

[T5
T4

]
(3.94)

Here is the corresponding code to compute the elementwise load vector due to prescribed tempera-
tures (page 90):

99 LTe2 = zeros(3).reshape(3, 1)
100 for co in arange(len(zedof)):
101 if zedof[co] >= N_f:
102 LTe2 = LTe2 - Ke2[:, co].reshape(3, 1)*Tfix # note the - sign

Note the reshaping of the slice of the elementwise conductivity matrix Ke2[:,co] into a column
vector with reshape(3, 1). The code to assemble the elementwise load vector is essentially the
same as for the vector LQe2 shown before:

105 for ro in arange(len(zedof)):
106 if zedof[ro] < N_f:
107 L[zedof[ro]] = L[zedof[ro]] + LTe2[ro]

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpConcreteColumnNZEBC.py

3.12 Concrete-column example: nonzero boundary temperature 59

3.12.3 Element 3

The elementwise conductivity matrix was calculated earlier as

column index 0︷ ︸︸ ︷ column index 3︷ ︸︸ ︷ column index 1︷ ︸︸ ︷
row index 0 {
row index 3 {
row index 1 {

 1.8, 0.2412, − 2.041
0.2412, 0.4823, −0.7235
−2.041, −0.7235, 2.765

 (3.95)

This means that the second column of the elementwise conductivity matrix is multiplied by the
prescribed degree of freedom T4.

[K(3)]

 T
(3)
1

T
(3)
2 = T4

T
(3)
3

 =

 1.8, −2.041
0.2412, −0.7235
−2.041, 2.765

[T (3)
1

T
(3)
3

]
+

 0.2412
0.4823
−0.7235

T4 (3.96)

Since T4 = 10 is known, the second part (with a negative sign) represents the load vector to be
assembled

row index 0 {
row index 3 – ig-
nore

{
row index 1 {

(−1)×

 0.2412
0.4823
−0.7235

T4 (3.97)

The code to compute the elementwise load vector and to assemble it to the global heat load vector is
essentially the same as the code for element 2, only the name of the variable changes. This is entirely
in keeping with the nature of the finite element method: there is a lot of repetitive information to
be processed and therefore we will reformulate these computations to take advantage of loops which
can process an arbitrary number of elements.

3.12.4 Assembled equations

The global heat load due to prescribed temperatures can be therefore assembled as

(−1)×

−0.7235T5 − 0.2412T4 + 0.2412T4
−0.7235T4

0

 = (−1)×

−7.235
−7.235

0

 (3.98)

The assembled equations for the free unknown nodal temperatures therefore result as1.8000 + 0.9646 + 1.8000, −1.5588− 2.0412, −0.2412
−1.5588− 2.0412, 1.8 + 2.7646, −0.2412

−0.2412, −0.2412, 0.4823

T1

T2

T3

=

0.5859 + 1.1719 + 0.5859

0.5859 + 0.5859

0.5859

+ (−1)×

−7.235
−7.235

0

(3.99)

where we show all the individual assembled values from the elementwise quantities. The solution
follows as

T1

T2

T3

 =

12.906
12.763
14.049

 (3.100)

Notice that all the temperatures are just shifted upwards by 10oC with respect to the case of the
zero-temperature boundary conditions.

60 FEM for Thermal and Stress Analysis

3.12.5 Natural boundary conditions

The temperature varies linearly across each element, which means that the gradient of temperature
is uniform. The heat flux in each element is consequently also uniform, as indicated for two elements
in Figure 3.14 by the black arrows. These arrows represent the heat flux at any and all points of the
triangle in which they are situated. That makes it unlikely that we will satisfy heat flux (natural)
boundary conditions. For instance for triangle 123, we are trying to enforce zero-heat-flux boundary
condition across the edges 12 and 31. While the black arrow gives hope that very little heat flows
across the edge 31, clearly heat flows across the edge 12. Similarly for the edge 24, the heat flux
component normal to that edge is nonzero. Therefore we must conclude that the natural boundary
conditions are in the finite element method satisfied only approximately.

NT11

+0.000e+00
+3.375e−01
+6.749e−01
+1.012e+00
+1.350e+00
+1.687e+00
+2.025e+00
+2.362e+00
+2.700e+00
+3.037e+00
+3.375e+00
+3.712e+00
+4.049e+00

X

Y

Z

1

3

2

4

5

Text−10

Fig. 3.14. Mesh of three triangles for the concrete column with hydration heat load and zero temperature
on the circumference. Abaqus solution. Heat flux indicated with arrows at two points.

3.13 Layered wall example

In heat conduction problems one commonly encounters layered structures, for instance walls com-
posed of several different materials. The thermal conductivity would be different in each layer, and
the finite element mesh constructed along the thickness would need to reflect this by assigning
different material properties to the elements.

As an example we will consider the distribution of temperature in the layered wall in Figure 3.15.
Consider the following data: Polyurethane cladding t1 = 0.07m, κ1 = 0.05W/m/◦K, concrete t2 =
0.23m, κ2 = 1.8W/m/◦K. A triangle mesh of the width w = 0.1m is to be used. Also take ∆z = 1.0m.
The triangle connectivity is to be taken as (page 92)

Python
- script

28 # Connectivity of the left-region triangles (polyurethane)
29 connL = array([[4, 1, 5], [2, 5, 1]])
30 # Connectivity of the right-region triangles (concrete)
31 connR = array([[6, 5, 2], [2, 3, 6]])

The temperatures at the outer faces of the wall are prescribed as shown in the figure.
The unknowns are temperatures T1, T2 at nodes 2 and 5. The fixed degrees of freedom are

T3 = −10◦C at node 1, T4 = 20◦C at node 3, T5 = −10◦C at node 4, and T6 = 20◦C at node 6.
We will refer to the following variables below (page 92):

18 Dz = 1.0 # Thickness of the slice (it cancels out in the end)
19 kappaL = 0.05 # thermal conductivity, layer on the left
20 kappaR = 1.8 # thermal conductivity, layer on the right

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpLayeredWall1.py

3.13 Layered wall example 61

Fig. 3.15. Layered wall exposed to a temperature difference

We also define the map from the nodes to the degrees of freedom as

23 N = 6 # total number of nodes
24 N_f = 2 # total number of free degrees of freedom
25 # Mapping from nodes to degrees of freedom
26 node2dof = array([3, 1, 4, 5, 2, 6])

As advertised, the computation will be organized in loops over all the elements of first the
polyurethane region, and then the concrete region.

First we set up a variable for the thermal conductivity (the one defined above for the polyurethane
region), and the array of zero-based connectivities (page 92).

47 kappa = kappaL
48 zconn = array(connL) - 1

With these two variables set, the following loop is generic: it works both for the polyurethane region
and the concrete region. All we have to do is to change the above two variables.

49 for j in arange(zconn.shape[0]):
50 J = dot(x[zconn[j, :], :].T, gradNpar) # compute the Jacobian matrix
51 gradN = dot(gradNpar, linalg.inv(J)) # compute x,y grads of the basis funcs
52 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix
53 # Element degree-of-freedom array, converted to zero base
54 zedof = array(node2dof[zconn[j, :]])-1
55 # Assemble elementwise conductivity matrix
56 for ro in arange(len(zedof)):
57 for co in arange(len(zedof)):
58 if (zedof[ro] < N_f) and (zedof[co] < N_f):
59 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
60 # Compute the elementwise load vector due to prescribed temperatures
61 LTe = zeros(3).reshape(3, 1)
62 for co in arange(len(zedof)):
63 if zedof[co] >= N_f:
64 LTe= LTe - Ke[:, co].reshape(3, 1)*Tfix[zedof[co]] # note the - sign
65 # Assemble elementwise heat load vector
66 for ro in arange(len(zedof)):
67 if zedof[ro] < N_f:
68 Lg[zedof[ro]] = Lg[zedof[ro]] + LTe[ro]

The index variable j runs through all the triangles of the region as defined in the array zconn. First
we compute the elementwise conductivity matrix, then we assemble it into the global conductivity
matrix. Next we compute the elementwise heat load vector due to prescribed temperatures, which
is subsequently assembled.

62 FEM for Thermal and Stress Analysis

First the polyurethane layer elements: Element 1. The matrix of the basis functions gradi-
ents with respect to x, y reads

array([[-14.28571429, 10.],
[0. , -10.],
[14.28571429, 0.]])

The conductivity matrix is obtained from the expression

52 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix

as

array([[0.05321429, -0.0175 , -0.03571429],
[-0.0175 , 0.0175 , 0.],
[-0.03571429, 0. , 0.03571429]])

and assembled using the degree of freedom numbers array([4, 2, 1]) Since degrees of freedom 5
and 3 (4 and 2, in zero-based indexing) are prescribed (fixed), we must calculate the heat load due
to the prescribed temperatures. For this purpose we set up an array of the prescribed temperatures
for each degree of freedom in the system, and we include even the free degrees of freedom by setting
the prescribed value as 0.0

32 pTe = -10 # Boundary conditions, exterior, interior, deg Celsius
33 pTi = +20
34 Tfix = zeros(N).reshape(N,1)
35 for index in [1,4]:
36 Tfix[node2dof[index-1]-1]=pTe # left face, nodes 1 and 4
37 for index in [3,6]:
38 Tfix[node2dof[index-1]-1]=pTi # right face, nodes 3 and 6

to obtain

array([[0.],
[0.],
[-10.],
[20.],
[-10.],
[20.]])

The local degrees of freedom for element 1 are T
(1)
1 = T5, T

(1)
2 = T3, and T

(1)
3 = T2 (in one-based

indexing), and the elementwise heat load vector is therefore calculated from the first two columns
of the elementwise conductivity matrix as

(−1)×

 0.05321, −0.0175
−0.0175, 0.0175,
−0.03571, 0

[T5
T3

]
(3.101)

This is accomplished by the code (page 92):

61 LTe = zeros(3).reshape(3, 1)
62 for co in arange(len(zedof)):
63 if zedof[co] >= N_f:
64 LTe= LTe - Ke[:, co].reshape(3, 1)*Tfix[zedof[co]]# the "-" sign!

We are looping through all the columns of the elementwise conductivity matrix, and for the degree
of freedom which is prescribed (>=N f in zero-based indexing), the multiple of the corresponding
column of the conductivity matrix is added to the load vector (with a minus sign).

Element 2: Importantly, triangle 2 has the same dimensions as triangle 1, and its nodes are
numbered so that the first nodes can be made to coincide by translating and rotating triangle 2 to
overlap triangle 1. When that is the case, the elementwise conductivity matrices are the same, which
the code reproduces. The degrees of freedom for element 2 of the polyurethane region are 1, 2, 3. The

3.13 Layered wall example 63

local temperatures for element 2 are T
(1)
1 = T1, T

(1)
2 = T2, and T

(1)
3 = T3, and the elementwise heat

load vector is therefore calculated from the last column of the elementwise conductivity matrix as

(−1)×

−0.03571
0

0.03571

 [T3] (3.102)

Next the procedure described above is repeated for the concrete layer elements: Element 3.
Precisely the same code will still do the job, the only difference is the setup of the variables used
within the main loop:

71 kappa = kappaR
72 zconn = array(connR)-1

Element 4: We were able to take advantage of the conductivity matrices of two elements being
the same above. That is also available here: triangle 4 can be overlaid by triangle 3 by rotation and
translation, and their first nodes then coincide. The conductivity matrix of elements 4 is then the
same as the conductivity matrix of element 3. (Strictly speaking, the computer program doesn’t
care, but it would save valuable time in hand calculations.)

Importantly, the Python code to compute and assemble the elementwise quantities is precisely
the same as that shown for the polyurethane region elements. The global matrices and solution:
The conductivity matrix of the structure is assembled from the elementwise matrices above as

[K] =

[
2.515, −2.087
−2.087, 2.515

]
. (3.103)

The heat load vector generated by the essential boundary conditions is assembled as

[L] =

[
7.469
7.469

]
.

The solution of the discrete equations with

95 Tg = linalg.solve(Kg, Lg)

then yields

[T] =

[
T1
T2

]
=

[
17.49
17.49

]
. (3.104)

Represented graphically the temperature variation shows the characteristic significant drop of the
temperature through the insulation layer (polyurethane), see Figure 3.16. It is worth noting that the
finite element solution is for the present model exact since the T3 elements can exactly represent
linear variation of temperature.

Put slightly differently: if the exact solution is linearly varying temperature (with
constant gradient, and hence constant heat flux), the finite element method will find
this exact solution.

Abaqus
- CAE file
- INP file
- tutorial

The problem was solved with Abaqus, and the results are displayed in Figure 3.16. The boundaries
between the individual colors of the color bar are the level curves (isosurfaces). We would expect the
temperature gradient to point left-to-right (the temperature on the left-hand side surface is 30oC
lower than on the right-hand side surface). Visually we can confirm that the temperature fits in
with our common-sense understanding of the solution: checking whether the solution makes sense
in these seat-of-the-pants ways is always a good thing to do.

This is a good place to introduce Python plotting. First we set up an array of temperatures,
both prescribed and computed, for all the degrees of freedom (page 92):

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/layered-wall.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/layered-wall-template.inp
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/layered-wall-tutorial.pdf

64 FEM for Thermal and Stress Analysis

NT11

−1.000e+01
−7.500e+00
−5.000e+00
−2.500e+00
+0.000e+00
+2.500e+00
+5.000e+00
+7.500e+00
+1.000e+01
+1.250e+01
+1.500e+01
+1.750e+01
+2.000e+01

X

Y

Z

Fig. 3.16. Layered wall: variation of temperature

98 # Set up an array of the temperatures at all the degrees of freedom
99 T = Tfix.copy() # Tfix holds the prescribed temperatures already

100 T[0:N_f] = Tg # insert the computed values of the free degrees of freedom

The actual plotting will be done with the well-known matplotlib module. To make the code a bit
more legible, we import the module under the name plt.

16 import matplotlib.pyplot as plt

Then we open a figure, create the axes, and set the aspect ratio.

103 # Plotting
104 plt.figure()
105 plt.gca().set_aspect(’equal’)

We set up two arrays for the two coordinates, one value per node.

105 # setup three 1-d arrays for the x-coord, the y-coord, and the z-coord
106 xs = x[:, 0].reshape(N,)# one value per node
107 ys = x[:, 1].reshape(N,)# one value per node

We also need a third array, to represent the temperature in the third coordinate direction. For this
we need to reorder the T array so that it lists the temperatures one row per node, instead of one
row per degree of freedom.

108 ix = node2dof[arange(N)]-1
109 zs = (T[ix]).reshape(N,)# one value per node

The mesh consists of the left-hand-side region and the right-hand-side region. Here we don’t need
to distinguish between the regions, and we will create a connectivity array for the entire mesh. We
do need to adjust the connectivity arrays to be zero-based, since they are used to point into the xs,
ys, and zs arrays.

110 triangles = vstack((connL-1, connR-1))# triangles are defined by the conn arrays

Finally we plot the filled contour surface, add the color bar and the title, and show the figure.

111 plt.tricontourf(xs, ys, triangles, zs)
112 plt.colorbar()
113 plt.title(’Contour plot of temperature’)
114 plt.xlabel(’x (m)’)
115 plt.ylabel(’y (m)’)
116 plt.show()

The result is shown in Figure 3.17.

3.14 Prescribed heat flux on the boundary 65

Fig. 3.17. Layered wall: variation of temperature displayed from the Python program

3.14 Prescribed heat flux on the boundary

When we wish to incorporate as one kind of boundary condition a prescribed normal component of
the heat flux, the weighted residual statement (3.67) needs to be augmented with one more term:

N∑
i=1

Ti

∫
Sc

gradN〈j〉 κgradNT
〈i〉 ∆z dS

−
∫
Sc

N〈j〉Q ∆z dS +

∫
Cc,2

N〈j〉 qn ∆z dC = 0, for j = 1, . . . , Nf .

(3.105)

The last term on the left-hand side is of a different nature than those that we have seen so far: it
is a surface integral. Refer to Figure 3.1: the “volume” integrals are evaluated over the cross-sectional
area Sc (i.e. over the individual triangles of the mesh in the interior). The “surface” is represented
in the figure by the curve C, and we call the part where heat flux is prescribed Cc,2.

At this point you should say “Wait a minute, we’ve already had surfaces with prescribed heat flux
in our calculations. How come we haven’t needed this surface term?” It is true that the prescribed
heat flux boundary condition was already included before, for instance for the concrete column, the
boundary edges [1,2], [2,4], [5,3], and [3,1] (Figure 3.11) were insulated, i.e. the boundary heat flux
was known to be zero through these edges. The keyword is “zero”, because then qn = 0 along these
edges and the last term in (3.105) drops out as identically zero. That is why the heat-flux boundary
condition was not mentioned before.

The boundary condition with zero normal component of the heat flux does not need to
be specified in any finite element program: if the boundary condition is not explicitly
defined along any piece of the boundary surface, this condition is assumed (implied).
It does not contribute to the discrete equations that the program needs to solve, and
the effect of such a boundary condition is nil.

In this section we will however consider the case of nonzero prescribed heat flux. As indicated
above, we will need to evaluate a surface integral. We needed a mesh of triangles to calculate the
integrals that we call volume integrals (the first and the second in (3.105)), and we will also need a
surface mesh to evaluate the surface integral. We will write

N∑
i=1

Ti
∑
e

∫
e

gradN〈j〉 κgradNT
〈i〉 ∆z dS

−
∑
e

∫
e

N〈j〉Q ∆z dS +
∑

e′∈Cc,2

∫
e′
N〈j〉 qn ∆z dC = 0, for j = 1, . . . , Nf .

(3.106)

66 FEM for Thermal and Stress Analysis

where e′ is the number of an element from this surface mesh, and by

e′ ∈ Cc,2 (3.107)

we mean that the heat-flux term needs to be evaluated only for surface elements of the boundary
where nonzero heat flux is prescribed.

3.14.1 The L2 element

The most important requirement we have for the surface finite elements is that the temperature
represented on the surface must match the temperature represented in the interior: the temperature
must be continuous when we move from the interior to the surface or vice versa.

We can see from Figure 3.11 that the boundary of the mesh is formed by the triangle edges [1,2],
[2,4], [5,3], [3,1], and [4,5]. The mesh of the boundary then must be formed from two-node elements
in order to be compatible (to match up with) the mesh of the interior. Here we will introduce such
a two-node element, called L2.

The basis functions of the L2 finite elements are expressed in terms of the parametric coordinate
on the standard interval −1 ≤ ξ ≤ +1. Node 1 is located at ξ = −1 and node 2 is at ξ = +1. The
basis functions are linear between the values zero and one at the two nodes (also see Figure 3.18):

N1(ξ) =
ξ − 1

−1− 1
=
ξ − 1

−2
, N2(ξ) =

ξ − (−1)

+1− (−1)
=
ξ + 1

+2
. (3.108)

The element can be used in any number of dimensions, but here we will think of two coordinates,
x, y. The geometry of the element in the coordinates x, y will be described as

x(ξ) = N1(ξ)x1 +N2(ξ)x2 , y(ξ) = N1(ξ)y1 +N2(ξ)y2 (3.109)

where x1, y1 are the coordinates of the first node and so on. We can see that this entirely matches the
process described earlier for the triangle (3.34). This element is another example of the isoparametric
formulation.

Note that the parametric coordinate ξ for the L2 element has nothing to do with the
parametric coordinate of the same name for the element T3. The standard shapes of
these elements are different.

It can be shown that the basis functions on each triangle are linear in the coordinates x, y both
within the triangle and on its boundary (meaning: along each of its edges). Similarly, for the L2
element it can also be shown that the basis functions expressed in terms of x, y along the element

are linear in each of the arguments. See Box 11 These functions are also uniquely determined by
the values at the nodes. Consequently, the T3 element and the L2 element are compatible .

Fig. 3.18. L2 finite element: basis functions in the parametric coordinates

3.14.2 Using the L2 element

The goal is to compute∫
e′
N〈j〉 qn ∆z dC (3.110)

3.14 Prescribed heat flux on the boundary 67

Fig. 3.19. L2 finite element of the boundary of the domain with prescribed heat flux

along an arbitrary L2 element e′, for the two degrees of freedom j = 1, 2. Refer to Figure 3.19 for
an illustration. For simplicity we shall assume the practically important case of uniform prescribed
normal component of heat flux q̄n.

The elementwise quantity will be evaluated on the element [1, 2] (see Figure 3.19). The mesh of
the interior of the domain is also shown as filled triangles, but only for illustrative purposes, it is
not used. The task is to evaluate

Lq2,j = −
∫ x2

x1

N〈j〉 qn ∆z dC , j = 1, 2

where xk is the location of the kth node, and the curve C is the straight line that connects the nodes
1 and 2. This expression may be simplified as

Lq2,j = −qn ∆z
∫ x2

x1

N〈j〉 dC , j = 1, 2

given that qn ∆z does not vary along the length of the element. By observation of the figure, where
we especially pay attention to the filled triangle corresponding to N1, we can readily conclude that

the integral
∫x2

x1
N〈j〉 dC refers to the area of the triangle of height 1.0 and base equal to the length

of the element h(e
′) = ‖x2 − x1‖ (the filled triangle on the left side of the figure). Thus for uniform

prescribed normal component of the heat flux we get the elementwise heat load vector

[Lq2](e
′) = −qn ∆zh

(e′)

2

[
1
1

]
(3.111)

Recall that the direction of the heat flux through the boundary is accounted for by the sign of qn:
positive means heat flowing out from the domain, negative means heat flowing into the domain.
More details about integrations of various quantities along curves can be found in the Background

section See Box 12 .

Whether positive heat flux component in the direction of the normal is into the interior
or out of the interior is an arbitrary choice. The equations derived in this book assume
that positive heat flux leaves out of the domain. Abaqus on the other hand specifies that
positive normal component of the heat flux flows into the domain. One must always
consult the documentation on which particular convention is chosen in the software
package at hand.

It is instructive to consider the physical meaning of the elementwise heat load vector: ∆zh(e
′) is

the area of the boundary surface along the edge of the element (depth ∆z times the length h(e
′)).

Multiply that with the heat flux value qn, in units of power per unit area, and we get qn ∆zh
(e′)

as the total power passing through the boundary surface part that is represented by the element.
Divide by two: each node gets one half of the total power passing through the element.

68 FEM for Thermal and Stress Analysis

3.14.3 Layered wall: Heat flux boundary condition

Here we shall consider again the layered wall from Section 3.13, but the boundary condition at the
Python
- script

right-hand side will be changed to assume known heat flux being input into the wall. Figure 3.15. The
input data and the mesh are the same as before, except that on the right-hand face of the wall we
prescribe the normal component of the heat flux qn = −30 W/m2 instead of the fixed temperature
boundary condition.

In the convention of our model negative value means the heat flux enters into the
domain; in Abaqus the opposite convention holds, that is a negative value of the normal
component of the heat flux means the heat flux leaves the domain.

Importantly, we have to renumber the degrees of freedom, since now the degrees of freedom at
the nodes 3 and 6 are also unknown. So in addition to the unknowns T1, T2 at nodes 2, 5, we also
include unknowns T3, T4 at nodes 3 and 6. The fixed degrees of freedom are T5 = −10◦C at node 1,
and T6 = −10◦C at node 4. We define (page 94)

25 N = 6 # total number of nodes
26 N_f = 4 # total number of free degrees of freedom
27 # Mapping from nodes to degrees of freedom
28 node2dof = array([5, 1, 3, 6, 2, 4])

The elementwise conductivity matrices of the four elements are precisely the same as for the
previous example. They just need to be reassembled into a new overall conductivity matrix. The
same code that computed the conductivity matrix above still works and yields

[K] =

0.05321 + 2.07 + 0.3913, −0.0175− 2.07, −0.3913, 0

−0.0175− 2.07, 0.03571 + 0.0175 + 2.461, 0, −0.3913
−0.3913, 0, 2.461, −2.07

0, −0.3913, −2.07, 0.3913 + 2.07

 (3.112)

For the heat load vector contribution from the prescribed heat flux we need a surface mesh. In
the present example the surface mesh consists of a single L2 element, connecting the nodes [3, 6].
We define

34 # Connectivity of the boundary L2 element on the right
35 connRbdry = array([[3, 6]])

The elementwise heat load vector due to the prescribed heat flux follows from (3.111)

[Lq2](e
′) = −qn ∆zh

(e′)

2

[
1
1

]
= −−30× 1.0× 0.1

2

[
1
1

]
= 1.5

[
1
1

]
(3.113)

to be assembled to degrees of freedom 3 and 4 (at the nodes 3 and 6). The code to compute the
elementwise heat load vector due to the prescribed heat flux reads (page 94)

97 qnbar = qnbarR
98 zconn = connRbdry - 1
99 for j in arange(zconn.shape[0]):

100 he = linalg.norm(diff(x[zconn[j, :], :], axis=0))
101 # Element degree-of-freedom array, converted to zero base
102 zedof = array(node2dof[zconn[j, :]])-1
103 Leq = -qnbar*he*Dz/2*array([[1], [1]])

The first two lines again define variables used inside the loop. The loop itself is generic: it will work
with any number of boundary finite elements with any numbering.

Here the diff function computes the difference of the locations of the two endpoints of the
element (row-wise difference, note the axis=0): we have x[zconn[j, :], :],

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpLayeredWallq1.py

3.14 Prescribed heat flux on the boundary 69

array([[0.3, 0.],
[0.3, 0.1]])

and therefore diff(x[zconn[j, :], :], axis=0) computes

array([[0. , 0.1]])

and linalg.norm evaluates the norm (Euclidean length) of this vector as 0.1.
The elementwise load vector due to the applied heat flux is assembled in standard way as (page

94)

104 # Assemble elementwise heat load vector
105 for ro in arange(len(zedof)):
106 if (zedof[ro] < N_f):
107 Lg[zedof[ro]] = Lg[zedof[ro]] + Leq[ro]

So the overall heat load vector including the heat load due to the prescribed temperature at the
left-hand side reads

[L] =

−0.3571
−0.3571

1.5
1.5

 (3.114)

The solution is obtained as (in degrees Celsius)

[T] =

32
32

35.83
35.83

 (3.115)

Figure 3.20 was obtained with Abaqus. Figure 3.20(a) shows the variation of temperature across
Abaqus
- CAE file
- INP file
- tutorial

the domain, and (b) displays the arrows representing the heat flux at the six nodes. It is noteworthy
that in this case the exact solution has again been found by the finite element procedure. For
instance, observe that all six heat flux arrows are of the magnitude qn = −30 W/m2. Another way
of putting it is: what goes in must come out. At the right-hand side we prescribe the heat flux of
this magnitude entering the wall. At steady state the heat energy cannot accumulate inside the wall,
and therefore the same heat flux must again leave the wall at the left-hand side.

3.14.4 Layered wall: Heat flux boundary conditions only

Here we shall consider again the layered wall from Section 3.13, but the boundary condition on both
Python
- script

sides will be changed to assume known heat flux. The heat flux will be assumed to go in at the
right-hand side of the wall and to come out at the left-hand side. The input data and the mesh
are the same as before (Figure 3.15), except that on the right-hand face of the wall we prescribe
the normal component of the heat flux qn = −30 W/m2 instead of the fixed temperature boundary
condition, and on the left-hand side of the wall we prescribe the normal component of the heat flux
qn = +30 W/m2 (take note of the changed sign).

All nodes now have unknown degrees of freedom, and we take unknowns T1, T2 at nodes 2, 5,
unknowns T3, T4 at nodes 3 and 6, unknowns T5, T6 at nodes 4 and 1 (page 97).

24 N = 6 # total number of nodes
25 N_f = 6 # total number of free degrees of freedom
26 # Mapping from nodes to degrees of freedom
27 node2dof=array([6, 1, 3, 5, 2, 4])

As in the previous section, the elementwise conductivity matrices of the four elements do not
need to be recalculated. They just need to be reassembled into a new overall 6 × 6 conductivity
matrix:

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/layered-wall-w-q.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/layered-wall-template.inp
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/layered-wall-w-q-tutorial.pdf
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpLayeredWallqboth.py

70 FEM for Thermal and Stress Analysis

NT11

−1.000e+01
−6.181e+00
−2.361e+00
+1.458e+00
+5.278e+00
+9.097e+00
+1.292e+01
+1.674e+01
+2.056e+01
+2.438e+01
+2.819e+01
+3.201e+01
+3.583e+01

X

Y

Z

(a)

HFL, Resultant

+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01

X

Y

Z

(b)

Fig. 3.20. Layered wall with heat flux boundary condition on the right. (a) Temperature distribution. (b)
Resultant heat flux at the nodes.

[K] =

2.515, −2.087, −0.3913, 0, 0, −0.03571
−2.087, 2.515, 0, −0.3913, −0.03571, 0
−0.3913, 0, 2.461, −2.07, 0, 0

0, −0.3913, −2.07, 2.461, 0, 0
0, −0.03571, 0, 0, 0.05321, −0.0175

−0.03571, 0, 0, 0, −0.0175, 0.05321

 (3.116)

The global heat load vector is assembled from the heat-flux contributions from the two surface
elements: In the present example the surface mesh consists of two L2 elements, the first on the
right-hand side surface, connecting the nodes [3, 6] (degrees of freedom [3,4]), and the second on the
left-hand side surface, connecting nodes [4, 1] (degrees of freedom [5,6]). The global heat load vector
then reads

[L] =

0
0

1.5
1.5
−1.5
−1.5

 (3.117)

We can clearly appreciate that each degree of freedom at the boundary node gets half of the power
passing through the surface.

The solution in Python is produced as

Tg= [[-3.17647059]
[-3.17647059]
[0.65686275]
[0.65686275]
[-45.17647059]
[-45.17647059]]

3.14 Prescribed heat flux on the boundary 71

which means temperatures at the nodes (1, 2, ..., 6) are -45.17647059, -3.17647059, 0.65686275, -
45.17647059, -3.17647059, 0.65686275.

The solution was also calculated with Abaqus, with the results shown in Figure 3.21. This time
Abaqus
- CAE file
- INP file
- tutorial

the calculated temperatures at the nodes do not match our solution. The temperatures at the nodes
(1, 2, ..., 6) are reported as -42, 0, 3.83, -42, 0, 3.83.

To locate the source of this discrepancy, we must pay attention to the properties of the resulting
system of algebraic equations. In fact, Abaqus complained about the system conductivity matrix: in
the file with the extension .msg we find

***WARNING: Solver problem. Zero pivot when processing D.O.F. 11 of 1 nodes.

NT11

−4.200e+01
−3.818e+01
−3.436e+01
−3.054e+01
−2.672e+01
−2.290e+01
−1.908e+01
−1.526e+01
−1.144e+01
−7.625e+00
−3.806e+00
+1.389e−02
+3.833e+00

X

Y

Z

(a)

HFL, Resultant

+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01
+3.000e+01

X

Y

Z

(b)

Fig. 3.21. Layered wall with heat flux boundary condition on both faces of the wall. (a) Temperature
distribution. (b) Resultant heat flux at the nodes.

Here is an explanation: For any triangular element with three nodes we can write the temperature
within the extent of this element as

T (x, y) =

3∑
i=1

N〈i〉(x, y)Ti

From this we can compute the gradient of the temperature as

gradT (x, y) =

[
∂T (x, y)

∂x
,
∂T (x, y)

∂y

]
=

[
∂
∑3
i=1N〈i〉(x, y)Ti

∂x
,
∂
∑3
i=1N〈i〉(x, y)Ti

∂y

]
which can be rewritten by taking into account that Ti are not subject to differentiation and by
taking the differentiation into the sum

gradT (x, y) =

3∑
i=1

[
∂N〈i〉(x, y)

∂x
,
∂N〈i〉(x, y)

∂y

]
Ti

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/layered-wall-w-q-only.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/layered-wall-template.inp
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/layered-wall-w-q-only-tutorial.pdf

72 FEM for Thermal and Stress Analysis

At this point we realize that each of the bracket holds a basis function gradient (see (3.61))

gradN〈i〉(x, y) =

[
∂N〈i〉(x, y)

∂x
,
∂N〈i〉(x, y)

∂y

]
so that we can finally write

gradT (x, y) =

3∑
i=1

gradN〈i〉(x, y)Ti =

3∑
i=1

Ti gradN〈i〉(x, y)

This can be also written as a handy matrix expression

gradT (x, y) =
[
T1, T2, T3

]
[gradN〈1〉(x, y)]

[gradN〈2〉(x, y)]

[gradN〈3〉(x, y)]

or, even more succinctly

gradT (x, y) = [T (e)]T
[
gradN (e)(x, y)

]
where [T (e)] is the vector of the three nodal temperatures, and

[
gradN (e)(x, y)

]
is the matrix of the

gradients of the three basis functions of the triangle (3.61). Now we recall the conductivity matrix
for the single-element mesh (3.74) and we write the product

[K(e)][T (e)] =
(
(det[J]/2)[gradN] κ[gradN]T ∆z

)
[T (e)] (3.118)

Reshuffling results in

[K(e)][T (e)] = ∆z(det[J]/2)[gradN] κ
(

[gradN]T [T (e)]
)

and we realize

[gradN]T [T (e)] = (gradT)T

so that the above may be rewritten

[K(e)][T (e)] = ∆z(det[J]/2)[gradN] κ(gradT)T (3.119)

Now, if all the nodal temperatures are the same, T1 = T2 = T3, the gradient of the temperature
is identically zero, gradT = [0, 0], and we have

[K(e)][T (e)] = ∆z(det[J]/2)[gradN] κ

[
0
0

]
=

0
0
0

 (3.120)

The elementwise conductivity matrix produces zero output when all the nodes have
the same temperature.

Equation (3.120) is stating that the vector [T (e)] is a solution of a system of linear algebraic equations
where the right-hand side consists of zeros. Such a matrix [K(e)] is singular.

3.14 Prescribed heat flux on the boundary 73

The elementwise conductivity matrix will always have rank of (n− 1) where n is the
number of nodes of the element. That is, it will be singular . This is true not only for
the three node triangle, but for any finite element applied to heat conduction.

So now we take the vector of the temperatures at the nodes to consist of the same numbers in each
entry, for simplicity we pick 1.0T

(e)
1

T
(e)
2

T
(e)
3

 =

1.0
1.0
1.0

 (3.121)

Then the product of the elementwise conductivity matrix and the vector of temperatures will giveK
(e)
11 , K

(e)
12 , K

(e)
13

K
(e)
21 , K

(e)
22 , K

(e)
23

K
(e)
31 , K

(e)
32 , K

(e)
33

T

(e)
1

T
(e)
2

T
(e)
3

 =

K
(e)
11 , K

(e)
12 , K

(e)
13

K
(e)
21 , K

(e)
22 , K

(e)
23

K
(e)
31 , K

(e)
32 , K

(e)
33

1

1
1

 =

K
(e)
11 +K

(e)
12 +K

(e)
13

K
(e)
21 +K

(e)
22 +K

(e)
23

K
(e)
31 +K

(e)
32 +K

(e)
33

 =

0
0
0

(3.122)

In words, the values of the entries in each row of the elementwise conductivity matrix sum to zero!
Now comes the crucial observation: if we take any number of finite elements and assemble their
entire elementwise conductivity matrices into the global matrix, the entries in each row of the global
conductivity matrix will also sum to zero. That means that the global conductivity matrix will also
be singular. And that is why we are having trouble inverting it. The software does its best, probably
by setting some entry of the solution to some arbitrary number.

If we take as the solution the numbers reported by Python and add +3.17647059, we will obtain
the solution reported by Abaqus. Both of those solutions satisfy all the conditions (in particular the
boundary conditions), and so since both of them are solutions, we must conclude that the solution is
not unique. We can arbitrarily add some constant temperature and get another solution. The heat
flux in the solution will not feel this added constant value of temperature, because as we pointed out
earlier, constant temperature produces zero gradient of temperature and therefore zero heat flux.

This argument can be firmed up with just a few equations. We know that for a given element we
can write the balance equation as

[K(e)][T (e)] = [L(e)] (3.123)

where [L(e)] is a vector of heat loads at the nodes. At the same time, we know that the conductivity

matrix of the element is singular and therefore there is some nonzero vector of temperatures [T̂ (e)]
that follows as solution to the system of equations

[K(e)][T̂ (e)] = [0] (3.124)

with a zero heat load vector on the right-hand side. In fact, the solution is an arbitrary multiple of
the vector [T̂ (e)]

[K(e)][αT̂ (e)] = [0] (3.125)

where α 6= 0. Adding together the left-hand sides and the right-hand sides of equations (3.123)
and (3.125) yields

[K(e)][T (e)] + [K(e)][αT̂ (e)] = [L(e)] + [0] . (3.126)

As a result we have

[K(e)]
(

[T (e)] + α[T̂ (e)]
)

= [L(e)] (3.127)

which states that since the conductivity matrix of the element is singular, the solution to its balance
equation for an arbitrary load vector [L(e)] is not unique: it is [T (e)] plus an arbitrary multiple of

the eigenvector corresponding to the zero eigenvalue [T̂ (e)].

74 FEM for Thermal and Stress Analysis

Heat conduction problems where all the boundary conditions are only of the heat-flux
kind do not have unique solutions. The global conductivity matrix is singular.

In fact, it is possible that when the conductivity matrix is singular, there is no solution. In order
to understand this, think of it this way: imagine that for the wall we would require for the heat
flux to go in on either side of the wall. Would a steady-state solution be possible then? The answer
must be no: it is not possible for heat to be continuously pumped into the wall without the total
content of heat energy inside the wall continually increasing, and hence the temperature changing
as a result. (There is no heat sink inside the wall to swallow that added heat.) The applied heat
fluxes along the boundary must balance, what goes in must come out.

Unless the heat fluxes balance (possibly with sources of heat and heat sinks), the
solution to a problem with heat-flux boundary conditions only will not exist.

If we change both boundary conditions in Abaqus to list the normal heat flux as the same number
(either +30 or -30), the solver will report an error and the solution will fail.

Job Job-1: Abaqus/Standard aborted due to errors.
Error in job Job-1: Abaqus/Standard Analysis exited with an error - Please
see the message file for possible error messages if the file exists.

For these loads the solution could not be found (it does not exist!).

3.15 Concrete column with film boundary condition

In Section 3.14 the weighted residual statement to use in formulating a finite element model incor-
porated both a volume integral (for the conductivity matrix and the heat source loading) and a
surface integral (for the flux boundary condition). In order to incorporate the third kind of bound-
ary condition, the convection boundary condition (or the “surface film” boundary condition, as it is
called in Abaqus), we need to include one more surface integral. (For the derivation please consult

the Background material. See Box 7) Equation (3.106) is augmented to read

N∑
i=1

Ti
∑
e

∫
e

gradN〈j〉 κgradNT
〈i〉 ∆z dS

−
∑
e

∫
e

N〈j〉Q ∆z dS +
∑

e′∈Cc,2

∫
e′
N〈j〉 qn ∆z dC

−
∑

e′∈Cc,3

∫
e′
N〈j〉 hTa ∆z dC

+

N∑
i=1

Ti
∑

e′∈Cc,3

∫
e′
N〈j〉 h N〈i〉 ∆z dC = 0, for j = 1, . . . , Nf .

(3.128)

Equation (3.128) is the most general form of the steady-state heat-conduction model
considered in this book. All the terms are included: conduction and internal heat
generation rate in the volume, and prescribed temperatures, prescribed heat flux, and
the surface film condition on the boundary.

We shall assume for simplicity that along each element on the boundary the heat surface transfer
coefficient h (the surface film coefficient), and the ambient temperature Ta are constant. This is

3.15 Concrete column with film boundary condition 75

not a major drawback, as the two quantities being constant along each boundary element is the
practically important case, and anything more complicated can be approximated this way.

The term in line 3, on the Cc,3 part of the boundary, contributes to the heat load vector. Compare
this integral to the integral above it on the part of the boundary Cc,2 where the normal component
of the heat flux is prescribed: the difference between∫

e′
N〈j〉 qn ∆z dC (3.129)

and∫
e′
N〈j〉 hTa ∆z dC (3.130)

is only the constant to be integrated, hTa instead of qn. Similarly to the heat-flux load vector derived
in Section 3.14.2, the load vector proportional to the ambient temperature heat flux hTa follows as

[Lq3](e
′) =

hTa ∆zh
(e′)

2

[
1
1

]
(3.131)

The line 4 term in (3.128) is a little bit more challenging. It is a contribution to the left-hand
side coefficient matrix, which we will call the surface heat transfer matrix. The elementwise matrix
for the L2 element will be of dimension 2× 2:

Hji =

∫
Cc,3

N〈j〉 hN〈i〉 ∆z dC , i, j = 1, 2. (3.132)

Figure 3.22 shows graphically the product of a basis function with itself on the left, and the product
of two distinct basis functions on the right. At the bottom of the figure are the parabolic triangles
whose areas are the integrals of the products of the basis functions. The elementwise matrix therefore
follows as

[H](e
′) =

h∆zh(e
′)

6

[
2, 1
1, 2

]
(3.133)

where h(e
′) = ||x1 − x2|| is the length of the element.

Fig. 3.22. Integral of the product of two basis functions along an L2 element

We will now slightly modify the example from Section 3.7 by replacing the prescribed temperature
boundary condition with the convection boundary condition. We will consider the temperature of
water Ta = 0oC and the film coefficient h = 5.0 W ·m−2 · oK−1. Temperatures at all the nodes are
unknown, and we will associate the degrees of freedom with the nodes as

76 FEM for Thermal and Stress Analysis

Node 1 2 3 4 5
DOF 3 1 2 5 4

The total number of degrees of freedom is N = 5, and the number of free (unknown) degrees of
freedom is Nf = 5.

In addition to the triangles in the interior of the domain, we also have to consider the boundary
mesh: a single L2 element along the edge [4,5]. The elementwise conductivity matrices of the three
triangles are assembled fully into the global conductivity matrix (all degrees of freedom are free).
Recall Section 3.14.4 — the global conductivity matrix will be singular. There it is, produced by
print(Kg):

Python
- script

array([[4.56462e+00, -3.60000e+00, -2.41154e-01, 8.32667e-17, -7.23463e-01],
[-3.60000e+00, 4.56462e+00, -2.41154e-01, -7.23463e-01, 0.00000e+00],
[-2.41154e-01, -2.41154e-01, 4.82309e-01, 0.00000e+00, 0.00000e+00],
[8.32667e-17, -7.23463e-01, 0.00000e+00, 1.38231e+00, -6.58846e-01],
[-7.23463e-01, 0.00000e+00, 0.00000e+00, -6.58846e-01, 1.38231e+00]])

As the sums of the rows and columns we don’t get precisely zeros, given the limited number of digits,
but in double precision we get very small numbers indeed: the matrix is practically singular. Using
numpy.sum(Kg, axis=1) (which means sum across the columns), we obtain

array([-6.66133815e-16, -8.88178420e-16, 0.00000000e+00,
1.11022302e-16, 0.00000000e+00])

However, we are not done yet, there remain the surface terms. There is no prescribed heat flux:
the second term on the second line of (3.128) may be ignored. The term on the third line is also zero,
since Ta is zero. The surface heat transfer matrix, however, needs to be computed and assembled
(page 99). The L2 element on the boundary has connectivity

42 connbdry = array([[4, 5]])

With the definition of the zero-based connectivity

67 zconn = connbdry - 1

we can compute the length of the finite element as

69 he = linalg.norm(diff(x[zconn[j, :], :], axis=0))

This yields 1.2941. In terms of the local degrees of freedom, the surface heat transfer elementwise
matrix for the L2 element [4,5] is computed as

72 He = h * Dz * he / 6 * array([[2, 1], [1, 2]])

The matrix reads

array([[2.15683, 1.07841],
[1.07841, 2.15683]])

It will get assembled to the degrees of freedom 5 and 4 and therefore the assembled surface heat
transfer matrix Hg (refer to the code below)

74 for ro in arange(len(zedof)):
75 for co in arange(len(zedof)):
76 if (zedof[ro] < N_f) and (zedof[co] < N_f):
77 Hg[zedof[ro], zedof[co]] = Hg[zedof[ro], zedof[co]] + He[ro, co]

reads

array([[0. , 0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0. , 0.],
[0. , 0. , 0. , 2.15683, 1.07841],
[0. , 0. , 0. , 1.07841, 2.15683]])

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpConcreteColumnConv.py

3.15 Concrete column with film boundary condition 77

Together, the global conductivity matrix in the global surface heat transfer matrix form the non-
singular matrix Kg + Hg

array([[4.56462e+00, -3.60000e+00, -2.41154e-01, 8.32667e-17, -7.23463e-01],
[-3.60000e+00, 4.56462e+00, -2.41154e-01, -7.23463e-01, 0.00000e+00],
[-2.41154e-01, -2.41154e-01, 4.82309e-01, 0.00000e+00, 0.00000e+00],
[8.32667e-17, -7.23463e-01, 0.00000e+00, 3.53913e+00, 4.19567e-01],
[-7.23463e-01, 0.00000e+00, 0.00000e+00, 4.19567e-01, 3.53913e+00]])

as can be readily verified by summing the rows and columns: the fourth and fifth row and column
will not add up to zero anymore. So now the solution exists and it is also unique (page 99).

85 Tg = linalg.solve((Kg + Hg), Lg)

The solution for the 5 degrees of freedom is

array([[3.98612],
[3.85657],
[5.1362],
[1.16556],
[1.00778]])

Figure 3.23 shows the Abaqus solution with the node temperature values labeled using the Query
tool. The first three temperatures match very well, but the last two temperatures, and those on the

Abaqus
- CAE file

wet boundary are slightly different from ours. The explanation is the quadrature rule: Abaqus uses
the trapezoidal rule on the boundary instead of the exact integration with a Gauss two-point rule. It
is easy to check that the surface heat transfer matrix for the element turns out to be diagonal when
calculated with the trapezoidal rule, and when that is reproduced in the Python code, the match is
perfect at all five nodes.

5, 1.1329

4, 1.04042

3, 3.85364

2, 3.98896

1, 5.13615

NT11

+1.040e+00
+1.382e+00
+1.723e+00
+2.064e+00
+2.406e+00
+2.747e+00
+3.088e+00
+3.430e+00
+3.771e+00
+4.112e+00
+4.454e+00
+4.795e+00
+5.136e+00

X

Y

Z

Fig. 3.23. Concrete column with hydration heat load and convection boundary condition on the wet surface.
Abaqus solution.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/concrete-column-w-conv-pie-2d-3elem.cae

78 FEM for Thermal and Stress Analysis

3.16 Background, explanations, details

Box 7. Weighted residual statement for heat conduction

The goal is to formulate an equation that will allow the finite element method to calculate an
approximate solution to the heat conduction boundary value problem (BVP). The PDE was derived
in Box 1 and the boundary conditions are discussed in Box 2.

The method chosen here is the weighted residual statement. The statement is derived in the form
of an integral, so that the BVP is satisfied in an “average” sense.

In what follows, T is the so-called trial function, and ϑ is a weight function. The major steps are:
satisfy the essential boundary conditions by designing the trial function, shift the derivatives in the
balance equation residual, and combine the balanced equation residual with the natural boundary
condition into one residual equation.

The essential boundary condition is satisfied by restricting possible trial functions to only those
that conform to the essential boundary conditions a priori

T (x, t)− T (x, t) = 0, x on S1 , (3.134)

The next step equalizes the number of derivatives on the test and trial functions. The balance
equation (2.1) yields the balance residual as

rB = cV
∂T

∂t
− div

[
κ(gradT)T

]
−Q . (3.135)

so that the weighted balance residual reads∫
V

ϑ(x)rB(x, t) dV =

∫
V

ϑ

(
cV
∂T

∂t
− div

[
κ(gradT)T

]
−Q

)
dV . (3.136)

The first term (ϑcV
∂T
∂t) and the third term (ϑQ) are kept without change, but in the second term

−ϑdiv
[
κ(gradT)T

]
the test function ϑ multiplies an expression that contains the second derivatives of temperature (the
div
[
κ(gradT)T

]
term). Balancing the order of differentiation by shifting one derivative from the

temperature to the test function ϑ will be beneficial: we will be able to use basis functions that need
to be less smooth since the second derivatives would not need to be taken, and also we will be able
to satisfy the natural boundary conditions without having to include them as a separate residual
(naturally!). As before, the price to pay is the need to place some restrictions on the test function.

For the moment, it will be convenient to work with the expression

−ϑ div
[
κ(gradT)T

]
= ϑ divq ,

that is, we work with the flux variable q = −κ(gradT)T .
The integration by parts in the case of a multidimensional integral is generalized in the divergence

theorem (2.18). We may anticipate that ϑ divq is the result of the chain rule applied to the vector
ϑ q. That is indeed the case, as we have

div (ϑ q) = ϑ divq + (gradϑ) q , (3.137)

which is easily verified by working out the equality in components. Therefore, we may start by
inspecting the integral∫

V

ϑ divq dV

3.16 Background, explanations, details 79

where we substitute from (3.137)∫
V

ϑ divq dV =

∫
V

div (ϑ q) dV −
∫
V

(gradϑ) q dV . (3.138)

The divergence theorem may be applied to the first integral on the right to give the identity∫
V

ϑ divq dV =

∫
S

ϑ q · n dS −
∫
V

(gradϑ) q dV . (3.139)

Since q · n is known on some parts of the boundary, but unknown on the others – see Eqs. (2.28)
and (2.29), we will split the surface integral into one for each sub-surface,∫

V

ϑ divq dV =∫
S1

ϑ q · n dS +

∫
S2

ϑ q · n dS +

∫
S3

ϑ q · n dS −
∫
V

(gradϑ) q dV . (3.140)

The integral over the part of the surface S1 is troublesome, because q ·n is unknown there. However,
we have the option of making ϑ vanish along S1, making∫

S1

ϑ q · n dS = 0 ,

where the test function now must satisfy ϑ(x) = 0 for x ∈ S1. Now we switch back from q to
−κ(gradT)T to obtain from (3.140)∫

V

ϑ divq dV = −
∫
V

ϑ div
[
κ(gradT)T

]
dV =∫

S2

ϑ (q · n) dS +

∫
S3

ϑ (q · n) dS +

∫
V

(gradϑ) κ(gradT)T dV . (3.141)

The heat flux passing through the surface S2 is known: see the boundary condition (2.28). Therefore,
if we attempt to satisfy this boundary condition in a weighted residual sense we write∫

S2

ϑ
[
qn − (q · n)

]
dS = 0 (3.142)

where we test with the function ϑ because we anticipate a possible cancellation with a term in (3.141).
Note that the underlined term is present with the opposite sign in (3.140). Similarly, on the boundary
surface S3 we might attempt to satisfy the boundary condition with a weighted residual equation∫

S3

ϑ
[
h(T − Ta)− (q · n)

]
dS = 0 (3.143)

Finally we have all the pieces ready. We take as the weighted residual statement for the heat conduc-
tion problem the weighted balance residual (3.136) to which we add the natural boundary condition
residuals (3.142) and (3.143).∫

V

ϑ

(
cV
∂T

∂t
− div

[
κ(gradT)T

]
−Q

)
dV︸ ︷︷ ︸

(3.136)

+

∫
S2

ϑ
[
qn − (q · n)

]
dS︸ ︷︷ ︸

(3.142)

+

∫
S3

ϑ
[
h(T − Ta)− (q · n)

]
dS︸ ︷︷ ︸

(3.143)

= 0 . (3.144)

Expression (3.141) is introduced to replace the second volume term.

80 FEM for Thermal and Stress Analysis∫
V

ϑcV
∂T

∂t
dV +

∫
V

(gradϑ) κ(gradT)T dV −
∫
V

ϑQ dV

+

∫
S2

ϑ (q · n) dS +

∫
S3

ϑ (q · n) dS

+

∫
S2

ϑ
[
qn − (q · n)

]
dS +

∫
S3

ϑ
[
h(T − Ta)− (q · n)

]
dS = 0,

where ϑ(x) = 0 for x ∈ S1 .

(3.145)

The underlined surface terms cancel with the corresponding terms on the second line and we arrive
at ∫

V

ϑcV
∂T

∂t
dV +

∫
V

(gradϑ) κ(gradT)T dV −
∫
V

ϑQ dV

+

∫
S2

ϑ qn dS +

∫
S3

ϑ h(T − Ta) dS = 0, ϑ(x) = 0 for x ∈ S1 .
(3.146)

In this equation we have our result: a single weighted residual statement that the trial function
should satisfy to be considered an approximate solution to the original BVP.

End Box 7

Box 8. Reduction of the number of coordinates from from three to two
For some physical situations we can make the observation that the temperature does not vary
significantly along one coordinate direction, say along the z direction. Figure 3.1 shows a disk of
thickness ∆z. It is a slice of a structure of an unchanging cross-section which is very long in the
z direction compared to the transverse dimensions. If we can neglect what is happening near the
end sections, and if the component of the temperature gradient along the z direction is negligible,
∂T/∂z ≈ 0, a necessary condition for the formulation of a simplified model is met.

However, it is not a sufficient condition as it does not necessarily mean that the z component of
the heat flux is also zero: the partial derivatives ∂T/∂x, and ∂T/∂y multiply the first two columns
in row three of (2.22) to yield

qz = κzx∂T/∂x+ κzy∂T/∂y .

However, for the two classes of materials (2.23) (isotropic) and (2.24) (orthotropic, with diagonal
conductivity matrix) the two coefficients κzx and κzy are identically zero, which means that if the
temperature gradient ∂T/∂z is zero, the heat flux in that direction also vanishes.

End Box 8

Box 9. FEM, a little bit of history
The concept of piecewise linear functions defined over tilings of arbitrary domains into triangles
is quite ancient (at least in terms of the development of computational mechanics). The so-called
“linear triangle” made its first appearance in a lecture by Courant. Courant was a German-born
mathematician. He founded the Courant Institute of Mathematical Sciences (as it was renamed in
1964) which continues to be one of the most respected research centers in applied mathematics in
the world. Courant applied something that resembled the finite element method in 1943 to Poisson’s
equation, which is a time-independent version of the heat conduction BVP. It was then picked up

3.16 Background, explanations, details 81

Fig. 3.24. The famous 1956 paper by Turner, Clough, Martin and Topp

as a structural element in aerospace engineering to model Delta wing skin panels, as described in
the 1956 paper by Turner, Clough, Martin and Topp (Figure 3.24(a)). Ray William Clough, was
a Professor of Structural Engineering in the department of Civil Engineering at the University of
California, Berkeley and one the founders of the Finite Element Method (FEM). His article in 1956
was one of the first applications of this computational method. He also coined the term “finite
element” in an article from 1960. then applied the triangle to problems in civil engineering, and he
also coined the terminology “finite element”.

End Box 9

Box 10. Derivatives of the basis functions
To evaluate the derivatives of the basis functions with respect to x and y we need the chain rule.
Equations (3.28–3.30) define the functions over the standard triangle in terms of ξ and η. Therefore,
to express ∂Ni/∂x we use the chain rule

∂Ni
∂x

=
∂Ni
∂ξ

∂ξ

∂x
+
∂Ni
∂η

∂η

∂x
,

∂Ni
∂y

=
∂Ni
∂ξ

∂ξ

∂y
+
∂Ni
∂η

∂η

∂y
.

For the purpose of this discussion, the function that is being differentiated does not really matter.
We will replace it with a ♥, while we arrange the above equation into a matrix expression

[
∂♥
∂x

,
∂♥
∂y

]
=

[
∂♥
∂ξ

,
∂♥
∂η

]
∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y

 =

[
∂♥
∂ξ

,
∂♥
∂η

] [
J̃
]
. (3.147)

The derivatives are arranged in row matrices because these objects are gradients of the ♥ function
[compare with (2.25)]. The row matrix[

∂♥
∂ξ

,
∂♥
∂η

]
is the gradient of the function ♥ with respect to the coordinates ξ, η and this is the gradient of the
same function with respect to coordinates x, y

82 FEM for Thermal and Stress Analysis[
∂♥
∂x

,
∂♥
∂y

]
.

The matrix

[
J̃
]

=

∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y

 , (3.148)

is the Jacobian matrix of the mapping ξ = ξ(x, y), η = η(x, y), which is the inverse of the map
x = x(ξ, η), y = y(ξ, η) of Eq. (3.35). The question is how to evaluate the partial derivatives of the
type ∂ξ/∂x, since the inverse of the map (3.35) is not known (at least not in general).

Here is an idea: If we start the chain rule from the other end (switching the role of the variables),
we obtain

[
∂♥
∂ξ

,
∂♥
∂η

]
=

[
∂♥
∂x

,
∂♥
∂y

]
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

 , (3.149)

and inverting the Jacobian matrix
[
J̃
]

in equation (3.147) we get[
∂♥
∂ξ

,
∂♥
∂η

]
=

[
∂♥
∂x

,
∂♥
∂y

] [
J̃
]−1

. (3.150)

Comparing (3.149) and (3.150) yields

[J] =

∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

 =
[
J̃
]−1

, (3.151)

where [J] is the Jacobian matrix of the map (3.35).
Hence, the derivatives of the basis functions with respect to the coordinates x, y are evaluated

as [
∂Ni(ξ, η)

∂x
,
∂Ni(ξ, η)

∂y

]
=

[
∂Ni(ξ, η)

∂ξ
,
∂Ni(ξ, η)

∂η

]
[J]
−1

. (3.152)

End Box 10

Box 11. Form of the basis functions for the T3 triangle and the L2 line element
Triangle T3: When we map the point from the standard triangle ξ, η to the point x, y using (3.34)
or, explicitly, (3.35), we obtain a linear relationship between those two pairs of coordinates, x, y
expressed in terms of ξ, η. Therefore, inverting this relationship will result in a linear dependence
of ξ, η on x, y. Substituting ξ, η in the expressions for the basis functions (3.28–3.30) will express
the basis functions as linear functions of x, y. This will make perfect sense, since a linear function
in x, y is uniquely determined by the values of three coefficients, and we have three nodes that each
determine the basis function through the Kronecker delta property (3.31).

Line L2: Expanding (3.109) in terms of the basis functions, we obtain

3.16 Background, explanations, details 83

x(ξ) =
x1 + x2

2
+ ξ

x2 − x1
2

, y(ξ) =
y1 + y2

2
+ ξ

y2 − y1
2

(3.153)

This is clearly have linear relationship between each of x and y and ξ. The same reasoning as above
leads us to conclude that the basis functions are in fact linear functions of x, y.

End Box 11

Box 12. Evaluating integrals along curves
Clearly we need some understanding of integrals along curves. The goal is to evaluate∫

C

f(p) dC , (3.154)

where we will assume that the curve C may be “embedded” in a three-dimensional, two-dimensional,
or one-dimensional Euclidean space (i.e. it may be a spatial curve, plane curve, or just an interval
on the real line). Correspondingly, the point p on the curve C will have an appropriate number of
components, three, two, or one.

To perform the integral, the elementary length dC is needed. The point p on the curve will be
assumed to be the result of the mapping of the standard interval −1 ≤ ξ ≤ +1 (compare with the
1-D map (3.108), and refer to Fig. 3.25, where the map is two-dimensional)

p = g(ξ) . (3.155)

For two closely spaced points on the curve, p(ξ) and p(ξ + dξ), where ∆ξ is the distance between

Fig. 3.25. Mapping of the standard interval to a Cartesian space

the two points in the standard interval, the second point may be obtained from the first using the
first two terms of the Taylor series as

p(ξ + dξ) = p(ξ) +
∂p(ξ + εdξ)

∂ξ
dξ , 0 ≤ ε ≤ 1. (3.156)

The two points may be connected with a vector approximately tracking the curve (see Fig. 3.26),

p(ξ + dξ)− p(ξ) =
∂p(ξ + εdξ)

∂ξ
dξ ,

whose length (squared) is

(dC)2 =

(
∂p(ξ + εdξ)

∂ξ
dξ

)
·
(
∂p(ξ + εdξ)

∂ξ
dξ

)
=

∣∣∣∣∣∣∣∣∂p(ξ + εdξ)

∂ξ

∣∣∣∣∣∣∣∣2 (dξ)2 .

84 FEM for Thermal and Stress Analysis

Skipping over the details, we may conclude that for infinitesimally short intervals

∂p(ξ + εdξ)

∂ξ
→ ∂p(ξ)

∂ξ

and the following relationship is obtained

dC =

∣∣∣∣∣∣∣∣∂p(ξ)

∂ξ

∣∣∣∣∣∣∣∣dξ , (3.157)

where
∂p(ξ)

∂ξ
is the vector tangent to the curve at ξ, and

∣∣∣∣∣∣∣∣∂p(ξ)

∂ξ

∣∣∣∣∣∣∣∣ is the Jacobian to be used in

the change-of-variables operation for the curve integral.

Fig. 3.26. Length of a curve

As an example, let us evaluate the integral
∫
C

dC along the curve generated by the map

p = g(ξ) =

2∑
i=1

Ni(ξ)xi , −1 ≤ ξ ≤ +1 , (3.158)

where the Ni’s are given by (3.108). The integrand is f(p) = 1 so that the meaning of the integral
is the length of the curve.

The solution is as follows: The two endpoints are x1 and x2 and because the functions (3.108)
are linear, the point defined by (3.158) lies along a straight line connecting the two endpoints. In
other words, the generated curve is a straight line segment.

The tangent vector is computed as

∂p(ξ)

∂ξ
=

2∑
i=1

Ni(ξ)

∂ξ
xi =

x2 − x1

2
,

and the Jacobian is

J =

∣∣∣∣∣∣∣∣∂p(ξ)

∂ξ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣x2 − x1

2

∣∣∣∣∣∣∣∣ =
h

2

where h = ||x2 − x1|| is the length of the segment between x1 and x2.
The integral is evaluated as∫
C

dC =

∫ +1

−1
Jdξ = J

∫ +1

−1
dξ =

h

2

∫ +1

−1
dξ =

h

2
× 2 = h

So the length of the curve is h, as expected.

End Box 12

3.16 Background, explanations, details 85

Box 13. Example of Abaqus input file and execution using the command line

The Abaqus/CAE graphical user interface is used to construct an input file to the solver. The
input file can be found under the job name, for instance Job-1.inp. The input file describes com-
pletely what needs to be simulated and how. Most actions can be composed in the graphical user
interface, but for a few select cases one needs to modify the input file by hand. In this example we
show an input file from the example on page 49. The model is described by this Job-1.inp file:

*Heading

** Job name: Job-1 Model name: concrete-column-w-conv-pie-2d

** Tested with Abaqus/CAE Student Edition 6.14-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**
** PARTS

*Part, name=THE-PART

*Node
1, 0., 0.
2, 1.20739996, -0.323500007
3, 1.20739996, 0.323500007
4, 2.41479993, -0.647000015
5, 2.41479993, 0.647000015

*Element, type=DC2D3
1, 1, 2, 3
2, 2, 4, 5
3, 2, 5, 3

*Elset, elset=Set-1, generate
1, 3, 1

** Section: Section-1

*Solid Section, elset=Set-1, material=Material-1
1.,

*End Part

**
**
** ASSEMBLY

*Assembly, name=Assembly

**
*Instance, name=THE-PART-1, part=THE-PART

*End Instance

**
*Nset, nset=Set-1, instance=THE-PART-1
4, 5

*Elset, elset=_Surf-1_S2, internal, instance=THE-PART-1
2,

*Surface, type=ELEMENT, name=Surf-1
_Surf-1_S2, S2

*End Assembly

**
** MATERIALS

*Material, name=Material-1

*Conductivity
1.8,

** --

**

86 FEM for Thermal and Stress Analysis

** STEP: the-step

*Step, name=the-step, nlgeom=NO

*Heat Transfer, steady state, deltmx=0.
1., 1., 1e-05, 1.,

**
** LOADS

** Name: the-body-load Type: Body heat flux

*Dflux
THE-PART-1.Set-1, BF, 4.5

**
** INTERACTIONS

** Interaction: Int-1

*Sfilm
Surf-1, F, 0., 5.

**
** OUTPUT REQUESTS

*Restart, write, frequency=0

**
** FIELD OUTPUT: F-Output-1

*Output, field, variable=PRESELECT

*Output, history, frequency=0

** Note:

** ELSET=THE-PART-1.Set-1 refers to instance THE-PART-1, element set Set-1

** STIFF=YES means in heat transfer "output the conductivity matrix"

** OUTPUT=USER,FILE=elmats means write the output into the file elmats.mtx

*ELEMENT MATRIX OUTPUT,ELSET=THE-PART-1.Set-1,STIFF=YES,OUTPUT=USER,FILE=elmats

*End Step

The line with the keyword *ELEMENT MATRIX OUTPUT can be used to obtain information about the
elementwise quantities (matrices and vectors).

On Windows, the job can be submitted for execution by bringing up the command window and
typing

abaqus job=job-1 ask_delete=off

In addition to the usual output files, the file elmats.mtx containing the matrices for the elements
from the set Set-1 will be located in the working folder. For the first element, the output will read
(compare with the matrix on page 52):

**
** ELEMENT NUMBER 1 STEP NUMBER 1 INCREMENT NUMBER 1

** ELEMENT TYPE DC2D3

*USER ELEMENT, NODES= 3, LINEAR

** ELEMENT NODES

** 1, 2, 3
11

*MATRIX,TYPE=STIFFNESS
0.48227599129621 ,
-.24113799564810 , 1.8001052273240
-.24113799564810 , -1.5589672316759 , 1.8001052273240

Similarly for the other elements of the set.
Alternatively, the input file may be modified from the Abaqus/CAE graphical user interface by

bringing up the keyword editor (menu Model->Edit keywords->model name). The following
line needs to be attached at the bottom of the file just above the line that states *End Step:

*ELEMENT MATRIX OUTPUT,ELSET=THE-PART-1.Set-1,STIFF=YES,OUTPUT=USER,FILE=elmats

The job for this model can then be executed from the Job Manager as usual.

End Box 13

3.16 Background, explanations, details 87

3.17 Code listings

pnpConcreteColumn.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 """
5 Concrete column with hydration heat and zero temperature on the boundary.
6 Numerical solution. This process is shown step-by-step, which means that
7 the listing is much longer than it needs to be. Later we use loops, which
8 makes the code much more succinct.
9 """

10

11 import math
12 from numpy import array as array
13 from numpy import zeros as zeros
14 from numpy import ones as ones
15 from numpy import arange as arange
16 from numpy import dot as dot
17 from numpy import linalg as linalg
18

19 # These are the constants in the problem, k is kappa
20 a = 2.5 # radius on the columnthe
21 dy = a/2*math.sin(15./180*math.pi)
22 dx = a/2*math.cos(15./180*math.pi)
23 Q = 4.5 # internal heat generation rate
24 k = 1.8 # thermal conductivity
25 Dz = 1.0 # thickness of the slice
26

27 # Gradients of the basis functions wrt the parametric coords
28 gradNpar = array([[-1, -1], [1, 0], [0, 1]])
29 #Coordinates of the nodes. Node 1 in first row, and so on.
30 xall = array([[0, 0], [dx, -dy], [dx, dy], [2*dx, -2*dy], [2*dx, 2*dy]])
31 # Numbers of the degrees of freedom
32 dof = array([3, 1, 2, 5, 4])
33 # Number of free degrees of freedom
34 N_f = 3
35

36 # Global conductivity matrix and heat load vector.
37 K = zeros((N_f, N_f))
38 L = zeros((N_f,)).reshape(N_f, 1)
39

40 #First element
41 conn = array([1, 2, 3]) # The definition of the element, listing its nodes
42 zconn = conn - 1 # zero-based node indexes
43 x = xall[zconn, :]# The coordinates of the three nodes
44 print(’x = ’, x)
45 J = dot(x.T, gradNpar) # Compute the Jacobian matrix
46 Se = linalg.det(J)/2 # The area of the triangle
47 print(’Se = ’, Se)
48 # Compute the gradient with respect to X, Y
49 gradN = dot(gradNpar, linalg.inv(J))
50 print(’gradN = ’, gradN)
51 # Some terms of the conductivity matrix
52 print(Se*dot(gradN[0, :], gradN[0, :].T)*k*Dz)
53 print(Se*dot(gradN[0, :], gradN[1, :].T)*k*Dz)
54 # The entire elementwise conductivity matrix

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpConcreteColumn.py

3.17 Code listings 89

55 Ke1 = (Se*dot(gradN, gradN.T)*k*Dz)
56 print(’Ke1 = ’, Ke1)
57 # Element degree-of-freedom array, converted to zero base
58 zedof = array(dof[zconn])-1
59 # Assemble contribution from element 1
60 for ro in arange(len(zedof)):
61 for co in arange(len(zedof)):
62 K[zedof[ro], zedof[co]] = K[zedof[ro], zedof[co]] + Ke1[ro, co]
63

64 print(’K = ’, K)
65 # Compute heat load from element 1
66 LQe1 = Se*Q*Dz/3*ones((3,)).reshape(3, 1)
67 for ro in arange(len(zedof)):
68 L[zedof[ro]] = L[zedof[ro]] + LQe1[ro]
69

70 ##Second element
71 conn = array([2, 4, 5])
72 zconn = conn - 1 # zero-based node indexes
73 x = xall[zconn, :]# The coordinates of the three nodes
74 J = dot(x.T, gradNpar) # Compute the Jacobian matrix
75 Se = linalg.det(J)/2 # The area of the triangle
76 # Compute the gradient with respect to X, Y
77 gradN = dot(gradNpar, linalg.inv(J))
78 # The entire elementwise conductivity matrix
79 Ke2 = (Se*dot(gradN, gradN.T)*k*Dz)
80 print(Ke2)
81 # Element degree-of-freedom array, converted to zero base
82 zedof = array(dof[zconn])-1
83 # Assemble contribution from element 2
84 for ro in arange(len(zedof)):
85 for co in arange(len(zedof)):
86 if (zedof[ro] < N_f) and (zedof[co] < N_f):
87 K[zedof[ro], zedof[co]] = K[zedof[ro], zedof[co]] + Ke2[ro, co]
88

89 print(K)
90 # Compute heat load from element 1
91 LQe2 = Se*Q*Dz/3*ones((3,)).reshape(3, 1)
92 for ro in arange(len(zedof)):
93 if (zedof[ro] < N_f):
94 L[zedof[ro]] = L[zedof[ro]] + LQe2[ro]
95

96 ##Third element
97 conn = array([2, 5, 3])
98 zconn = conn - 1 # zero-based node indexes
99 x = xall[zconn, :]# The coordinates of the three nodes

100 J = dot(x.T, gradNpar) # Compute the Jacobian matrix
101 print(’third element’, J)
102 Se = linalg.det(J)/2 # The area of the triangle
103 # Compute the gradient with respect to X, Y
104 gradN = dot(gradNpar, linalg.inv(J))
105 # The entire elementwise conductivity matrix
106 Ke3 = (Se*dot(gradN, gradN.T)*k*Dz)
107 # Element degree-of-freedom array, converted to zero base
108 zedof = array(dof[zconn])-1
109 # Assemble contribution from element 2
110 for ro in arange(len(zedof)):
111 for co in arange(len(zedof)):
112 if (zedof[ro] < N_f) and (zedof[co] < N_f):

90 FEM for Thermal and Stress Analysis

113 K[zedof[ro], zedof[co]] = K[zedof[ro], zedof[co]] + Ke3[ro, co]
114

115 print(K)
116 # Compute heat load from element 1
117 LQe3 = Se*Q*Dz/3*ones((3,)).reshape(3, 1)
118 for ro in arange(len(zedof)):
119 if (zedof[ro] < N_f):
120 L[zedof[ro]] = L[zedof[ro]] + LQe3[ro]
121

122 # Solution:
123 T = linalg.solve(K, L)
124 print(’Solution T = ’, T)

Listing 3.1. pnpConcreteColumn.py

pnpConcreteColumnNZEBC.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 """
5 Concrete column with hydration heat and non-zero temperature on the boundary.
6 Numerical solution. This process is shown step-by-step, which means that
7 the listing is much longer than it needs to be. Later we use loops, which
8 makes the code much more succinct.
9 """

10

11 import math
12 from numpy import array as array
13 from numpy import zeros as zeros
14 from numpy import ones as ones
15 from numpy import arange as arange
16 from numpy import dot as dot
17 from numpy import linalg as linalg
18

19 # These are the constants in the problem, k is kappa
20 a = 2.5 # radius on the columnthe
21 dy = a/2*math.sin(15./180*math.pi)
22 dx = a/2*math.cos(15./180*math.pi)
23 Q = 4.5 # internal heat generation rate
24 k = 1.8 # thermal conductivity
25 Dz = 1.0 # thickness of the slice
26

27 # Gradients of the basis functions wrt the parametric coords
28 gradNpar = array([[-1, -1], [1, 0], [0, 1]])
29 # Coordinates of the nodes. Node 1 in first row, and so on.
30 xall = array([[0, 0], [dx, -dy], [dx, dy], [2*dx, -2*dy], [2*dx, 2*dy]])
31 # Numbers of the degrees of freedom
32 dof = array([3, 1, 2, 5, 4])
33 # Number of free degrees of freedom
34 N_f = 3
35 # Prescribed temperatures at the nodes 4 and 5
36 Tfix = 10
37

38 # Global conductivity matrix and heat load vector.
39 K = zeros((N_f, N_f))
40 L = zeros((N_f,)).reshape(N_f, 1)
41

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpConcreteColumnNZEBC.py

3.17 Code listings 91

42 #First element
43 conn = array([1, 2, 3]) # The definition of the element, listing its nodes
44 zconn = conn - 1 # zero-based node indexes
45 x = xall[zconn, :]# The coordinates of the three nodes
46 print(’x = ’, x)
47 J = dot(x.T, gradNpar) # Compute the Jacobian matrix
48 Se = linalg.det(J)/2 # The area of the triangle
49 print(’Se = ’, Se)
50 # Compute the gradient with respect to X, Y
51 gradN = dot(gradNpar, linalg.inv(J))
52 print(’gradN = ’, gradN)
53 #
54 ## Some terms of the conductivity matrix
55 print(Se*dot(gradN[0, :], gradN[0, :].T)*k*Dz)
56 print(Se*dot(gradN[0, :], gradN[1, :].T)*k*Dz)
57 # The entire elementwise conductivity matrix
58 Ke1 = (Se*dot(gradN, gradN.T)*k*Dz)
59 print(’Ke1 = ’, Ke1)
60 # Element degree-of-freedom array, converted to zero base
61 zedof = array(dof[zconn])-1
62 # Assemble contribution from element 1
63 for ro in arange(len(zedof)):
64 for co in arange(len(zedof)):
65 K[zedof[ro], zedof[co]] = K[zedof[ro], zedof[co]] + Ke1[ro, co]
66

67 print(’K = ’, K)
68 # Compute heat load from element 1
69 LQe1 = Se*Q*Dz/3*ones((3,)).reshape(3, 1)
70 for ro in arange(len(zedof)):
71 L[zedof[ro]] = L[zedof[ro]] + LQe1[ro]
72

73 ##Second element
74 conn = array([2, 4, 5])
75 zconn = conn - 1 # zero-based node indexes
76 x = xall[zconn, :]# The coordinates of the three nodes
77 J = dot(x.T, gradNpar) # Compute the Jacobian matrix
78 Se = linalg.det(J)/2 # The area of the triangle
79 # Compute the gradient with respect to X, Y
80 gradN = dot(gradNpar, linalg.inv(J))
81 # The entire elementwise conductivity matrix
82 Ke2 = (Se*dot(gradN, gradN.T)*k*Dz)
83 print(Ke2)
84 # Element degree-of-freedom array, converted to zero base
85 zedof = array(dof[zconn])-1
86 # Assemble contribution from element 2
87 for ro in arange(len(zedof)):
88 for co in arange(len(zedof)):
89 if (zedof[ro] < N_f) and (zedof[co] < N_f):
90 K[zedof[ro], zedof[co]] = K[zedof[ro], zedof[co]] + Ke2[ro, co]
91

92 print(K)
93 # Compute heat load from element 2
94 LQe2 = Se*Q*Dz/3*ones((3,)).reshape(3, 1)
95 for ro in arange(len(zedof)):
96 if zedof[ro] < N_f:
97 L[zedof[ro]] = L[zedof[ro]] + LQe2[ro]
98 # Compute heat load from element 2 due to prescribed temperatures
99 LTe2 = zeros(3).reshape(3, 1)

92 FEM for Thermal and Stress Analysis

100 for co in arange(len(zedof)):
101 if zedof[co] >= N_f:
102 LTe2 = LTe2 - Ke2[:, co].reshape(3, 1)*Tfix # note the - sign
103 print(LTe2)
104 # Assemble heat load from element 2
105 for ro in arange(len(zedof)):
106 if zedof[ro] < N_f:
107 L[zedof[ro]] = L[zedof[ro]] + LTe2[ro]
108

109 ##Third element
110 conn = array([2, 5, 3])
111 zconn = conn - 1 # zero-based node indexes
112 x = xall[zconn, :]# The coordinates of the three nodes
113 J = dot(x.T, gradNpar) # Compute the Jacobian matrix
114 Se = linalg.det(J)/2 # The area of the triangle
115 # Compute the gradient with respect to X, Y
116 gradN = dot(gradNpar, linalg.inv(J))
117 # The entire elementwise conductivity matrix
118 Ke3 = (Se*dot(gradN, gradN.T)*k*Dz)
119 # Element degree-of-freedom array, converted to zero base
120 zedof = array(dof[zconn])-1
121 # Assemble contribution from element 2
122 for ro in arange(len(zedof)):
123 for co in arange(len(zedof)):
124 if (zedof[ro] < N_f) and (zedof[co] < N_f):
125 K[zedof[ro], zedof[co]] = K[zedof[ro], zedof[co]] + Ke3[ro, co]
126

127 print(K)
128 # Compute heat load from element 1
129 LQe3 = Se*Q*Dz/3*ones((3,)).reshape(3, 1)
130 for ro in arange(len(zedof)):
131 if zedof[ro] < N_f:
132 L[zedof[ro]] = L[zedof[ro]] + LQe3[ro]
133 # Compute heat load from element 3 due to prescribed temperatures
134 LTe3 = zeros(3).reshape(3, 1)
135 for co in arange(len(zedof)):
136 if zedof[co] >= N_f:
137 LTe3 = LTe3 - Ke3[:, co].reshape(3, 1)*Tfix # note the - sign
138 print(LTe3)
139 # Assemble heat load from element 1
140 for ro in arange(len(zedof)):
141 if zedof[ro] < N_f:
142 L[zedof[ro]] = L[zedof[ro]] + LTe3[ro]
143

144 # Solution:
145 T = linalg.solve(K, L)
146 print(’Solution T=’, T)

Listing 3.2. pnpConcreteColumnNZEBC.py

pnpLayeredWall1.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 """
5 Layered wall. Temperature boundary conditions.
6 """

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpLayeredWall1.py

3.17 Code listings 93

7

8 import math
9 from numpy import array as array

10 from numpy import zeros as zeros
11 from numpy import ones as ones
12 from numpy import arange as arange
13 from numpy import dot as dot
14 from numpy import linalg as linalg
15 from numpy import vstack as vstack
16 import matplotlib.pyplot as plt
17

18 Dz = 1.0 # Thickness of the slice (it cancels out in the end)
19 kappaL = 0.05 # thermal conductivity, layer on the left
20 kappaR = 1.8 # thermal conductivity, layer on the right
21 # Coordinates of nodes
22 x = array([[0, 0], [0.07, 0], [0.3, 0], [0, 0.1], [0.07, 0.1], [0.3, 0.1]])
23 N = 6 # total number of nodes
24 N_f = 2 # total number of free degrees of freedom
25 # Mapping from nodes to degrees of freedom
26 node2dof = array([3, 1, 4, 5, 2, 6])
27

28 # Connectivity of the left-region triangles (polyurethane)
29 connL = array([[4, 1, 5], [2, 5, 1]])
30 # Connectivity of the right-region triangles (concrete)
31 connR = array([[6, 5, 2], [2, 3, 6]])
32 pTe = -10 # Boundary conditions, exterior, interior, deg Celsius
33 pTi = +20
34 Tfix = zeros(N).reshape(N, 1)
35 for index in [1, 4]:
36 Tfix[node2dof[index-1]-1] = pTe # left face, nodes 1 and 4
37 for index in [3, 6]:
38 Tfix[node2dof[index-1]-1] = pTi # right face, nodes 3 and 6
39

40 # gradients of the basis functions with respect to the param. coordinates
41 gradNpar = array([[-1, -1], [1, 0], [0, 1]])
42

43 Kg = zeros((N_f, N_f)) # allocate the global conductivity matrix
44 Lg = zeros(N_f).reshape(N_f, 1) # allocate the global heat loads vector
45

46 # Loop over the triangles in the mesh, left domain
47 kappa = kappaL
48 zconn = array(connL)-1
49 for j in arange(zconn.shape[0]):
50 J = dot(x[zconn[j, :], :].T, gradNpar) # compute the Jacobian matrix
51 gradN = dot(gradNpar, linalg.inv(J)) # compute the x,y grads of the b. funcs
52 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix
53 # Element degree-of-freedom array, converted to zero base
54 zedof = array(node2dof[zconn[j, :]])-1
55 # Assemble elementwise conductivity matrix
56 for ro in arange(len(zedof)):
57 for co in arange(len(zedof)):
58 if (zedof[ro] < N_f) and (zedof[co] < N_f):
59 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
60 # Compute the elementwise load vector due to prescribed temperatures
61 LTe = zeros(3).reshape(3, 1)
62 for co in arange(len(zedof)):
63 if zedof[co] >= N_f:
64 LTe= LTe - Ke[:, co].reshape(3, 1)*Tfix[zedof[co]] # the "-" sign!

94 FEM for Thermal and Stress Analysis

65 # Assemble elementwise heat load vector
66 for ro in arange(len(zedof)):
67 if zedof[ro] < N_f:
68 Lg[zedof[ro]] = Lg[zedof[ro]] + LTe[ro]
69

70 # Loop over the triangles in the mesh, right domain
71 kappa = kappaR
72 zconn = array(connR)-1
73 for j in arange(zconn.shape[0]):
74 J = dot(x[zconn[j, :], :].T, gradNpar) # compute the Jacobian matrix
75 gradN = dot(gradNpar, linalg.inv(J)) # compute the x,y grads of the b. funcs
76 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix
77 # Element degree-of-freedom array, converted to zero base
78 zedof = array(node2dof[zconn[j, :]])-1
79 # Assemble elementwise conductivity matrix
80 for ro in arange(len(zedof)):
81 for co in arange(len(zedof)):
82 if (zedof[ro] < N_f) and (zedof[co] < N_f):
83 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
84 # Compute the elementwise load vector due to prescribed temperatures
85 LTe = zeros(3).reshape(3, 1)
86 for co in arange(len(zedof)):
87 if zedof[co] >= N_f:
88 LTe= LTe - Ke[:, co].reshape(3, 1)*Tfix[zedof[co]] # the "-" sign!
89 # Assemble elementwise heat load vector
90 for ro in arange(len(zedof)):
91 if zedof[ro] < N_f:
92 Lg[zedof[ro]] = Lg[zedof[ro]] + LTe[ro]
93

94 # Solve for the global temperatures at the free degrees of freedom
95 Tg = linalg.solve(Kg, Lg)
96 print(’Tg=’, Tg)
97

98 # Set up an array of the temperatures at all the degrees of freedom
99 T = Tfix.copy() # Tfix holds the prescribed temperatures already

100 T[0:N_f] = Tg # insert the computed values of the free degrees of freedom
101

102 # Plotting: produce a contour plot of the temperature on the mesh
103 plt.figure()
104 plt.gca().set_aspect(’equal’)
105 # setup three 1-d arrays for the x-coord, the y-coord, and the z-coord
106 xs = x[:, 0].reshape(N,)# one value per node
107 ys = x[:, 1].reshape(N,)# one value per node
108 ix = node2dof[arange(N)]-1 # The number of the DOF for each node, zero-based
109 zs = (T[ix]).reshape(N,)# one value per node
110 triangles = vstack((connL-1, connR-1))# triangles are defined by conn arrays
111 plt.tricontourf(xs, ys, triangles, zs)
112 plt.colorbar()
113 plt.title(’Contour plot of temperature’)
114 plt.xlabel(’x (m)’)
115 plt.ylabel(’y (m)’)
116 plt.show()

Listing 3.3. pnpLayeredWall1.py

pnpLayeredWallq1.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpLayeredWallq1.py

3.17 Code listings 95

2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 #
5 """
6 Layered wall. Temperature boundary condition on the left, and heat flux
7 boundary condition on the right.
8 """
9

10 from numpy import array as array
11 from numpy import zeros as zeros
12 from numpy import arange as arange
13 from numpy import dot as dot
14 from numpy import linalg as linalg
15 from numpy import vstack as vstack
16 from numpy import diff as diff
17 import matplotlib.pyplot as plt
18

19

20 Dz = 1.0 # Thickness of the slice (it cancels out in the end)
21 kappaL = 0.05 # thermal conductivity, layer on the left
22 kappaR = 1.8 # thermal conductivity, layer on the right
23 # Coordinates of nodes
24 x = array([[0, 0], [0.07, 0], [0.3, 0], [0, 0.1], [0.07, 0.1], [0.3, 0.1]])
25 N = 6 # total number of nodes
26 N_f = 4 # total number of free degrees of freedom
27 # Mapping from nodes to degrees of freedom
28 node2dof = array([5, 1, 3, 6, 2, 4])
29

30 # Connectivity of the left-region triangles (polyurethane)
31 connL = array([[4, 1, 5], [2, 5, 1]])
32 # Connectivity of the right-region triangles (concrete)
33 connR = array([[6, 5, 2], [2, 3, 6]])
34 # Connectivity of the boundary L2 element on the right
35 connRbdry = array([[3, 6]])
36 pTe = -10 # Boundary conditions, exterior, interior, deg Celsius
37 Tfix = zeros(N).reshape(N, 1)
38 for index in [1, 4]:
39 Tfix[node2dof[index-1]-1] = pTe # left face with EBC, nodes 1 and 4
40 qnbarR = -30
41

42 # gradients of the basis functions with respect to the param. coordinates
43 gradNpar = array([[-1, -1], [1, 0], [0, 1]])
44

45 Kg = zeros((N_f, N_f)) # allocate the global conductivity matrix
46 Lg = zeros(N_f).reshape(N_f, 1) # allocate the global heat loads vector
47

48 # Loop over the triangles in the mesh, left domain
49 kappa = kappaL
50 zconn = array(connL)-1
51 for j in arange(zconn.shape[0]):
52 J = dot(x[zconn[j, :], :].T, gradNpar) # compute the Jacobian matrix
53 gradN = dot(gradNpar, linalg.inv(J)) # compute the x,y grads of the b. funcs
54 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix
55 # Element degree-of-freedom array, converted to zero base
56 zedof = array(node2dof[zconn[j, :]])-1
57 # Assemble elementwise conductivity matrix
58 for ro in arange(len(zedof)):
59 for co in arange(len(zedof)):

96 FEM for Thermal and Stress Analysis

60 if (zedof[ro] < N_f) and (zedof[co] < N_f):
61 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
62 # Compute the elementwise load vector due to prescribed temperatures
63 LTe = zeros(3).reshape(3, 1)
64 for co in arange(len(zedof)):
65 if zedof[co] >= N_f:
66 LTe= LTe - Ke[:, co].reshape(3, 1)*Tfix[zedof[co]] # the "-" sign!
67 # Assemble elementwise heat load vector
68 for ro in arange(len(zedof)):
69 if zedof[ro] < N_f:
70 Lg[zedof[ro]] = Lg[zedof[ro]] + LTe[ro]
71

72 # Loop over the triangles in the mesh, right domain
73 kappa = kappaR
74 zconn = array(connR)-1
75 for j in arange(zconn.shape[0]):
76 J = dot(x[zconn[j, :], :].T, gradNpar) # compute the Jacobian matrix
77 gradN = dot(gradNpar, linalg.inv(J)) # compute the x,y grads of the b. funcs
78 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix
79 # Element degree-of-freedom array, converted to zero base
80 zedof = array(node2dof[zconn[j, :]])-1
81 # Assemble elementwise conductivity matrix
82 for ro in arange(len(zedof)):
83 for co in arange(len(zedof)):
84 if (zedof[ro] < N_f) and (zedof[co] < N_f):
85 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
86 # Compute the elementwise load vector due to prescribed temperatures
87 LTe = zeros(3).reshape(3, 1)
88 for co in arange(len(zedof)):
89 if zedof[co] >= N_f:
90 LTe= LTe - Ke[:, co].reshape(3, 1)*Tfix[zedof[co]] # the "-" sign!
91 # Assemble elementwise heat load vector
92 for ro in arange(len(zedof)):
93 if zedof[ro] < N_f:
94 Lg[zedof[ro]] = Lg[zedof[ro]] + LTe[ro]
95

96 # Boundary element heat flux term
97 qnbar = qnbarR
98 zconn = connRbdry - 1
99 for j in arange(zconn.shape[0]):

100 he = linalg.norm(diff(x[zconn[j, :], :], axis=0))
101 # Element degree-of-freedom array, converted to zero base
102 zedof = array(node2dof[zconn[j, :]])-1
103 Leq = -qnbar*he*Dz/2*array([[1], [1]])
104 # Assemble elementwise heat load vector
105 for ro in arange(len(zedof)):
106 if (zedof[ro] < N_f):
107 Lg[zedof[ro]] = Lg[zedof[ro]] + Leq[ro]
108

109 # Solve for the global temperatures at the free degrees of freedom
110 Tg = linalg.solve(Kg, Lg)
111 print(’Tg=’, Tg)
112

113 # Set up an array of the temperatures at all the degrees of freedom
114 T = Tfix.copy()
115 T[0:N_f] = Tg # insert the computed values of the free degrees of freedom
116

117 # Plotting

3.17 Code listings 97

118 plt.figure()
119 plt.gca().set_aspect(’equal’)
120 # setup three 1-d arrays for the x-coord, the y-coord, and the z-coordinate
121 xs = x[:, 0].reshape(N,)# one value per node
122 ys = x[:, 1].reshape(N,)# one value per node
123 ix = node2dof[arange(N)]-1
124 zs = (T[ix]).reshape(N,)# one value per node
125 triangles = vstack((connL-1, connR-1))# triangles are defined by the conn arrays
126 plt.tricontourf(xs, ys, triangles, zs)
127 plt.colorbar()
128 plt.title(’Contour plot of temperature’)
129 plt.xlabel(’x (m)’)
130 plt.ylabel(’y (m)’)
131 plt.show()

Listing 3.4. pnpLayeredWallq1.py

pnpLayeredWallqboth.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 #
5 """
6 Layered wall. Temperature boundary condition on the left, and heat flux
7 boundary condition on the right.
8 """
9

10 from numpy import array as array
11 from numpy import zeros as zeros
12 from numpy import arange as arange
13 from numpy import dot as dot
14 from numpy import linalg as linalg
15 from numpy import vstack as vstack
16 from numpy import diff as diff
17 import matplotlib.pyplot as plt
18

19 Dz = 1.0 # Thickness of the slice (it cancels out in the end)
20 kappaL = 0.05 # thermal conductivity, layer on the left
21 kappaR = 1.8 # thermal conductivity, layer on the right
22 # Coordinates of nodes
23 x = array([[0, 0], [0.07, 0], [0.3, 0], [0, 0.1], [0.07, 0.1], [0.3, 0.1]])
24 N = 6 # total number of nodes
25 N_f = 6 # total number of free degrees of freedom
26 # Mapping from nodes to degrees of freedom
27 node2dof=array([6, 1, 3, 5, 2, 4])
28

29 # Connectivity of the left-region triangles (polyurethane)
30 connL = array([[4, 1, 5], [2, 5, 1]])
31 # Connectivity of the right-region triangles (concrete)
32 connR = array([[6, 5, 2], [2, 3, 6]])
33 # Connectivity of the boundary L2 element on the left
34 connLbdry = array([[4, 1]])
35 qnbarL = +30
36 # Connectivity of the boundary L2 element on the right
37 connRbdry = array([[3, 6]])
38 qnbarR = -30
39

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpLayeredWallqboth.py

98 FEM for Thermal and Stress Analysis

40 # gradients of the basis functions with respect to the param. coordinates
41 gradNpar = array([[-1, -1], [1, 0], [0, 1]])
42

43 Kg = zeros((N_f, N_f)) # allocate the global conductivity matrix
44 Lg = zeros(N_f).reshape(N_f, 1) # allocate the global heat loads vector
45

46 # Loop over the triangles in the mesh, left domain
47 kappa = kappaL
48 zconn = array(connL)-1
49 for j in arange(zconn.shape[0]):
50 J = dot(x[zconn[j, :], :].T, gradNpar) # compute the Jacobian matrix
51 gradN = dot(gradNpar, linalg.inv(J)) # compute the x,y grads of the b. funcs
52 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix
53 # Element degree-of-freedom array, converted to zero base
54 zedof = array(node2dof[zconn[j, :]])-1
55 # Assemble elementwise conductivity matrix
56 for ro in arange(len(zedof)):
57 for co in arange(len(zedof)):
58 if (zedof[ro] < N_f) and (zedof[co] < N_f):
59 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
60 # Compute the elementwise load vector due to prescribed temperatures
61 LTe = zeros(3).reshape(3, 1)
62 for co in arange(len(zedof)):
63 if zedof[co] >= N_f:
64 LTe= LTe - Ke[:, co].reshape(3, 1)*Tfix[zedof[co]] # the "-" sign!
65 # Assemble elementwise heat load vector
66 for ro in arange(len(zedof)):
67 if zedof[ro] < N_f:
68 Lg[zedof[ro]] = Lg[zedof[ro]] + LTe[ro]
69

70 # Loop over the triangles in the mesh, right domain
71 kappa = kappaR
72 zconn = array(connR)-1
73 for j in arange(zconn.shape[0]):
74 J = dot(x[zconn[j, :], :].T, gradNpar) # compute the Jacobian matrix
75 gradN = dot(gradNpar, linalg.inv(J)) # compute the x,y grads of the b. funcs
76 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix
77 # Element degree-of-freedom array, converted to zero base
78 zedof = array(node2dof[zconn[j, :]])-1
79 # Assemble elementwise conductivity matrix
80 for ro in arange(len(zedof)):
81 for co in arange(len(zedof)):
82 if (zedof[ro] < N_f) and (zedof[co] < N_f):
83 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
84 # Compute the elementwise load vector due to prescribed temperatures
85 LTe = zeros(3).reshape(3, 1)
86 for co in arange(len(zedof)):
87 if zedof[co] >= N_f:
88 LTe= LTe - Ke[:, co].reshape(3, 1)*Tfix[zedof[co]] # the "-" sign!
89 # Assemble elementwise heat load vector
90 for ro in arange(len(zedof)):
91 if zedof[ro] < N_f:
92 Lg[zedof[ro]] = Lg[zedof[ro]] + LTe[ro]
93

94 # Boundary element heat flux term, left-hand side
95 qnbar = qnbarL
96 zconn = array(connLbdry)-1
97 for j in arange(zconn.shape[0]):

3.17 Code listings 99

98 he = linalg.norm(diff(x[zconn[j, :], :], axis=0))
99 # Element degree-of-freedom array, converted to zero base

100 zedof = array(node2dof[zconn[j, :]])-1
101 Leq = -qnbar*he*Dz/2*array([[1], [1]])
102 # Assemble elementwise heat load vector
103 for ro in arange(len(zedof)):
104 if (zedof[ro] < N_f):
105 Lg[zedof[ro]] = Lg[zedof[ro]] + Leq[ro]
106

107 # Boundary element heat flux term, right-hand side
108 qnbar=qnbarR
109 zconn=array(connRbdry)-1
110 for j in arange(zconn.shape[0]):
111 he = linalg.norm(diff(x[zconn[j, :], :], axis=0))
112 # Element degree-of-freedom array, converted to zero base
113 zedof = array(node2dof[zconn[j, :]])-1
114 Leq = -qnbar*he*Dz/2*array([[1], [1]])
115 # Assemble elementwise heat load vector
116 for ro in arange(len(zedof)):
117 if (zedof[ro] < N_f):
118 Lg[zedof[ro]] = Lg[zedof[ro]] + Leq[ro]
119

120

121 # Solve for the global temperatures at the free degrees of freedom
122 Tg = linalg.solve(Kg, Lg)
123 print(’Tg=’, Tg)
124

125 # Set up an array of the temperatures at all the degrees of freedom
126 T = Tfix.copy()
127 T[0:N_f] = Tg # insert the computed values of the free degrees of freedom
128

129 # Plotting
130 plt.figure()
131 plt.gca().set_aspect(’equal’)
132 # setup three 1-d arrays for the x-coord, the y-coord, and the z-coord
133 xs = x[:, 0].reshape(N,)# one value per node
134 ys = x[:, 1].reshape(N,)# one value per node
135 ix = node2dof[arange(N)]-1
136 zs = (T[ix]).reshape(N,)# one value per node
137 triangles = vstack((connL-1, connR-1))# triangles are defined by the conn arrays
138 plt.tricontourf(xs, ys, triangles, zs)
139 plt.colorbar()
140 plt.title(’Contour plot of temperature’)
141 plt.xlabel(’x (m)’)
142 plt.ylabel(’y (m)’)
143 plt.show()

Listing 3.5. pnpLayeredWallqboth.py

pnpConcreteColumnConv.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 #
5 """
6 Concrete column with hydration heat and convection (film) condition
7 on the boundary. Numerical solution.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpConcreteColumnConv.py

100 FEM for Thermal and Stress Analysis

8 """
9

10 from numpy import array as array
11 from numpy import zeros as zeros
12 from numpy import arange as arange
13 from numpy import dot as dot
14 from numpy import linalg as linalg
15 from numpy import vstack as vstack
16 from numpy import diff as diff
17 import matplotlib.pyplot as plt
18

19 # These are the input constants in the problem:
20 a = 2.5 # radius of the column cross-section
21 dy = a / 2 * math.sin(15. / 180 * math.pi)
22 dx = a / 2 * math.cos(15. / 180 * math.pi)
23 Q = 4.5 # internal heat generation rate
24 k = 1.8 # thermal conductivity
25 Dz = 1.0 # thickness of the slice
26 h = 5.0 # surface heat transfer coefficient
27 Ta = 0.0 # ambient temperature (freezing water)
28

29 # Coordinates of nodes
30 x = array([[0, 0], [dx, -dy], [dx, dy], [2 * dx, -2 * dy], [2 * dx, 2 * dy]])
31 N = 5 # total number of nodes
32 N_f = 5 # total number of free degrees of freedom
33 # Mapping from nodes to degrees of freedom
34 node2dof = array([3, 1, 2, 5, 4])
35

36 # gradients of the basis functions with respect to the param. coordinates
37 gradNpar = array([[-1, -1], [1, 0], [0, 1]])
38

39 # Connectivity of the mesh: interior mesh
40 conn = array([[1, 2, 3], [2, 4, 5], [2, 5, 3]])
41 # boundary mesh
42 connbdry = array([[4, 5]])
43

44 Kg = zeros((N_f, N_f)) # allocate the global conductivity matrix
45 Lg = zeros((N_f, 1)) # allocate the global heat loads vector
46

47 # Loop over the triangles in the mesh
48 kappa = k
49 zconn = conn - 1
50 for j in arange(zconn.shape[0]):
51 J = dot(x[zconn[j, :], :].T, gradNpar) # compute the Jacobian matrix
52 gradN = dot(gradNpar, linalg.inv(J)) # compute the x,y grads of the b. funcs
53 Ke = (kappa*Dz*linalg.det(J)/2)*dot(gradN, gradN.T) # elementwise matrix
54 # Element degree-of-freedom array, converted to zero base
55 zedof = array(node2dof[zconn[j, :]])-1
56 # Assemble elementwise conductivity matrix
57 for ro in arange(len(zedof)):
58 for co in arange(len(zedof)):
59 if (zedof[ro] < N_f) and (zedof[co] < N_f):
60 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
61 LQe = linalg.det(J)/2*Q*Dz/3*ones((3, 1))
62 for ro in arange(len(zedof)):
63 Lg[zedof[ro]] = Lg[zedof[ro]] + LQe[ro]
64

65 # Calculations for the convection boundary condition

3.17 Code listings 101

66 Hg = zeros((N_f, N_f)) # allocate the global film-condition matrix
67 zconn = connbdry - 1
68 for j in arange(zconn.shape[0]):
69 he = linalg.norm(diff(x[zconn[j, :], :], axis=0))
70 # Element degree-of-freedom array, converted to zero base
71 zedof = array(node2dof[zconn[j, :]]) - 1
72 He = h * Dz * he / 6 * array([[2, 1], [1, 2]])
73 # Assemble elementwise surface heat transfer matrix
74 for ro in arange(len(zedof)):
75 for co in arange(len(zedof)):
76 if (zedof[ro] < N_f) and (zedof[co] < N_f):
77 Hg[zedof[ro], zedof[co]] = Hg[zedof[ro], zedof[co]] + He[ro, co]
78 # Assemble elementwise heat load vector for surface heat transfer
79 Lea = Ta * h * he * Dz / 2 * array([[1], [1]])
80 for ro in arange(len(zedof)):
81 if (zedof[ro] < N_f):
82 Lg[zedof[ro]] = Lg[zedof[ro]] + Lea[ro]
83

84 # Solve for the global temperatures at the free degrees of freedom
85 Tg = linalg.solve((Kg + Hg), Lg)
86 print(’Tg=’, Tg)
87

88 print(’Temperatures at the nodes’)
89 for index in arange(node2dof.shape[0]):
90 print(’Node’, index + 1, ’T=’, Tg[node2dof[index] - 1])
91

92 # Set up an array of the temperatures at all the degrees of freedom
93 T = Tg.copy()
94 T[0:N_f] = Tg # insert the computed values of the free degrees of freedom
95

96 # Plot filled contours
97 plt.figure()
98 plt.gca().set_aspect(’equal’)
99 # setup three 1-d arrays for the x-coordinate, the y-coordinate, and the

100 # z-coordinate
101 xs = x[:, 0].reshape(N,) # one value per node
102 ys = x[:, 1].reshape(N,) # one value per node
103 ix = node2dof[arange(N)] - 1
104 zs = (T[ix]).reshape(N,) # one value per node
105 triangles = conn - 1 # the triangles are defined by the connectivity arrays
106 plt.tricontourf(xs, ys, triangles, zs)
107 plt.colorbar()
108 plt.title(’Contour plot of temperature’)
109 plt.xlabel(’x (m)’)
110 plt.ylabel(’y (m)’)
111 plt.show()

Listing 3.6. pnpConcreteColumnConv.py

4

FEA for 2-D Heat conduction with Quadrilaterals

Quadrilateral elements are an alternative to the triangles discussed in Chapter 3. The triangular
elements are in a way too simple: the variation of temperature they can represent is not sufficiently
rich. We say that the triangles are “stiff”, which makes more sense when they are applied to stress
analysis, but the intuitive insight this word attempts to generate is hopefully clear.

Quadrilateral elements address the excessive stiffness of the triangular elements by coupling to-
gether a larger number of nodes (four instead of three), which in the end leads to basis functions
which are more than just linear polynomials. This endowes the finite element with that little some-
thing that makes it more accurate.

4.1 Quadrilateral element

The element Q4 has four nodes, and its standard shape is a bi-unit square. This square is to be
understood as the Cartesian product of two standard intervals (refer to Section 3.14.1). Therefore,
the basis functions of Q4 may also be formed as products of the basis functions on the standard
interval L2 (3.108). Assuming the numbering of the nodes as shown in Figure 4.1, the basis function
N1 may be written as the product of the basis function on the interval −1 ≤ ξ ≤ +1 and the
basis function on the interval −1 ≤ η ≤ +1 where both functions correspond to the left-hand side
endpoint (ξ = −1, η = −1)

N1(ξ, η) =
ξ − 1

−1− 1
× η − 1

−1− 1
=

(ξ − 1)(η − 1)

4
. (4.1)

Similarly, for the remaining three functions we have

N2(ξ, η) =
(ξ + 1)(η − 1)

−4
, N3(ξ, η) =

(ξ + 1)(η + 1)

4
, (4.2)

and

N4(ξ, η) =
(ξ − 1)(η + 1)

−4
. (4.3)

As all basis functions are linear in ξ and η, the shape that they represent when raised as a surface
above the standard square is a hyperbolic paraboloid.

The derivatives of the basis functions (i.e. the gradients of the basis functions) are computed
in the standard way using equations (3.62). All we need is the gradient of the basis functions with
respect to the parametric coordinates

104 FEM for Thermal and Stress Analysis

Fig. 4.1. Mapping the standard square to a general quadrilateral

[
grad(ξ,η)N

]
=

grad(ξ,η)N1

grad(ξ,η)N2

grad(ξ,η)N3

grad(ξ,η)N4

 =

∂N1

∂ξ
,
∂N1

∂η

∂N2

∂ξ
,
∂N2

∂η

∂N3

∂ξ
,
∂N4

∂η

∂N3

∂ξ
,
∂N4

∂η

=

1

4

η − 1 , ξ − 1

−η + 1 , −ξ − 1

η + 1 , ξ + 1

−η − 1 , −ξ + 1

 , (4.4)

The new aspect compared to the three-node triangle is that the gradients of the basis functions with
respect to the parametric coordinates now vary across the element, the gradients are not constant
within the element anymore. Of course, that makes perfect sense, the slope of the surface of the
“tent” function over the standard square varies from point to point. It does make the calculation of
the elementwise quantities more difficult, which is where numerical integration comes in.

The integration of the elementwise expressions needs a more sophisticated approach than for the
triangle: elementary, analytical, integrations are no longer possible for general-shape quadrilaterals.
One must employ numerical quadrature (integration). The numerical approximation of the integral
of the function f over the standard square is the sum of the function values∫ +1

−1

(∫ +1

−1
f(ξ, η) dξ

)
dη ≈

M∑
q=1

f(ξq, ηq)Wq , (4.5)

at the q = 1, . . . ,M quadrature points ξq, ηq, weighted with multipliers Wq. (Gaussian quadrature

in one dimension: See Box 14 . Gauss quadrature in two dimensions: See Box 15 .) The Gauss
quadrature is particularly suited to the task (small number of function evaluations, high accuracy).
The most applicable rule to the four-node quadrilateral is the four point quadrature rule given in
Table 4.1.

Four-point two-dimensional rule
j Coordinates ξj , ηj Weights Wj

1 −
√

1/3,−
√

1/3 1× 1 = 1

2 −
√

1/3,+
√

1/3 1× 1 = 1

3 +
√

1/3,−
√

1/3 1× 1 = 1

4 +
√

1/3,+
√

1/3 1× 1 = 1

Table 4.1. Four-point Gauss rule on the standard square

The goal is to integrate some expression over the area of a general quadrilateral. Similarly to the
triangle (both elements are isoparametric!), the map (3.34) will produce an image of the standard
square in the Cartesian coordinates x, y – refer to Figure 4.2. Point (ξ, η) is mapped into

4.2 Example: using Gaussian quadrature for a rectangle 105

Fig. 4.2. Mapping of the standard square into a general Q4 quadrilateral. Point (ξ, η) is mapped into
p(ξ, η) = (x, y), and the area dξ,dη in the standard square is mapped to an area J(ξ, η)dξdη by the Jacobian
of the map

p(ξ, η) = (x, y) , (4.6)

where

x =

4∑
k=1

Nk(ξ, η)xk , y =

4∑
k=1

Nk(ξ, η)yk , (4.7)

and the map (4.6) maps areas as

dξdη −→ dξdη det [J] . (4.8)

The differential area on the left-hand side is in the standard square, the differential area on the right
is in the general quadrilateral in x, y, and det [J] = J is the Jacobian of the map (4.6) (which is of
the same sort as (3.34) for the triangle).

As a consequence, we have the following change of coordinates in integrals:∫
S[x,y]

f(x, y)dxdy =

∫
S[ξ,η]

f(ξ, η) det [J(ξ, η)] dξdη . (4.9)

The numerical approximation for the quadrilateral is therefore∫
S[x,y]

f(x, y)dxdy ≈
M∑
q=1

f(ξq, ηq) det[J(ξq, ηq)]Wq , (4.10)

where det[J(ξq, ηq)] is the value of the Jacobian at the quadrature point.

4.2 Example: using Gaussian quadrature for a rectangle

In this section we will investigate an illustrative example in detail. The goal is to compute the ele-
mentwise conductivity matrix of a rectangular Q4 finite element using a 2×2 point Gauss quadrature
rule. We shall assume homogeneous isotropic thermal conductivity. We are interested in the rank of
the resulting conductivity matrix: recall that for the three-node triangle, the elementwise conduc-
tivity matrix was singular.

We will consider the nodes located at

[p1] =
[
A, B

]
, [p2] =

[
0, B

]
, [p3] =

[
0, 0

]
, [p4] =

[
A, 0

]
,

where A,B will be taken as symbolic variables.

106 FEM for Thermal and Stress Analysis

The weighted residual statement is still the same: refer to equation (3.67). When computing
the elementwise conductivity matrix, the transition from the three-node triangle to the four-node
quadrilateral is not very complicated. Expression (3.69) now needs to be evaluated for the domain
of integration being a general quadrilateral∫

e=1

gradN〈k〉 κgradNT
〈m〉 ∆z dS k = 1, 2, 3, 4, m = 1, 2, 3, 4 (4.11)

and there are four nodes (and four degrees of freedom) instead of three.
With the four-point Gauss rule (Table 4.1) this is approximated as

Kkm =

4∑
q=1

gradN〈k〉(ξq, ηq) κ gradNT
〈m〉(ξq, ηq) ∆z det[J(ξq, ηq)]Wq , k,m = 1, 2, 3, 4 .

(4.12)

where ξq = ±
√

3/3, ηq = ±
√

3/3,Wq = 1. The entire elementwise matrix can be in fact computed
as

[K(e)] =

4∑
q=1

[gradN(ξq, ηq)] κ [gradN(ξq, ηq)]
T
∆z det[J(ξq, ηq)]Wq , (4.13)

which is the formula we will use.
The Python code to evaluate the matrix follows. Note that this script relies on the symbolic

Python
- script

capabilities provided by the sympy module.
The basis functions (4.1)–(4.3) are the entries of this symbolic matrix

13 xi, eta = symbols(’xi eta’)
14 N = Matrix([(xi-1)*(eta-1)/4,
15 (xi+1)*(eta-1)/-4,
16 (xi+1)*(eta+1)/4,
17 (xi-1)*(eta+1)/-4]).reshape(4,1)

which yields the matrix of gradients of the basis functions with respect to the parametric coordinates
by symbolic differentiation

25 gradNpar = diff(N, ’xi’).row_join(diff(N, ’eta’))
26 print(gradNpar)

The row join joins the derivative with respect to η as a second column to the first column which is
the derivative with respect to ξ, producing as output this matrix of four rows and two columns

Matrix([[eta/4 - 1/4, xi/4 - 1/4], [-eta/4 + 1/4, -xi/4 - 1/4], ...
[eta/4 + 1/4, xi/4 + 1/4], [-eta/4 - 1/4, -xi/4 + 1/4]])

With these definitions

21 A, B = symbols(’A, B’)
22 x = Matrix([[A, B], [0, B], [0, 0], [A, 0]])

we compute the Jacobian matrix as J=x.T*gradNpar which yields

Matrix([
[-A/2, 0],
[0, -B/2]])

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpQuadAB.py

4.2 Example: using Gaussian quadrature for a rectangle 107

and the Jacobian Jac=det(J) as A*B/4. We may note that the Jacobian is constant, which is what
we would expect since the standard square is mapped into a rectangle: All right angles stay right
angles, and horizontal lines stretch by the same amount, and vertical lines also stretch by the same
amount everywhere.

The basis function gradients with respect to x, y may be evaluated from the general formula (3.62)

38 gradN = simplify(gradNpar*(J**-1))
39 print(gradN)

resulting in

Matrix([
[-(eta - 1)/(2*A), (-xi + 1)/(2*B)],
[(eta - 1)/(2*A), (xi + 1)/(2*B)],
[-(eta + 1)/(2*A), -(xi + 1)/(2*B)],
[(eta + 1)/(2*A), (xi - 1)/(2*B)]])

We glean from the above that the x, y basis function gradients vary from point to point within the
element.

The conductivity matrix can be now evaluated. First we simplify by noting that κ,∆z, Wk = 1,
and det[J(ξk, ηk)] = (AB)/4 are all constants and therefore may be taken out of the sum of the
numerical quadrature . The four-point integration needs to be carried out only on the product of
the gradients, which change from quadrature point to quadrature point, and yields the intermediate
result (note the use of subs() to evaluate the basis function gradient expressions for particular
values of ξ, η)

50 gN = gradN.subs(xi, -0.577350269189626).subs(eta, -0.577350269189626)
51 K1 = kap*Dz*Jac*gN*gN.T # term 1 of the sum
52 gN = gradN.subs(xi, -0.577350269189626).subs(eta, +0.577350269189626)
53 K2 = kap*Dz*Jac*gN*gN.T # term 2 of the sum
54 gN = gradN.subs(xi, +0.577350269189626).subs(eta, -0.577350269189626)
55 K3 = kap*Dz*Jac*gN*gN.T # term 3 of the sum
56 gN = gradN.subs(xi, +0.577350269189626).subs(eta, +0.577350269189626)
57 K4 = kap*Dz*Jac*gN*gN.T # term 4 of the sum

and further adding together the intermediate results from the for quadrature points

59 K = simplify(K1+K2+K3+K4)
60 print(K)

(note the use of simplify() to produce an uncluttered expression) gives, with a little bit of manual
editing,

kap*Dz/(A*B)/6*Matrix([
[2*(A**2 + B**2), (*A**2 - 2*B**2), -(A**2 + B**2), (-2*A**2 + B**2)],
[(A**2 - 2*B**2), 2*(A**2 + B**2), (-2*A**2 + B**2), -(A**2 + B**2)],
[-(A**2 + B**2), (-2*A**2 + B**2), 2*(A**2 + B**2), (A**2 - 2*B**2)],
[(-2*A**2 + B**2), -(A**2 + B**2), (A**2 - 2*B**2), 2*(A**2 + B**2)]])

where we have shortened the output by hand by replacing 0.333333333333333 with 1/3, and
0.166666666666667 with 1/6. This can be cleaned up as

[
K(e)

]
=
κ∆z

6AB

2A2 + 2B2, A2 − 2B2, −A2 −B2, B2 − 2A2

A2 − 2B2, 2A2 + 2B2, B2 − 2A2, −A2 −B2

−A2 −B2, B2 − 2A2, 2A2 + 2B2, A2 − 2B2

B2 − 2A2, −A2 −B2, A2 − 2B2, 2A2 + 2B2

 (4.14)

The elementwise conductivity matrix
[
K(e)

]
has a rank equal to the number of nonzero eigen-

values. With Python we find the eigenvalues of this matrix as K.eigenvals() which yields

{B*Dz*kap/A: 1, A*Dz*kap/B: 1, (A**2*Dz*kap + B**2*Dz*kap)/(3*A*B): 1, 0: 1}

108 FEM for Thermal and Stress Analysis

in the format “eigenvalue: multiplicity” . Since there is one zero eigenvalue, the rank of
[
K(e)

]
is

equal to 3. The rank of the conductivity matrix was discussed for the T3 (triangle) element in
Section 3.14.4. It was discussed there that the expected rank would be equal to the number of
nodes minus one, which for the triangle gives 3− 2 = 1. The present result is consistent in that the
defect (1) is the same as for the triangle: 4− 3 = 1. We can see that the elementwise matrix of the
quadrilateral has the same property as the elementwise matrix for the triangle: in all the rows the
entries add up to zero. The physical meaning is the same as before: the elementwise conductivity
matrix produces zero output for the input of the temperatures being the same at all nodes.

4.3 Concrete column example again

We will consider again the example of the concrete column with zero temperature on the boundary
and hydration heat load from Section 3.7. Figure 4.3 shows this time the mesh of a pie-shaped piece
of the cross-section of the concrete column is a single quadrilateral, with connectivity [1,2,3,4]. The
temperatures along the boundary with water, i.e. along the edge [2,3] and [3,4] are fixed degrees of
freedom T2 = T3 = T4 = 0, and the only unknown is T1. The total number of degrees of freedom is
N = 4, and the number of free (unknown) degrees of freedom is Nf = 1.

Fig. 4.3. Concrete column with prescribed zero temperature on the boundary and hydration heat source.
Mesh with a single Q4 element.

Python
- script

The solution with a brief Python script is described below. The data of the problem is defined
as (page 124)

19 a = 2.5 # radius of the column
20 b = a * math.sin(15 / 180 * math.pi) # dimension
21 h = a * math.cos(15 / 180 * math.pi) # dimension
22 Q = 4.5 # internal heat generation rate
23 k = 1.8 # thermal conductivity
24 Dz = 1.0 # thickness of the slice
25 x = array([[0, 0], [h, -b], [a, 0], [h, b]]) # Coordinates of nodes

4.3.1 Conductivity matrix

It will be convenient to define a function to evaluate the matrix of the basis function gradients with
respect to the parametric coordinates at any given point ξ, η:

32 def gradNpar(xi, eta):
33 """
34 A one-liner to calculate the matrix of the basis function gradients
35 in the parametric coordinates.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpConcreteColumn1Q4.py

4.3 Concrete column example again 109

36 """
37 return array([
38 [eta / 4 - 1. / 4, xi / 4 - 1. / 4],
39 [1. / 4 - eta / 4, - xi / 4 - 1. / 4],
40 [eta / 4 + 1. / 4, xi / 4 + 1. / 4],
41 [- eta / 4 - 1. / 4, 1. / 4 - xi / 4]])

The 2×2 Gauss rule (Table 4.1) will be used for the elementwise quantities. It is the default for this
type of element in Abaqus. The locations and the weights are defined as

52 xe = array([[-0.577350269189626, -0.577350269189626],
53 [-0.577350269189626, +0.577350269189626],
54 [+0.577350269189626, -0.577350269189626],
55 [+0.577350269189626, +0.577350269189626]])
56 W = array([1, 1, 1, 1])

The task is to compute the elementwise conductivity matrix

[K(e)] =

∫
e=1

[gradN] κ[gradN]T ∆z dS (4.15)

which is an expression analogous to (3.74) but of dimension 4 × 4, using the numerical approxi-
mation (4.13). This will be accomplished in the integration loop over the four quadrature points
of the Gauss rule. Inside the loop we will be building up the elementwise conductivity matrix one
quadrature point at a time, and therefore we need a preallocated array to which the intermediate
results will be added (page 124).

60 Ke = zeros((4, 4))

In the loop we start by setting the parametric coordinates of the quadrature point, and calculating
the Jacobian matrix at that point from (3.60).

63 for qp in arange(xe.shape[0]):
64 xi = xe[qp, 0]
65 eta = xe[qp, 1]
66 # Compute the Jacobian matrix
67 J = dot(x.T, gradNpar(xi, eta))

From the Jacobian matrix, we calculate the Jacobian. It varies from quadrature point to quadrature
point, with the minimum value of 0.1868 (at the fourth quadrature point) and the maximum value
of 0.6220 (at the first quadrature point).

69 detJ = linalg.det(J)

The gradient of the basis functions is calculated using the standard expression (3.62)

71 gradN = dot(gradNpar(xi, eta), linalg.inv(J))

Now we can add the contribution from the quadrature point to the preallocated elementwise matrix
Ke.

73 Ke = Ke + k * Dz * dot(gradN, gradN.T) * detJ * W[qp]

The interior of the loop is executed four times, once for each quadrature point. The finished elemen-
twise conductivity matrix is

array([[0.46772756, -0.02719481, -0.41333794, -0.02719481],
[-0.02719481, 2.13771962, -0.77091145, -1.33961336],
[-0.41333794, -0.77091145, 1.95516084, -0.77091145],
[-0.02719481, -1.33961336, -0.77091145, 2.13771962]])

110 FEM for Thermal and Stress Analysis

4.3.2 Heat load vector and solution

Now analogously to the heat load vector calculation in Section 3.11 we need to evaluate (3.77), which
can be written as a matrix expression∫

e=1

[N]Q ∆z dS (4.16)

where [N] is the matrix that consists of the four basis functions on the quadrilateral in the rows. Of
course, the integral will again be approximated with numerical quadrature∫

e=1

[N]Q ∆z dS ≈
4∑
q=1

[N(ξq, ηq)]Q ∆z det[J(ξq, ηq)]Wq , (4.17)

This little helper function will evaluate the column array of the basis function values at any quadra-
ture point:

82 def N(xi, eta):
83 """
84 A one-liner to calculate the matrix of the basis function values.
85 """
86 return array([(xi - 1) * (eta - 1) / 4,
87 (xi + 1) * (eta - 1) / -4,
88 (xi + 1) * (eta + 1) / 4,
89 (xi - 1) * (eta + 1) / -4]).reshape(4, 1)

Now we are ready to start the quadrature point loop. Again, the load vector is preallocated in the
correct size, Le=zeros(4).reshape(4,1). We will need the Jacobian (the first few lines of this loop
look precisely like the ones for the conductivity matrix above), and then according to the formula
we need to add the contribution from (4.17)

104 Le = Le + Q * Dz * N(xi, eta) * detJ * W[qp]

for each quadrature point qp. The result of the integration is the elementwise load vector

array([[2.38508927],
[1.81982141],
[1.25455355],
[1.81982141]])

Notice that the largest contribution of the heat load density Q is to the degree of freedom at the
first node, and the smallest is to the degree of freedom at the third node. This corresponds to the
magnitudes of the Jacobians we inspected above: the quadrature point closest to node 1 has the
largest value of the Jacobian, and the quadrature point closest to node 3 has the smallest value of
the Jacobian.

Because of the simplicity of the present FE mesh, the entry K[0,0] of the elementwise conduc-
tivity matrix is the entire global conductivity matrix, and the entry L[0] of the elementwise load
vector is the entire global load vector. The solution for the only degree of freedom then follows as

114 T = zeros((4, 1))
115 # Solve the global equations
116 T[0] = (1 / K[0, 0]) * L[0]

which results in the temperature 5.0993 for the only free degree of freedom. Clearly, compared to
the exact value, the solution is not very good. But the mesh is not very good, so we cannot ask too
much of it.

4.3 Concrete column example again 111

4.3.3 Postprocessing

In this section we will evaluate the heat flux at the quadrature points. This is often called the
postprocessing step: the solution has already been obtained, we will just process it to extract some
more information.

The gradient of the temperature at any quadrature point can be calculated using the definition
of the interpolated temperature within the element:

T (ξ, η) =

N∑
i=1

N〈i〉(ξ, η)Ti (4.18)

as

gradT (ξ, η) = grad

(
N∑
i=1

N〈i〉(ξ, η)Ti

)
=

N∑
i=1

Ti gradN〈i〉(ξ, η) = [T]
T

[gradN(ξ, η)] (4.19)

where the last expression is a matrix multiplication, of the matrix of the degrees of freedom values
and the matrix of the basis function gradients. Note that the matrix of the basis function gradients
depends on where in the element the gradients are evaluated. The postprocessing for the heat flux
vectors is again performed in a loop (page 124)

124 for qp in arange(xe.shape[0]):
125 xi = xe[qp, 0]
126 eta = xe[qp, 1]
127 # Compute the location of the quadrature point
128 qploc = dot(N(xi, eta).T, x)

where the location of the quadrature point in the global coordinates qploc also calculated to allow
us to plot the results.

We need the gradients of the basis functions:

130 J = dot(x.T, gradNpar(xi, eta))
131 # The gradient of the basis functions with respect to x, y
132 gradN = dot(gradNpar(xi, eta), linalg.inv(J))

It remains to calculate the gradient of the temperature and the heat flux, and to print out the
results:

134 gradT = dot(T.T, gradN)
135 # Heat flux vector
136 q = -k * gradT.T
137 print(’Heat flux at’, qploc, ’ = ’, q)

For the four quadrature points we get the following output:

Heat flux at [[0.91658369 0.]] = [[3.76543041]
[-0.]]
Heat flux at [[2.02654304 0.37357311]] = [[3.67150541]
[0.27906968]]
Heat flux at [[2.02654304 -0.37357311]] = [[3.67150541]
[-0.27906968]]
Heat flux at [[2.35995936 0.]] = [[3.35882447]
[-0.]]

The calculated heat flux vectors are visualized in Figure 4.4. Notice that the results are relatively
crude: we would expect the heat flux vectors to become shorter towards the center whereas the
opposite is true for this very coarse mesh.

112 FEM for Thermal and Stress Analysis

Fig. 4.4. Concrete column: single quadrilateral element mesh. Heat flux at quadrature points represented
with arrows. The length of the arrow was scaled with 1/10.

4.4 Effects of element distortion

The accuracy of the quadrilateral element with nodes in arbitrary locations can be degraded by the
distortion of the element. The Jacobian that maps the areas between the parametric bi-unit square
and the physical space can cause some difficulties. We will illustrate here the possibility of finding a
negative Jacobian in severely distorted quadrilaterals.

The Jacobian is the determinant of the Jacobian matrix (3.57). As discussed below equa-
tion (3.63), the Jacobian may be computed as the cross product of the two vectors

det[J(ξ, η)] =
∂p(ξ, η)

∂ξ
× ∂p(ξ, η)

∂η

Note that ∂p(ξ, η)/∂ξ is shown as dotted vector, and ∂p(ξ, η)/∂η is displayed with a dashed vector. In
the general quadrilateral these vectors change from point to point as shown in figure (a). Also shown
in the bottom left part of the figure is the standard shape (square) in the parametric coordinates.
Finally, the standard square and the general quadrilateral on the right show as filled polygons the
areas between the grid lines. This is used as a visual measure of the distortion of the quadrilateral.

Now imagine the topmost corner of the quadrilateral is moved towards the bottommost corner.
The original shape of the quadrilateral is shown for reference in Figure 4.5(b). Clearly the shift
caused the areas of the filled polygons to change, with the top corner polygon being squished more
than the one at the bottom.

Figure 4.5(c) continues the story: If the downward movement of the corner reaches the straight
line that connects the leftmost and rightmost corners, break point is reached. At that instant the
top filled polygon that was originally a convex quadrilateral is reduced to a triangle, and its area
has at that point decreased considerably relative to Figure 4.5(a).

If the originally topmost corner is moved further along the same direction downwards, the area
of the filled polygon at that corner will become negative. The quadrilateral shape is now concave
(Figure 4.5(d)).

Elements of the shapes shown in Figures 4.5(c,d) must be avoided, as the numerical
quadrature would lead to incorrect results, and the overall accuracy of the element
would deteriorate significantly. The ideal shape is a square, followed by a rectangle of
an aspect ratio that is not too high (e.g. aspect ratio smaller than 4 : 1).

4.5 Effects of the choice of the numerical quadrature rule 113

(a) (b)

(c) (d)

Fig. 4.5. Distortion of the elementary areas in the general quadrilateral mapped from the standard shape
and then distorted by the movement of the top node

4.5 Effects of the choice of the numerical quadrature rule

In Section 4.2 the conductivity matrix of a rectangular element was constructed using the default
quadrature rule for this type of element, Gauss 2 × 2 rule. Here we will explore the effect that
switching to a one-point Gauss quadrature rule has on the elementwise conductivity matrix.

The elementwise conductivity matrix was computed in Section 4.2 using the formula (4.2). For
the one-point Gauss rule, the sum degenerates into a single term:

[K(e)] = [gradN(ξq, ηq)] κ [gradN(ξq, ηq)]
T
∆z det[J(ξq, ηq)]Wq , (4.20)

where ξ1 = 0, η1 = 0,W1 = 4. Note that the point ξ1 = 0, η1 = 0 maps to the geometrical center of
the rectangular element.

Due to the simplicity of the rectangular shape and the minimal expense of the one-point quadra-
ture, we can evaluate the conductivity matrix by trivial back-of-the-envelope calculations.

The basis function gradients with respect to x, y may be evaluated from the general for-
mula (3.62), but for the centroid of the rectangular element they are also easily computed from
the elementary rise-over-run formula. For instance,

∂N1

∂x
=

1/2

A
,

∂N1

∂y
=

1/2

B

and

∂N2

∂x
=
−1/2

A
,

∂N2

∂y
=

1/2

B
.

Also, in Section 4.2 the Jacobian to be constant across the entire element J = AB/4.
The conductivity matrix can now be evaluated: The one-point integration yields

[K(e)] =
κ∆z

4

A/B +B/A, A/B −B/A, −A/B −B/A, B/A−A/B
A/B −B/A, A/B +B/A, B/A−A/B, −A/B −B/A
−A/B −B/A, B/A−A/B, A/B +B/A, A/B −B/A
B/A−A/B, −A/B −B/A, A/B −B/A, A/B +B/A

 . (4.21)

114 FEM for Thermal and Stress Analysis

As expected, the temperatures at the nodes of the same values produces zero output

[K(e)][T (e)] = [0] for [T (e)] = [1, 1, 1, 1]T . (4.22)

This is because the entries in each row sum up to zero. However, there is another possibility: sum
only the entries in column 1 and 3, and we also get zero output.

[K(e)][T (e)] = [0] for [T (e)] = [1, 0, 1, 0]T . (4.23)

The same is possible for column 2 and 4.

[K(e)][T (e)] = [0] for [T (e)] = [0, 1, 0, 1]T . (4.24)

Altogether, we can see that there are now two possibilities for getting zero output from the elemen-
twise conductivity matrix:

[T (e)] = [1, 0, 1, 0]T or [T (e)] = [0, 1, 0, 1]T . (4.25)

The vector [T (e)] = [1, 1, 1, 1]T is not a third, independent, possibility, as we can get it by adding
together the two vectors in (4.25). In summary, this means that the rank of the elementwise con-
ductivity matrix (4.21) is only two (2), not three (3) as would be expected.

The rank of the elementwise conductivity matrix can be understood in terms of an eigenvalue
problem

[K(e)][T (e)] = λ[T (e)]

The two vectors (4.25) are two eigenvectors, both associated with a zero eigenvalue. The defect of
the matrix is the number of zero eigenvalues, so the rank being the dimension of the matrix minus
the defect is two, 4-2=2.

The graphical representation of the first two modes that correspond to zero eigenvalues helps
explain what is going on. The modes are representations of the temperature across the element, shown
as a surface raised above the element to the third dimension. The slope of the temperature surface
corresponds to the gradient of the temperature. We can see that the gradient of the temperature is
nonzero everywhere, except at the midpoint of the element where the two dashed lines that lie in
the temperature surface intersect. Those two lines have zero slope, and therefore at the midpoint
the gradient of the temperature is zero. But that is exactly where the conductivity matrix was
integrated by the one-point Gauss rule. The integration of the conductivity matrix may be thought
of as imposition of constraints on the possible variations of temperature across the element that
are allowed. In particular, the correct conductivity matrix should allow for a uniform temperature
distribution, which would correspond to zero temperature gradient everywhere. Clearly imposing
such a constraint in the quadrilateral at a single quadrature point is not sufficient, since there are
two possible distributions of temperature which are not uniform but which do give a zero temperature
gradient at the quadrature point (Figure 4.6).

The problem with a rank-deficient elementwise conductivity matrices is that when the conduc-
tivity matrix of the entire structure is assembled, the global conductivity matrix may be genuinely
singular, or close to singular, even after sufficient boundary conditions have been applied to theo-
retically make the solution unique. The deficiency of the individual element matrices may show up
in the form of the patterns of Figure 4.6.

Figure 4.7 shows a particular steady-state heat conduction case with nonzero internal heat gen-
eration rate and a combined essential and natural boundary condition. On the left the solution was
obtained with the Q4 quadrilateral used with the 2×2 Gauss quadrature, on the right the same mesh
is used with a one-point Gauss quadrature. For the latter scheme the individual elementwise con-
ductivity matrices are singular, and the global conductivity matrix is close to singular. The singular
matrix is prone to instabilities of the solution, and we can compare the patterns of zero-eigenvalue
modes for the individual elements shown above with the oscillations that developed in the solution
below.

4.6 Example finite element program 115

Fig. 4.6. Two possible variations of the temperature across the element that lead to zero gradient of the
temperature at the centroid of the element

0 10 20 30 40 50
x (m)

0

10

20

30

40

50

y
 (
m
)

Contour plot of temperature

1.5

3.0

4.5

6.0

7.5

0 10 20 30 40 50
x (m)

0

10

20

30

40

50

y
 (
m
)

Contour plot of temperature

1.5

3.0

4.5

6.0

7.5

9.0

Fig. 4.7. Square with both insulated and zero-temperature boundary condition and internal heat generation
rate. Solution to the problem obtained with full quadrature of the elementwise matrices (on the left), and
solution obtained with one-point quadrature of the elementwise matrices (on the right).

The quadrature rules in finite element programs are chosen to be both efficient, and
sufficient. Efficient, to minimize the computing effort and to speed up the simulations.
Sufficient, to avoid the appearance of spurious (in the sense of “not real”) solutions.

4.6 Example finite element program

The solution to the above heat-conduction problem (refer to Figure 4.7) was obtained with a sim-
ple, but reasonably complete, implementation of finite element program for meshes composed of
quadrilaterals. The region is square, of homogeneous and isotropic material.

Python
- script

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/IntegrEffectQ4.py

116 FEM for Thermal and Stress Analysis

The complete code is presented elsewhere (page 126), here we just look at the highlights:
The first part of the script generates a topologically regular mesh of square four-node elements.

The quadrature rule is chosen by commenting or uncommenting blocks

99 xe = array([[-0.577350269189626, -0.577350269189626],
100 [-0.577350269189626, +0.577350269189626],
101 [+0.577350269189626, -0.577350269189626],
102 [+0.577350269189626, +0.577350269189626]])
103 W = array([1, 1, 1, 1])

and

106 #xe = array([[+0., +0]])
107 #W = array([4.0])

In this case the first block defines a four point Gauss quadrature rule, and the commented-out block
defines a one-point Gauss quadrature rule. If we wish to test the one-point quadrature rule (i.e. the
effect of underintegration), we switch these two blocks: comment out the first one, and remove the
comment letters (#) from the second one.

The global conductivity matrix in the global heat load vector are defined as

109 Kg = zeros((N_f, N_f))
110 Lg = zeros((N_f, 1))

In this the script is fairly unsophisticated. A real workhorse finite element program would use a
sparse matrix. The matrix Kg is full, meaning every single number in the matrix is stored and
processed. This can get expensive very quickly. The solution are sparse matrices: a lot less storage
and more efficient to process.

With the definition of one auxiliary variable (the number of nodes per element, that is 4) and
the zero-based connectivity array

112 nnpe = conn.shape[1] # number of nodes per element
113 zconn = conn - 1

we are ready to launch into a loop over all the finite elements

114 for index in arange(conn.shape[0]):
115 # Element degree-of-freedom array, converted to zero base
116 zedof = dof[zconn[index, :]]-1
117 # Initialize the elementwise conductivity matrix.
118 Ke = zeros((nnpe, nnpe))
119 # Initialize the elementwise heat load vector
120 LQe = zeros((nnpe, 1))

The elementwise conductivity matrix and the elementwise heat-load vector due to the internal heat
generation rate are allocated above. The next loop, the one over the quadrature points, now computes
the expected Jacobian matrix, the gradient of the basis functions, and the contributions to the
elementwise quantities are added.

122 for qp in range(xe.shape[0]):
123 xi, eta = xe[qp, 0], xe[qp, 1]
124 lx = x[zconn[index, :], :]
125 # Compute the Jacobian matrix
126 J = dot(lx.T, gradNpar(xi, eta))
127 # The Jacobian
128 detJ = linalg.det(J)
129 # The gradient of the basis functions with respect to x,y
130 gradN = dot(gradNpar(xi, eta), linalg.inv(J))
131 # Add the contribution to the conductivity matrix
132 Ke = Ke + kappa * Dz * dot(gradN, gradN.T) * detJ * W[qp]
133 # At the contribution to the elementwise heat load vector
134 LQe = LQe + Q * Dz * N(xi, eta) * ones((nnpe, 1)) * detJ * W[qp]

4.6 Example finite element program 117

The elementwise quantities are then assembled in precisely the same way as discussed before.

135 # Assemble elementwise conductivity matrix
136 for ro in range(len(zedof)):
137 for co in range(len(zedof)):
138 if (zedof[ro] < N_f) and (zedof[co] < N_f):
139 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
140 # Assemble the elementwise heat load vector
141 for ro in range(len(zedof)):
142 if (zedof[ro] < N_f):
143 Lg[zedof[ro]] = Lg[zedof[ro]] + LQe[ro]

The resulting system of equations is solved Tg = linalg.solve(Kg, Lg), and the results are
processed with a contour plot.

Despite the simplicity of this code, it can process a decent-sized mesh in a matter of seconds:
perhaps 20 seconds for 10,000 quadrilateral elements.

118 FEM for Thermal and Stress Analysis

4.7 Background, explanations, details

Box 14. Gauss Quadrature over an Interval

The numerical quadratures that are in common use with polynomial finite elements are the
Gauss rules. They are by now standard fare described in any number of textbooks (e.g. [3]). For
completeness we present a simple version of the logic of Gaussian quadrature rules below.

We will start by explaining the basic idea on the example of a one-point integration rule. The idea
is in fact common to a variety of quadrature rules: instead of the original function f(ξ) we integrate
an interpolation polynomial L(ξ) that passes through selected points on the function curve.

For our selected example, a one-point rule, we will consider an interpolating polynomial that
passes through a single point. Such a polynomial is a constant, L(ξ) = const = f(ξ1). The coordinate
ξ1 is the location of the integration point, and at this point it is unknown. We are now going to
formulate a condition from which to compute the optimal location of this integration point. The
function f(ξ) is integrated on the standard interval −1 ≤ ξ ≤ +1 numerically using the rule, with
M = 1, and ξ1 and W1 to be determined, as∫ +1

−1
f(ξ)dξ ≈

M∑
k=1

L(ξk)Wk = L(ξ1)W1

where the polynomial L interpolates at the integration point, L(ξ1) = f(ξ1). Since for the case the
given function is a constant, f(ξ) = C, we must have that∫ +1

−1
f(ξ)dξ = 2C = L(ξ1)W1 = f(ξ1)W1 = CW1 (4.26)

the weight of the integration point must be W1 = 2.
Next we will consider the location of the integration point. Our criterion will be to make the rule

as accurate as possible. In particular, if the given function is a polynomial of a certain degree the
integration rule should integrate it exactly. That means that the integral of the difference F (ξ) =
f(ξ)− L(ξ) must vanish∫ +1

−1
F (ξ)dξ = 0 (4.27)

Because L interpolates at the integration point, the difference F (ξ) assume value zero at the integra-
tion point, F (ξ1) = 0. This can be accomplished by writing F (ξ) as the product of two polynomials

F (ξ) = (ξ − ξ1)q(ξ) (4.28)

The first term, (ξ − ξ1), ensures that F (ξ1) = 0. What could the second term look like? Consider a
linear polynomial as an example

q(ξ) = Aξ +B

Substituting for F (ξ) we obtain for the integral (4.27)∫ +1

−1
F (ξ)dξ =

∫ +1

−1
(ξ − ξ1)(Aξ +B)dξ

If the above integral should become zero for arbitrary A and B∫ +1

−1
(ξ − ξ1)(Aξ +B)dξ = 0 ⇒ A

∫ +1

−1
(ξ − ξ1)ξdξ = 0 and B

∫ +1

−1
(ξ − ξ1)dξ = 0

4.7 Background, explanations, details 119

However since we have only ξ1 to play with, we cannot possibly make both
∫ +1

−1 (ξ − ξ1)ξdξ = 0 and∫ +1

−1 (ξ − ξ1)dξ = 0. Our guess of q(ξ) as a linear polynomial was too ambitious. We should have
picked a polynomial with a single unknown coefficient, q(ξ) = D (a constant polynomial). Then if
we substitute for F (ξ) in the integral (4.27) we obtain∫ +1

−1
F (ξ)dξ =

∫ +1

−1
(ξ − ξ1)Ddξ

which means the condition for ξ1 reads∫ +1

−1
(ξ − ξ1)dξ = 0

Therefore∫ +1

−1
(ξ − ξ1)dξ =

[
ξ2/2− ξξ1

]+1

−1 = −2ξ1 = 0 ⇒ ξ1 = 0

To summarize, the one-point Gauss quadrature rule is defined by the parameters ξ1 = 0 and W1 = 2.
It can exactly integrate a linear polynomial, as evident from the fact that it can exactly integrate
the polynomial (4.28).

Using the route introduced above leads to Gauss rules with an arbitrary number of points.
Table 4.2 lists three most common ones. For completeness: these are not the only Gauss rules that
are in use in the finite element methods. The rules we discussed here are the so-called open quadrature
rules since the endpoints of the interval are not included amongst the integration points.

We will expand on the above one-point rule derivation by determining the parameters of a two-
point Gauss quadrature rule. The goal is to integrate the function p(ξ) by integrating its interpolating
polynomial L(ξ). Interpolation conditions are satisfied at the quadrature points. We have to find
the location of the quadrature points ξ1, ξ2 so that the polynomial p(ξ)− L(ξ) becomes zero at the
quadrature points, and at the same time integrates to zero∫ +1

−1
p(ξ)− L(ξ) dx = 0

Consult the figure below– the red-filled areas must cancel:

We will tailor the Gauss rule to work well for polynomials. We will assume therefore that both p(ξ)
and L(ξ) are polynomials and therefore their difference is also going to be a polynomial

F (ξ) = p(ξ)− L(ξ)

It is important to realize that all such polynomials may be written as

F (ξ) = (ξ − ξ1)(ξ − ξ2)q(ξ)

The term (ξ−ξ1) makes sure that the interpolating condition holds at ξ1 since it guarantees F (ξ1) =
0. Similarly the term (ξ−ξ2) makes sure that the interpolating condition holds at ξ2. The remaining
term, q(ξ), is at this point arbitrary, but must satisfy

120 FEM for Thermal and Stress Analysis∫ +1

−1
F (ξ) dx = 0

In order to make this happen we can choose the locations of the quadrature points. Since we have
two quadrature points, we need exactly two equations. Such equations will materialize if we choose
q(ξ) = Aξ +B as∫ +1

−1
F (ξ) dx =

∫ +1

−1
(ξ − ξ1)(ξ − ξ2)q(ξ) dx =

∫ +1

−1
(ξ − ξ1)(ξ − ξ2)(Aξ +B) dx = 0

means that because A and B are arbitrary we obtain two equations∫ +1

−1
(ξ − ξ1)(ξ − ξ2)ξ dx = 0 ,

∫ +1

−1
(ξ − ξ1)(ξ − ξ2) dx = 0

that have to be satisfied at the same time. These two equations can be solved for the locations of
the quadrature points. The two integrals are evaluated using symbolic manipulation in Python with
the sympy module: first we obtain the indefinite integrals

I1 = sympy.integrate((xi-xi1)*(xi-xi2), xi)
I2 = sympy.integrate(xi*(xi-xi1)*(xi-xi2), xi)

which become expressions in the unknowns xi1, xi2 upon evaluation of these integrals between
the limits −1 ≤ ξ ≤ +1.

I1v = I1.subs(xi, +1) - I1.subs(xi, -1)
I2v = I2.subs(xi, +1) - I2.subs(xi, -1)

The integrals are set equal to zero and the resulting system of equations is solved for the locations
of the quadrature points:

solution = sympy.solve([I1v, I2v], xi1, xi2)
print(solution)

which gives

[(-sqrt(3)/3, sqrt(3)/3), (sqrt(3)/3, -sqrt(3)/3)]

Evidently the locations of the quadrature points are ξ1 = − 1√
3

and ξ2 = + 1√
3
. (The other solution

switches these two variables, but otherwise it has the same meaning.)
The weights of the two-point Gauss rule can now be determined so that when the original

function p(ξ) and the interpolating function L(ξ) are one and the same function, the numerical
integral comes out exact. Since the interpolating function is determined by two points, p(ξ) must be
a linear polynomial (Aξ +B). Therefore we require that the exact integral of such a function∫ +1

−1
(Aξ +B) dx = 2B

is identically reproduced by the numerical quadrature rule∫ +1

−1
(Aξ +B) dx ≈ (Aξ1 +B)W1 + (Aξ2 +B)W2 = 2B

Therefore we need

Aξ1W1 +Aξ2W2 = 0 =⇒W1 = W2

and

BW1 +BW2 = 2B =⇒W1 +W2 = 2

Hence we conclude W1 = W2 = 1. In summary, we obtain the following table for the two-point
Gauss rule:

4.7 Background, explanations, details 121

k ξk Wk

1 − 1√
3

1

2 + 1√
3

1

Since we have shown that the integration is exact for the difference of the interpolated and inter-
polating function being F (ξ) = (ξ − ξ1)(ξ − ξ2)q(ξ) = (ξ − ξ1)(ξ − ξ2)(Aξ + B), which is a cubic
polynomial, the two-point Gauss rule is exact for constant, linear, quadratic, and cubic polynomials.

Rule Coordinates ξj Weights Wj Integrates exactly

1-point 0 2 linear polynomial

2-point
−
√

1/3

+
√

1/3

1
1

cubic polynomial

3-point
−
√

3/5
0

+
√

3/5

5/9
8/9
5/9

quintic polynomial

Table 4.2. Gauss quadrature rules

End Box 14

Box 15. Gauss integration over quadrilaterals

In this section we will extend the one-dimensional Gaussian integration rule for the standard

interval to work for two-dimensional integration on the standard square. See Box 14 The solution
can be best explained with a picture: call for Figure 4.1 for the standard bi-unit square (−1 ≤ ξ ≤
+1 and −1 ≤ η ≤ +1). The integration over the square may be split into two one-dimensional
integrations as∫ +1

−1

∫ +1

−1
f(ξ, η) dξdη =

∫ +1

−1

(∫ +1

−1
f(ξ, η) dη

)
dξ

or, ∫ +1

−1

∫ +1

−1
f(ξ, η) dξdη =

∫ +1

−1

(∫ +1

−1
f(ξ, η) dξ

)
dη

The one-dimensional Gaussian rule may be applied to the outer integral∫ +1

−1

(∫ +1

−1
f(ξ, η) dξ

)
dη ≈

M∑
k=1

(∫ +1

−1
f(ξ, ηk) dξ

)
Wk

Now each of the integrals
∫ +1

−1 f(ξ, ηk) dξ may be evaluated with a numerical rule, possibly a different
one from the one used above. Normally there is no reason to choose a different numerical rule, and
therefore we can write∫ +1

−1
f(ξ, ηk) dξ ≈

M∑
j=1

f(ξj , ηk)Wj

122 FEM for Thermal and Stress Analysis

Substituting of the latter approximation into the former yields∫ +1

−1

(∫ +1

−1
f(ξ, η) dξ

)
dη ≈

M∑
k=1

M∑
j=1

f(ξj , ηk)WjWk

Two-and three-dimensional Gaussian rules may be written as one-dimensional tables, exactly as
for one-dimensional Gaussian rules, by listing the quadrature points and their weights as follows:
the coordinates of the quadrature points are composed as tensor products of the coordinates of
the one-dimensional rules, and the corresponding weights are the products of the weights of the
one-dimensional rules. For instance, one-point rule in one dimension

One-point one-dimensional rule
j Coordinates ξj Weights Wj

1 0 2

yields a one-point rule in two dimensions,

One-point two-dimensional rule
j Coordinates ξj , ηj Weights Wj

1 0, 0 2× 2 = 4

and two-point rule in one dimension

Two-point one-dimensional rule
j Coordinates ξj Weights Wj

1 −
√

1/3 1

2 +
√

1/3 1

gives the four-point rule in two dimensions

Four-point two-dimensional rule
j Coordinates ξj , ηj Weights Wj

1 −
√

1/3,−
√

1/3 1× 1 = 1

2 −
√

1/3,+
√

1/3 1× 1 = 1

3 +
√

1/3,−
√

1/3 1× 1 = 1

4 +
√

1/3,+
√

1/3 1× 1 = 1

The numerical integration rule can therefore be expressed using a single summation as∫ +1

−1

(∫ +1

−1
f(ξ, η) dξ

)
dη ≈

M2∑
q=1

f(ξq, ηq)Wq . (4.29)

Figure 4.8 illustrates the above two-dimensional Gauss integration rule tables graphically. Higher-

Fig. 4.8. Illustration of the relationship of one-dimensional Gaussian integration rules and two-dimensional
rules on quadrilaterals.

order Gaussian integration rules would be derived entirely analogously.

End Box 15

4.8 Code listings

pnpQuadAB.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 #
5 """
6 A single quadrilateral element of rectangular shape. Elementwise
7 conductivity matrix. Evaluated symbolically with numerical quadrature.
8 """
9

10 from sympy import symbols, simplify, Matrix, det
11

12 # Define the basis function matrix
13 xi, eta = symbols(’xi eta’)
14 N = Matrix([(xi-1)*(eta-1)/4,
15 (xi+1)*(eta-1)/-4,
16 (xi+1)*(eta+1)/4,
17 (xi-1)*(eta+1)/-4]).reshape(4,1)
18 print(N)
19

20 #Define geometry
21 A, B = symbols(’A, B’)
22 x = Matrix([[A, B], [0, B], [0, 0], [A, 0]])
23

24 # Differentiate to obtain the Basis function gradients
25 gradNpar = diff(N, ’xi’).row_join(diff(N, ’eta’))
26 print(gradNpar)
27

28 # Compute the Jacobian matrix
29 J = x.T*gradNpar
30 print(simplify(J))
31 # The Jacobian
32 Jac = det(J)
33 print(Jac)
34

35 # The gradient of the basis functions with respect to x,y is a
36 # symbolic expression which needs to be evaluated for particular values of
37 # xi,eta
38 gradN = simplify(gradNpar*(J**-1))
39 print(gradN)
40

41 # We introduce the the thermal
42 # conductivity and the thickness of the slice, as symbolic variables.
43 kap, Dz = symbols(’kap, Dz’)
44

45 # Note that using subs() will substitute the values of the parametric
46 # coordinates. The Jacobian and the material properties and the thickness
47 # of the slice are assumed constant and hence are not included in this sum.
48 # The weights of the for quadrature points are all 1.0.
49 # The formula (4.13) will be recognizable in the following lines.
50 gN = gradN.subs(xi, -0.577350269189626).subs(eta, -0.577350269189626)
51 K1 = kap*Dz*Jac*gN*gN.T # term 1 of the sum
52 gN = gradN.subs(xi, -0.577350269189626).subs(eta, +0.577350269189626)
53 K2 = kap*Dz*Jac*gN*gN.T # term 2 of the sum
54 gN = gradN.subs(xi, +0.577350269189626).subs(eta, -0.577350269189626)

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpQuadAB.py

124 FEM for Thermal and Stress Analysis

55 K3 = kap*Dz*Jac*gN*gN.T # term 3 of the sum
56 gN = gradN.subs(xi, +0.577350269189626).subs(eta, +0.577350269189626)
57 K4 = kap*Dz*Jac*gN*gN.T # term 4 of the sum
58

59 K = simplify(K1+K2+K3+K4)
60 print(K)
61

62 print(K.eigenvals())

Listing 4.1. pnpQuadAB.py

pnpConcreteColumn1Q4.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 #
5 """
6 Concrete column with temperature boundary condition. Finite element mesh
7 that consists of a single four-node quadrilateral.
8 """
9

10 import math
11 from numpy import array as array
12 from numpy import zeros as zeros
13 from numpy import arange as arange
14 from numpy import dot as dot
15 from numpy import linalg as linalg
16

17 ##
18 # Evaluate for a given data
19 a = 2.5 # radius of the column
20 b = a * math.sin(15 / 180 * math.pi) # dimension
21 h = a * math.cos(15 / 180 * math.pi) # dimension
22 Q = 4.5 # internal heat generation rate
23 k = 1.8 # thermal conductivity
24 Dz = 1.0 # thickness of the slice
25 x = array([[0, 0], [h, -b], [a, 0], [h, b]]) # Coordinates of nodes
26

27 ##
28 # Define a little function to calculate the gradient of the basis functions
29 # in the parametric coordinates.
30

31

32 def gradNpar(xi, eta):
33 """
34 A one-liner to calculate the matrix of the basis function gradients
35 in the parametric coordinates.
36 """
37 return array([
38 [eta / 4 - 1. / 4, xi / 4 - 1. / 4],
39 [1. / 4 - eta / 4, - xi / 4 - 1. / 4],
40 [eta / 4 + 1. / 4, xi / 4 + 1. / 4],
41 [- eta / 4 - 1. / 4, 1. / 4 - xi / 4]])
42

43 # The expressions actually come from the following symbolic code:
44 #xi,eta = symbols(’xi eta’)
45 #N=Matrix([(xi-1)*(eta-1)/4, (xi+1)*(eta-1)/-4, (xi+1)*(eta+1)/4, (xi-1)*(eta+1)

/-4])

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpConcreteColumn1Q4.py

4.8 Code listings 125

46 # N=N.reshape(4,1)
47 # gradNpar=diff(N,’xi’).row_join(diff(N,’eta’))
48 # print(gradNpar)
49

50 ##
51 # These are the integration point data
52 xe = array([[-0.577350269189626, -0.577350269189626],
53 [-0.577350269189626, +0.577350269189626],
54 [+0.577350269189626, -0.577350269189626],
55 [+0.577350269189626, +0.577350269189626]])
56 W = array([1, 1, 1, 1])
57

58 ##
59 # Initialize the elementwise conductivity matrix.
60 Ke = zeros((4, 4))
61 ##
62 # Loop over the quadrature points.
63 for qp in arange(xe.shape[0]):
64 xi = xe[qp, 0]
65 eta = xe[qp, 1]
66 # Compute the Jacobian matrix
67 J = dot(x.T, gradNpar(xi, eta))
68 # The Jacobian
69 detJ = linalg.det(J)
70 # The gradient of the basis functions with respect to x,y
71 gradN = dot(gradNpar(xi, eta), linalg.inv(J))
72 # Add the contribution to the conductivity matrix
73 Ke = Ke + k * Dz * dot(gradN, gradN.T) * detJ * W[qp]
74

75 print(Ke)
76

77 ##
78 # We will find it convenient to define a little function to evaluate the
79 # basis function values at a given quadrature point location.
80

81

82 def N(xi, eta):
83 """
84 A one-liner to calculate the matrix of the basis function values.
85 """
86 return array([(xi - 1) * (eta - 1) / 4,
87 (xi + 1) * (eta - 1) / -4,
88 (xi + 1) * (eta + 1) / 4,
89 (xi - 1) * (eta + 1) / -4]).reshape(4, 1)
90

91 ##
92 # Initialize the elementwise heat-load vector .
93 Le = zeros((4, 1))
94 ##
95 # Loop over the quadrature points.
96 for qp in arange(xe.shape[0]):
97 xi = xe[qp, 0]
98 eta = xe[qp, 1]
99 # Compute the Jacobian matrix

100 J = dot(x.T, gradNpar(xi, eta))
101 # The Jacobian
102 detJ = linalg.det(J)
103 # Add the contribution to the heat load vector

126 FEM for Thermal and Stress Analysis

104 Le = Le + Q * Dz * N(xi, eta) * detJ * W[qp]
105

106 print(Le)
107

108 # Global system matrix and global load vector
109 K = Ke
110 L = Le
111

112 ##
113 # The solution vector consists of all zeros, except in the first entry.
114 T = zeros((4, 1))
115 # Solve the global equations
116 T[0] = (1 / K[0, 0]) * L[0]
117 print(’T_1 = ’, T[0])
118

119 #
120 # Now we will postprocess to extract the heat flux vectors at the
121 # quadrature points.
122 ##
123 # Loop over the quadrature points.
124 for qp in arange(xe.shape[0]):
125 xi = xe[qp, 0]
126 eta = xe[qp, 1]
127 # Compute the location of the quadrature point
128 qploc = dot(N(xi, eta).T, x)
129 # Compute the Jacobian matrix
130 J = dot(x.T, gradNpar(xi, eta))
131 # The gradient of the basis functions with respect to x, y
132 gradN = dot(gradNpar(xi, eta), linalg.inv(J))
133 # Compute the gradient of temperature
134 gradT = dot(T.T, gradN)
135 # Heat flux vector
136 q = -k * gradT.T
137 print(’Heat flux at’, qploc, ’ = ’, q)

Listing 4.2. pnpConcreteColumn1Q4.py

IntegrEffectQ4.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 #
5 """
6 Square domain with partial temperature boundary condition
7 and partial insulated boundary condition. Finite element mesh
8 that consists of four-node quadrilaterals.
9 """

10

11 import math
12 from numpy import array, zeros, ones, arange, linspace
13 from numpy import unique, dot, linalg
14 import matplotlib.pyplot as plt
15 from matplotlib import cm
16 from mpl_toolkits.mplot3d import Axes3D
17

18 import time
19

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/IntegrEffectQ4.py

4.8 Code listings 127

20 tstart = time.clock()
21

22 # Input parameters
23 kappa = 0.2 # thermal conductivity
24 Q = 0.005 # uniform heat source
25 sidel = 48 # length of the side of the square domain
26 nes = 18 # number of elements per side
27 Dz = 1.0 # thickness of the slice
28

29 # Generate the nodes and the connectivities of the quadrilaterals
30 xs = linspace(0, sidel, nes+1) # grid in the X direction
31 ys = linspace(0, sidel, nes+1) # grid in the Y direction
32 nx = len(xs) - 1 # number of element edges in the X direction
33 ny = len(ys) - 1 # number of element edges in the Y direction
34 nnodes = (nx+1) * (ny+1) # Number of nodes
35 nfes = nx * ny # Number of elements
36

37 # Generate the nodes
38 x = zeros((nnodes, 2)) # Coordinates of nodes: initialized to all zeros
39 k = 0
40 for j in arange(0, (ny+1)):
41 for i in arange(0, (nx+1)):
42 x[k, :] = [xs[i], ys[j]]
43 k = k + 1
44

45 # Generate the elements: note that the nodes are numbered from 1
46 conn = zeros((nfes, 4), dtype=int)
47 k = 0
48 for i in arange(0, (nx)):
49 for j in arange(0, (ny)):
50 f = int(j * (nx+1) + i) + 1
51 conn[k, :] = [f, f+1, f+(nx+1)+1, f+(nx+1)]
52 k = k + 1
53

54 # Define the degrees of freedom
55 # Fixed temperature at the nodes on the boundary, except for a few
56 # in the lower-left corner. The node numbers are one-based
57 Fixed = [int(i)+1 for i in arange(nx/2, nx+1)]
58 Fixed = Fixed + [int(j*(nx+1))+1 for j in arange(ny/2, ny+1)]
59 Fixed = Fixed + [int(i+ny*(nx+1))+1 for i in arange(0, nx+1)]
60 Fixed = Fixed + [int(j*(nx+1)+ny)+1 for j in arange(0, ny+1)]
61 Fixed = unique(Fixed)
62

63 dof = zeros((nnodes,1), dtype=int)
64 N_f = nnodes-len(Fixed)
65 # Number the degrees of freedom: First we will number the prescribed
66 # degrees of freedom starting from the number of free degrees of freedom
67 k = N_f # first we number the prescribed degrees of freedom
68 for index in Fixed:
69 dof[index-1] = k+1 # the DOF are 1-based
70 k = k + 1
71 k = 0 # next we number the free degrees of freedom
72 for index in range(0, nnodes):
73 if (dof[index] == 0):
74 dof[index] = k+1 # the DOF are 1-based
75 k = k + 1
76

77

128 FEM for Thermal and Stress Analysis

78 def gradNpar(xi, eta):
79 """
80 A one-liner to calculate the matrix of the basis function gradients
81 in the parametric coordinates.
82 """
83 return array([
84 [eta / 4 - 1. / 4, xi / 4 - 1. / 4],
85 [1. / 4 - eta / 4, - xi / 4 - 1. / 4],
86 [eta / 4 + 1. / 4, xi / 4 + 1. / 4],
87 [- eta / 4 - 1. / 4, 1. / 4 - xi / 4]])
88

89 def N(xi, eta):
90 """
91 A one-liner to calculate the matrix of the basis function values.
92 """
93 return array([(xi - 1) * (eta - 1) / 4,
94 (xi + 1) * (eta - 1) / -4,
95 (xi + 1) * (eta + 1) / 4,
96 (xi - 1) * (eta + 1) / -4]).reshape(4, 1)
97

98 # These are the integration point data for four-point quadrature rule
99 xe = array([[-0.577350269189626, -0.577350269189626],

100 [-0.577350269189626, +0.577350269189626],
101 [+0.577350269189626, -0.577350269189626],
102 [+0.577350269189626, +0.577350269189626]])
103 W = array([1, 1, 1, 1])
104

105 # These are the integration point data for one-point quadrature rule
106 #xe = array([[+0., +0]])
107 #W = array([4.0])
108

109 Kg = zeros((N_f, N_f))
110 Lg = zeros((N_f, 1))
111

112 nnpe = conn.shape[1] # number of nodes per element
113 zconn = conn - 1
114 for index in arange(conn.shape[0]):
115 # Element degree-of-freedom array, converted to zero base
116 zedof = dof[zconn[index, :]]-1
117 # Initialize the elementwise conductivity matrix.
118 Ke = zeros((nnpe, nnpe))
119 # Initialize the elementwise heat load vector
120 LQe = zeros((nnpe, 1))
121 # Loop over the quadrature points.
122 for qp in range(xe.shape[0]):
123 xi, eta = xe[qp, 0], xe[qp, 1]
124 lx = x[zconn[index, :], :]
125 # Compute the Jacobian matrix
126 J = dot(lx.T, gradNpar(xi, eta))
127 # The Jacobian
128 detJ = linalg.det(J)
129 # The gradient of the basis functions with respect to x,y
130 gradN = dot(gradNpar(xi, eta), linalg.inv(J))
131 # Add the contribution to the conductivity matrix
132 Ke = Ke + kappa * Dz * dot(gradN, gradN.T) * detJ * W[qp]
133 # At the contribution to the elementwise heat load vector
134 LQe = LQe + Q * Dz * N(xi, eta) * ones((nnpe, 1)) * detJ * W[qp]
135 # Assemble elementwise conductivity matrix

4.8 Code listings 129

136 for ro in range(len(zedof)):
137 for co in range(len(zedof)):
138 if (zedof[ro] < N_f) and (zedof[co] < N_f):
139 Kg[zedof[ro], zedof[co]] = Kg[zedof[ro], zedof[co]] + Ke[ro, co]
140 # Assemble the elementwise heat load vector
141 for ro in range(len(zedof)):
142 if (zedof[ro] < N_f):
143 Lg[zedof[ro]] = Lg[zedof[ro]] + LQe[ro]
144

145 # Solve for the global temperatures at the free degrees of freedom
146 Tg = linalg.solve(Kg, Lg)
147

148 tend = time.clock()
149 print(’Time =’, tend-tstart)
150

151 print(’Tg=’, Tg)
152

153 # Set up an array of the temperatures at all the degrees of freedom
154 T = zeros((nnodes, 1))
155 T[0:N_f] = Tg # insert the computed values of the free degrees of freedom
156

157 # Plot contours
158 plt.figure()
159 plt.gca().set_aspect(’equal’)
160 # setup three 1-d arrays for the x-coordinate, the y-coordinate, and the
161 # z-coordinate
162 xs = x[:, 0].reshape(nnodes,) # one value per node
163 ys = x[:, 1].reshape(nnodes,) # one value per node
164 ix = dof[arange(nnodes)] - 1
165 zs = (T[ix]).reshape(nnodes,) # one value per node
166 triangles = conn[:, (0, 1, 2)] - 1 # the triangles are defined by the

connectivity arrays
167 plt.tricontour(xs, ys, triangles, zs, linewidths=3)
168 triangles = conn[:, (0, 2, 3)] - 1 # the triangles are defined by the

connectivity arrays
169 plt.tricontour(xs, ys, triangles, zs, linewidths=3)
170 plt.colorbar()
171 plt.title(’Contour plot of temperature’)
172 plt.xlabel(’x (m)’)
173 plt.ylabel(’y (m)’)
174 plt.show()

Listing 4.3. IntegrEffectQ4.py

5

FEA for 2-D Stress Analysis

In this chapter we will consider the finite element method applied to linear static stress analysis. Since
the degrees of freedom now represent the components of displacement at the node, all the expressions
become much more tedious to work with: the dimensions of the matrices increase significantly. This
is especially true in three dimensions, which is why in this chapter we will discuss models that are
formulated in two coordinates only. There are three such models: plane stress, plane strain, and
axially symmetric. For simplicity we will start with plane stress; the plane strain model will follow
naturally from our findings. The axially symmetric model differs from the first two in some respects,
and needs a separate discussion.

Fig. 5.1. Sample geometry: when the part is loaded so that the deformation results in the stresses σx, σy, τxy
that are uniform throughout the thickness (in the Z direction), we have the so-called plane-stress conditions

5.1 Bracket plane-stress model

Figure 5.1 is intended to motivate the development of the plane-stress model. Consider a metal
bracket manufactured out of a sheet of metal and spot-welded to another structure. The bracket is
loaded as indicated by the arrows, and it deforms. While some deformation occurs out of the plane of

132 FEM for Thermal and Stress Analysis

the sheet of metal, it is insignificant compared to the in-plane deformation. Importantly, the nonzero
stresses are limited to the in-plane normal stresses σx and σy and the shear stress τxy; the other
stresses are negligible. This suggests modeling only the in-plane deformations in the two coordinates
x, y, and with suitable assumptions that are discussed in detail in Box 19 one can formulate the

so-called plane stress model. See Box 19
The geometry is now described as a plane figure, for instance as in Figure 5.2. We limit ourselves

initially to static deformation, without thermal effects. The balance equation is written in terms of
the three in-plane stresses and the components of the body load bx, by

∂σx
∂x

+
∂τxy
∂y

+ bx = 0

∂σy
∂y

+
∂τxy
∂x

+ by = 0 .
(5.1)

This can be helpfully rewritten using an important matrix that is central to stress analysis: the
strain-displacement (“symmetric gradient”) matrix

[B] =

∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

 . (5.2)

It consists of partial-derivative operators, and when it is multiplied with a displacement vector on
the right, it differentiates its components to produce strains. Its transpose is the so-called divergence,

[B]T =

[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

]
. (5.3)

and with its help we can rewrite the balance equation as follows

[B]T [σ] + [b] = [0] (5.4)

where we have arranged the stress components in vector form as

[σ] =

 σxσy
τxy

 (5.5)

The stress is generated by elastic strains, and since we neglect thermal effects the elastic strains
are equal to the total strains

[σ] = [D] [ε] . (5.6)

To begin, we consider an isotropic material, and for the plane-stress model the material stiffness
matrix reads:

[D] =
E

(1− ν2)

 1 ν 0
ν 1 0

0 0
1− ν

2

 , (5.7)

where E is the Young’s modulus, and ν is the Poisson ratio.
The total strains are also arranged as a vector

[ε] =

 εx
εy
γxy

 (5.8)

and are computed from the displacement components

5.1 Bracket plane-stress model 133

[u] =

[
ux
uy

]
(5.9)

as

[ε] = [B][u] . (5.10)

Now we can substitute for the stresses in the balance equation

[B]T ([D] [ε]) + [b] = [0] (5.11)

and subsequently also for the strains

[B]T ([D] [B][u]) + [b] = [0] (5.12)

and we obtain two coupled partial differential equations for the two displacement components ux
and uy.

In order to solve these two partial differential equations uniquely we need boundary conditions.
As for the heat conduction problem, a boundary condition needs to be specified along the entire
surface of the modeled domain. In Figure 5.2 the surface consists of all the boundary segments
along the circumference and the two circles for the holes inside. Complicating factor number one
is that there are now two coupled variables: consequently two boundary conditions are now needed
at all points of the boundary. Complicating factor number two is that because we are prescribing
components of a vector, we must say in which coordinate system this is done, and sometimes for
convenience, sometimes out of necessity, we have to use different coordinate systems for different
parts of the boundary.

X

Y

Z

Fig. 5.2. Definition of the geometry of the bracket in two dimensions. Note that we are assuming here the
thickness t in the third dimension to be constant across the entire domain.

The boundary conditions are expressed in terms of the displacement (the essential boundary con-
dition) or in terms of the traction (the natural boundary conditions). The displacement component
us, s = x, y is prescribed on the part of the boundary Cu,s (we write Cu,s because the boundary
surface is in the two-dimensional picture represented by a piece of a Curve)

us(x) = us(x), x on Cu,s , (5.13)

and traction component ts, s = x, y is prescribed on the part of the boundary Ct,s

ts(x) = ts(x), x on Ct,s . (5.14)

The traction on a piece of boundary surface with outer normal n is related to the stress existing in
the solid at that point by the formula

134 FEM for Thermal and Stress Analysis[
Pn(x)σ(x)

]
s

= ts(x), (5.15)

where the matrix “vector-stress vector dot product” operator is defined as

Pn =

[
nx 0 ny
0 ny nx

]
. (5.16)

With these pieces of information about the boundary conditions in the plane-stress analysis we
can compare usefully with the heat conduction model from the previous chapters:

The boundary condition expressed in terms of the displacement component is equiva-
lent to prescribed temperature; the boundary condition expressed in terms of the heat
flux component normal to the boundary is equivalent to prescribed traction compo-
nent. This is well worth understanding: temperature and displacement are equivalent
quantities, and heat flux and stress are equivalent quantities.

For the bracket of Figure 5.2 the boundary conditions are relatively simple to describe—refer to
Figure 5.3. In Figure 5.3(a) the thick-line highlighted part of the boundary is where we prescribe
traction components. The ty component is zero along this entire part of the boundary, and the tx
component is zero everywhere along the boundary except for the segment GA, where it is prescribed
as nonzero. Figure 5.3(b) shows that the displacement components are both prescribed along the

Abaqus
- CAE file

circles that represents the holes, ux = uy = 0 (clamped or “encastré” condition).

X

Y

Z X

Y

Z

(a) (b)

Fig. 5.3. Partitioning of the surface of the bracket for the application of the boundary conditions. (a)
Part of the boundary where both traction components are prescribed. (b) Part of the boundary where both
displacement components are prescribed.

There is a simple systematic way (algorithm) for applying boundary conditions in stress analysis.
It relies on the simple observation that at any given point of the boundary for each of the components
s = x, y one of the quantities us and ts, must be known and the other one must be unknown. The
key is to choose an appropriate coordinate system in which to work. Often such a system will
have orientation that places one of the coordinate directions normal to the surface. For each of the
coordinate directions s = x, y then do:

1. Select an appropriate coordinate system.
2. Consider both us and ts: If one of these is known (prescribed), the boundary condition is decided;

otherwise if one of these is definitely unknown, the other one must be known, and if not explicitly
given then it will be equal to zero.

3. If the decision could not be reached above, restart from the top and select a different coordinate
system.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/bracket-plane-stress-2d.cae

5.2 Bookkeeping for plane stress FE models 135

As an example, consider the circular arc FG in Figure 5.3. The appropriate coordinate system
in this case will be in a cylindrical coordinate system with origin at the center of the arc. Since
the surface of the arc is not loaded by externally applied tractions, we know that the appropriate
boundary condition is tn = tm = 0 (where n corresponds to the normal direction, and m is the
tangential direction to the circle). The same boundary condition can be derived by considering the
displacements of the points along the circular arc FG. Since we do not know how the points along
this arc displace (i.e. the displacement components un and um are unknown), we must know the
traction components, and since they are not explicitly given we must have tn = tm = 0.

5.2 Bookkeeping for plane stress FE models

It is necessary to start the discussion of the finite element model by gaining some understanding
of what it means to have two degrees of freedom per node in the stress analysis model. Figure 5.4
shows a very small finite element model with four nodes and two elements, where three of the nodes
are supported by rollers. As for the heat conduction model, the unknown (free) degrees of freedom
will be numbered first, followed by the known (fixed, prescribed) degrees of freedom. Application of
a roller at a node means that the degree of freedom restrained by the roller is a known quantity,
either zero if the roller is immovable, or a nonzero value to which the roller makes the node displace
orthogonally to the rolling direction. So starting with the y-component of the displacement at node
3, which is the degree of freedom 1 called U1, and ending with U8, the eight degrees of freedom are
numbered. This information is conveniently recorded in a table:

Node x DOF y DOF
1 3 2
2 5 7
3 6 1
4 4 8

We are discussing here the so-called point supports applied at the nodes. This is a
subtle subject that will be dealt with later: be aware that some point supports can
cause the solution not to be meaningful!

The bookkeeping now requires that we produce a degree of freedom number by providing the
node number and in which direction the degree of freedom acts. The scheme adopted here denotes

(j, r) = degree of freedom number at node j in the direction r (5.17)

where the direction r is either x or y. For example, (3, x) yields 6. All of this is needed because there
is no longer a one-to-one correspondence between nodes and degrees of freedom: there are twice as
many degrees of freedom as there are nodes.

Next we introduce the finite element expression for the displacement. At any point on the mesh
we can write the displacement vector as

[u] =

N∑
j=1

Nj [uj] (5.18)

where [uj] is the displacement vector at node j, that is the vector that consists of the two degrees
of freedom at node j

[uj] =

[
u(j,x)
u(j,y)

]
. (5.19)

We will use the notation [ui]s to refer to the sth entry of the vector [ui] (where s = x or s = y).

136 FEM for Thermal and Stress Analysis

Let us now use (5.18) to compute strain. By definition (5.10)

[ε] = [B][u] = [B]

N∑
j=1

Nj [uj] =

N∑
j=1

[B(Nj)][uj] =

N∑
j=1

[Bj][uj] (5.20)

The nodal strain-displacement matrices [Bj] are the result of applying the strain-displacement ma-
trix of partial derivatives B of (5.2) to a basis function

[Bj] = [B(Nj)] . (5.21)

Explicitly spelled out

[Bj] =

∂Nj
∂x

0

0
∂Nj
∂y

∂Nj
∂y

∂Nj
∂x

. (5.22)

In words, the strain displacement matrices [Bj] consist of the components of the gradients of the
basis functions. The term [Bj][uj] is the contribution of the displacement at node j to the strain at
a given point within the element.

Fig. 5.4. Plane-stress FE model. Two-element mesh with four nodes. Three roller supports take away three
fixed degrees of freedom (U6, U7, and U8), leaving five free degrees of freedom in the model, Uj , j = 1, ..., 5.

5.3 Weighted residual equation for plane stress

The expression (5.18) is the trial function. The test function will be again one basis function at a
time. With the trial and test functions at hand we are ready to formulate the weighted residual
equation. The WR equation is presented here as a simplified version of the one derived for a fully

three-dimensional analysis: See Box 21 .
For each free degree of freedom (j, r), i.e. for 1 ≤ (j, r) ≤ Nf , where j is a node number and

r = x, y there will be one force-balance equation

N∑
(i,s)=1

∫
S

[
[Bj]

T [D][Bi]
]
rs
tdS[ui]s −

∫
S

Nj [b]r tdS −
∫
Ct,r

Njtr tdC = 0 , (5.23)

where the essential boundary conditions imply for the fixed degrees of freedom

[ui]s = [ui]s node i on Cu,s and s = x or y . (5.24)

Here [ui]s = U(i,s) is unknown if 1 ≤ (i, s) ≤ Nf ; otherwise [ui]s = U(i,s) represents a known
displacement at the node i in the direction s.

5.4 Elementwise quantities for the three-node triangle 137

The notation of the degree of freedom number as (j, r) is introduced because each node
carries two degrees of freedom: we need to distinguish between the two, and therefore
some form of discriminating between the x−component and the y−component of the
displacement at the node j is a necessity. The present form (j, r) is one possibility:
(j, 1) (or, alternatively, (j, x)) is the degree of freedom in the first (x) direction and so
on.

The WR equations for the heat conduction could be written in an alternative form using the
map from the node number to the DOF number, (·) as shown in one of the boxes in this chap-

ter. See Box 26 Which way is right? Both are correct, and which one gets used is purely a matter
of convenience and expediency.

The first term may be separated by splitting away known degrees of freedom

Nf∑
(i,s)=1

∫
S

[
[Bj]

T [D][Bi]
]
rs
tdS[ui]s +

N∑
(i,s)=Nf+1

∫
S

[
[Bj]

T [D][Bi]
]
rs
tdS[ui]s

−
∫
S

Nj [b]r tdS −
∫
Ct,r

Njtr tdC = 0

(5.25)

The first term will result in a square stiffness matrix multiplied with the vector of the unknown
displacement degrees of freedom; the second term will result in the contribution to the load vector
due to the prescribed (known) displacement degrees of freedom (i.e.the support-settlement load);
the third and fourth term are contributions to the load vector due to the known body load and
traction loads on the boundary.

The meaning of any of the equations (5.25) is the balance of forces. For each free degree of freedom
(j, r) we have the sum of forces acting on node j in the direction r. The finite element method really
is nothing else but a clever scheme of lumping the response of the continuous structure and the
continuous applied loads into discrete springs and concentrated forces. We will discuss this in detail
in Section 6.8.

5.4 Elementwise quantities for the three-node triangle

The elementwise expressions on the three-node triangle are expressed in terms of the displacements
of the three nodes

[u1] =

[
u(1,x)
u(1,y)

]
=

[
U1

U2

]
, [u2] =

[
u(2,x)
u(2,y)

]
=

[
U3

U4

]
, [u3] =

[
u(3,x)
u(3,y)

]
=

[
U5

U6

]
, (5.26)

which should be correlated with Figure 5.5. The notation makes clear that there are 6 DOFs on the
triangle.

5.4.1 Strains from displacements

First we will develop some understanding of the actions of the strain-displacement matrices. We will
consider a simple example of a single finite element shown in Figure 5.6. The locations of the nodes

Python
- script

and the definition of the connectivity of the triangle are

xall= array([[-1, -1/2], [3, 2], [1, 2]]) #Coordinates of the nodes
conn= [1,2,3] # The definition of the element, listing its nodes

The gradients of the basis functions are computed precisely as in Chapter 3 in the heat conduction
model:

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpT3strains.py

138 FEM for Thermal and Stress Analysis

Fig. 5.5. Element degrees of freedom for the three node triangle (T3)

gradNpar= array([[-1,-1], [1,0], [0,1]])#Grads of basis fncs wrt param. coords
zconn=array(conn)-1
x=xall[zconn,:] # The coordinates of the three nodes
J=dot(x.T, gradNpar) # Compute the Jacobian matrix
gradN=dot(gradNpar, linalg.inv(J))

which gives for the gradients of the basis functions

array([[0. , -0.4],
[0.5, -0.4],
[-0.5, 0.8]])

x

-1 0 1 2 3

y

-1

0

1

2

Fig. 5.6. The geometry of the single-element mesh

The general expression (5.20) for the computation of the strains is specialized to the three-node
triangle as

[ε] = [B1][u1] + [B2][u2] + [B3][u3] (5.27)

where the three nodal strain-displacement matrices are calculated from the gradients of the basis
functions (see (5.22)) by defining a little helper Python function

def Bn(gradNn):
return array([[gradNn[0], 0],

[0, gradNn[1]],
[gradNn[1], gradNn[0]]])

5.4 Elementwise quantities for the three-node triangle 139

Here gradNn is a 1 × 2 array of the components of the basis function gradients: gradNn[0] means
derivative ∂Nn/∂x and gradNn[1] corresponds to derivative ∂Nn/∂y. Let us inspect the strains
that are produced by the motion of each of the three nodes individually (one moves, the other two
stay fixed). For node 1 we obtain (gradN[0,:] is the gradient of the first basis function) using
B1=Bn(gradN[0,:])

array([[0. , 0.],
[0. , -0.4],
[-0.4, 0.]])

Note the strains we get when this strain-displacement matrix is multiplied with u(1,x), in the first
column and u(1,y) in the second column:

εx = 0 , εy = −0.4u(1,y) , γxy = −0.4u(1,x) (5.28)

The x displacement of node 1 produces only shear strain, and in particular no strain εx is pro-
duced by the motion of node 1. Similarly, for node 2 we obtain the strain-displacement matrix as
B2=Bn(gradN[1,:])

array([[0.5, 0.],
[0. , -0.4],
[-0.4, 0.5]])

Now we can see that the displacement u(2,x) contributes to the strain εx (just consider that the
element side [2,3] changes length when node 2 moves). We get the contribution to the strain within
the element from the motion of node 2

εx = 0.5u(2,x) , εy = −0.4u(2,y) , γxy = −0.4u(2,x) + 0.5u(2,y) (5.29)

And, for node 3

array([[-0.5, 0.],
[0. , 0.8],
[0.8, -0.5]])

εx = −0.5u(3,x) , εy = 0.8u(3,y) , γxy = 0.8u(3,x) − 0.5u(3,y) . (5.30)

Therefore (5.27) turns out to be explicitly εx = 0.5u(2,x) − 0.5u(3,x)
εy = −0.4u(1,y) − 0.4u(2,y) + 0.8u(3,y)
γxy = −0.4u(1,x) − 0.4u(2,x) + 0.5u(2,y) + 0.8u(3,x) − 0.5u(3,y)

 (5.31)

This is the complete description of how strains are produced for this particular triangular finite
element by the motion of all and any of its three nodes.

An important observation should be made here:

Note that the strain components are uniform across the entire triangle. The three-node
triangle is therefore usually called the CST (constant strain triangle).

Consider now a special type of displacement: let us take all the x components of the node
displacements to be some value, the same at all three nodes, and similarly for the y components:
u(1,x) = u(2,x) = u(3,x) = a and u(1,y) = u(2,y) = u(2,y) = b. The strain will then become εx = 0.5a− 0.5a = 0

εy = −0.4b− 0.4b+ 0.8b = 0
γxy = −0.4a− 0.4a+ 0.5b+ 0.8a− 0.5b = 0

 (5.32)

This displacement pattern is the so-called rigid-body translation, and the strains are all zero! That
is the correct element response, there should be no strain when the element moves as a rigid body.

140 FEM for Thermal and Stress Analysis

There is in fact one more displacement pattern where the element moves as a rigid body: rotation.
The rotation about some point xc, yc can be described by the displacements

ux = −(y − yc)ψ , uy = (x− xc)ψ (5.33)

where the scalar ψ stands for the magnitude of the rotation angle. The displacements at the nodes
are then obtained by substituting their coordinates to yield

u(1,x) = −(y1 − yc)ψ , u(2,x) = −(y2 − yc)ψ , u(3,x) = −(y3 − yc)ψ ,
u(1,y) = (x1 − xc)ψ , u(2,y) = (x2 − xc)ψ , u(3,y) = (x3 − xc)ψ. (5.34)

The strains are then
εx = 0.5[−(y2 − yc)ψ]− 0.5[−(y3 − yc)ψ] = 0
εy = −0.4[(x1 − xc)ψ]− 0.4[(x2 − xc)ψ] + 0.8[(x3 − xc)ψ] = 0
γxy = −0.4[−(y1 − yc)ψ]− 0.4[−(y2 − yc)ψ] + 0.5[(x2 − xc)ψ]

+0.8[−(y3 − yc)ψ]− 0.5[(x3 − xc)ψ] = 0

 (5.35)

where ψ can be totally arbitrary.

The strains for the three node triangle are all zero for the displacement patterns that
corresponds to the two rigid body translations and the rigid body rotation.

5.4.2 Stiffness matrix

Now we will develop the stiffness matrix of the three node triangle. The starting point is the first
term of (5.25). For a degree of freedom (j, r) (the displacement at node j in the direction r) for the
row index and the degree of freedom (i, s) (the displacement at node i in the direction s) for the
column index, the element of the stiffness matrix reads∫

S

[
[Bj]

T [D][Bi]
]
rs
tdS (5.36)

Since the two indexes r, s take on values x, y, the matrix∫
S

[Bj]
T [D][Bi] tdS (5.37)

is of dimension 2×2. As the degrees of freedom of the three-node triangle are organized into a vector

[u(e)] =
[
u(1,x), u(1,y), u(2,x), u(2,y), u(3,x), u(3,y)

]T
=
[
U1, U2, U3, U4, U5, U6

]T
, (5.38)

we realize that the entire stiffness matrix of the triangle consists of the 2× 2 submatrices (5.37)

[
K(e)

]
=

∫
S

[B1]T [D][B1] tdS ,

∫
S

[B1]T [D][B2] tdS ,

∫
S

[B1]T [D][B3] tdS∫
S

[B2]T [D][B1] tdS ,

∫
S

[B2]T [D][B2] tdS ,

∫
S

[B2]T [D][B3] tdS∫
S

[B3]T [D][B1] tdS ,

∫
S

[B3]T [D][B2] tdS ,

∫
S

[B3]T [D][B3] tdS

(5.39)

Even neater expression results from constructing the elementwise strain-displacement matrix as

[B(e)] =
[

[B1] , [B2] , [B3]
]

(5.40)

5.4 Elementwise quantities for the three-node triangle 141

as we can then write the elementwise stiffness matrix[
K(e)

]
=

∫
S

[B(e)]T [D][B(e)] tdS (5.41)

Now, if the thickness within the triangle is the same everywhere (as we assumed at the outset), then
because all the matrices are constants, we have[

K(e)
]

= S(e)t[B(e)]T [D][B(e)] (5.42)

When the elementwise stiffness matrix is multiplied with nodal displacements, we get the elastic
restoring forces as entries of the output of the matrix-vector multiplication

[F (e)] =
[
K(e)

]
[u(e)] = S(e)t[B(e)]T [D][B(e)][u(e)] (5.43)

where the last expression follows from the substitution of the stiffness matrix (5.42).
For the special displacements of the rigid-body-motion kind discussed in the previous section,

i.e.

[u(e)] =

a
0
a
0
a
0

 , [u(e)] =

0
b
0
b
0
b

 , [u(e)] =

−(y1 − yc)ψ

(x1 − xc)ψ
−(y2 − yc)ψ

(x2 − xc)ψ
−(y3 − yc)ψ

(x3 − xc)ψ

 (5.44)

we get, since we have shown before that the strains produced by these displacement patterns were
all zero, that all the forces vanish

[F (e)] = S(e)t[B(e)]T [D][B(e)][u(e)]︸ ︷︷ ︸
0

= 0 (5.45)

In words: if the displacement vector consists of rigid body displacements, no elastic restoring forces
are produced. Since

[D][B(e)][u(e)] (5.46)

are the stresses, we can see that no elastic restoring forces are produced because there are no stresses
which follows from there being no strains.

For rigid-body displacements there must be no strains, no stresses, no restoring forces.
This is necessary for convergence to the correct solution to occur.

5.4.3 Singularity

For three linearly independent vectors [u(e)] of (5.44), the output of (stiffness times displacement
equals) forces yields zeros

[F (e)] =
[
K(e)

]
[u(e)] = 0 (5.47)

which means that we can write[
K(e)

]
[φ

(e)
`] = λ`[φ

(e)
`] for λ` = 0 , ` = 1, 2, 3 . (5.48)

This is an eigenvalue problem for the stiffness matrix, where [φ
(e)
`] are the three rigid-body displace-

ment patterns (5.44), and the three corresponding eigenvalues are all equal to zero. Therefore, it

142 FEM for Thermal and Stress Analysis

follows from matrix theory that the rank of the elementwise stiffness matrix is only 3: its defect is
6-3=3. This is entirely correct, and we would expect the defect to be 3 for all plane-stress elements.

So the stiffness matrix of a single element is singular. Let us contemplate what happens when
several elements are assembled: Figure 5.7 shows a sample mesh and the elementwise stiffness matrix
of one triangle, both by itself, and also assembled into the global stiffness matrix of the entire struc-
ture. Further shown are the locations in the global displacement vector which multiply the entries of
the elementwise stiffness matrix after assembly. Clearly, if the elementwise matrix was singular (it
was!), the global stiffness matrix that has this (and only this) entire elementwise matrix assembled
into it is also singular. If the displacement vector u corresponds to a rigid body displacement, the
product Ku will be a zero vector. We can easily convince ourselves that if we take an arbitrary
number of singular elementwise matrices and assemble them completely into the global stiffness
matrix (recall: this is only possible if there are no constraints on the displacements of the nodes),
the global stiffness matrix will have at least the defect of 3— it will inherit the properties of a single
element stiffness matrix. All the elements connected together can still move as a rigid body. The
only way in which we can remove this possibility is by introducing external constraints (supports).

Fig. 5.7. The stiffness matrix of a single element before and after assembly. The displacement vector shows
the locations of DOFs that multiply the entries of the elementwise stiffness matrix.

One such possibility is shown in Figure 5.4 where three roller supports were added to the structure
consisting of two triangles. Before the supports were introduced, the overall stiffness matrix of such a
structure would have been singular with a defect of 3. After the supports were applied the rigid-body
displacements became impossible: the structure cannot translate in the x direction (roller at node
3), it cannot translate in the y direction (the two rollers at the nodes 4 and 2), and all the rollers
together prevent rotation about any pivot in the plane.

5.5 Quadratic triangle T6

The quadratic triangle T6 makes it possible to design basis functions that can reproduce quadratic
variations of the temperature or of the displacement. More precisely, it will do that in terms of the
coordinates on the standard triangle. The quadratic triangle has the potential for very significantly
improving the representation of stresses. Figure 5.8 shows the representation of the axial (bending)
stress in a plane-stress model of a clamped beam with transverse load at the free end. The linear

Abaqus
- CAE file

triangle T3 (Abaqus designation CPS3) evidently cannot represent the bending stress with any
accuracy (not with this coarse mesh anyway). The quadratic triangle CPS6 with elements of the
same size does a much better job.

In order to understand how the quadratic triangle works, the first task will be to formulate the
basis functions on the standard triangle, Figure 5.9. To write down a polynomial for a particular

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/beam--Cook-p234.cae

5.5 Quadratic triangle T6 143

12

11

10
9

87

6

5

4
3

21

S, S11

−6.713e+01
−5.594e+01
−4.475e+01
−3.357e+01
−2.238e+01
−1.119e+01
−5.722e−06
+1.119e+01
+2.238e+01
+3.357e+01
+4.475e+01
+5.594e+01
+6.713e+01

X

Y

Z

(a)
33

32
31

30

29

28
27

26

25

24
23

22

21

20 19

18

17

16

15 14

13

12

11

10
9

87

6

5

4
3

21

S, S11

−2.932e+02
−2.447e+02
−1.961e+02
−1.476e+02
−9.904e+01
−5.050e+01
−1.961e+00
+4.658e+01
+9.512e+01
+1.437e+02
+1.922e+02
+2.407e+02
+2.893e+02

X

Y

Z

(b)

Fig. 5.8. Plane-stress beam model. Axial (bending) stress. (a) Linear triangles (T3). Maximum tensile
stress 67.1. (b) Quadratic triangles (T6). Maximum tensile stress 289.3. Elementary beam theory: maximum
tensile stress 300.

Fig. 5.9. Standard quadratic triangle.

basis function that is quadratic in ξ, η, six coefficients will be needed. To determine these coefficients,
we will make use of the Kronecker delta property (3.31). Let us start with the basis function N2 =
a0 + a1ξ + a2η + a3ξη + a4ξ

2 + a5η
2. Writing

N2(ξk, ηk) = δ2k, for k = 1, ..., 6 ,

at all six nodes (see Table 5.1), provides us with six equations from which the six coefficients may
be determined. That is however tedious and there’s a quicker way: let us use common sense and
guesswork instead. Looking along the η axis we see three (1, 6, 3) and two (4, 5) nodes respectively
align at the same ξ coordinate. Evidently, this makes it possible to design the function N2 as a
Lagrange polynomial that is zero in these two locations, and equal to one at node 2

N2 =
(ξ − 0)(ξ − 1/2)

(1− 0)(1− 1/2)
= ξ(2ξ − 1) .

Similarly, in the other direction we have for N3 = η(2η − 1).
The construction of the other basis functions may be systematized if we note that both N2 and

N3 may be written as the normalized product of planes: for N2 the two planes are p̂2(ξ, η) = ξ and
p̃2(ξ, η) = ξ − 1/2, and N2 is written as

N2 =
p̂2(ξ, η)p̃2(ξ, η)

p̂2(1, 0)p̃2(1, 0)
= ξ(2ξ − 1) .

Similarly for N3 and N1: the recipe is to find two planes that go through three nodes and two nodes
respectively (but not through the node at which the function is supposed to be equal to one), and
normalize their product. For N1 the planes are p̂1(ξ, η) = 1− ξ− η (this is the same N1 as in (3.30))
and p̃1(ξ, η) = 1− 2ξ − 2η (compare with Figure 5.10)

144 FEM for Thermal and Stress Analysis

N1 = (1− ξ − η)(1− 2ξ − 2η) .

Table 5.1. Standard quadratic triangle: locations of the nodes

Coordinate Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

ξ 0 1 0 1/2 1/2 0
η 0 0 1 0 1/2 1/2

For the mid-edge nodes, 4, 5, 6, we find planes that pass through two triples of nodes. For
instance, for node 6 (see Figure 5.10), the two planes are p̂6(ξ, η) = 1− ξ− η and p̃6(ξ, η) = η (same
as N3 in (3.29))

N6 = 4(1− ξ − η)η .

The basis functions are summarized as

[N] =

(η + ξ − 1)(2η + 2ξ − 1)

ξ(2ξ − 1)
η(2η − 1)

−4ξ(η + ξ − 1)
4ηξ

−4η(η + ξ − 1)

 . (5.49)

Fig. 5.10. Standard quadratic triangle: Basis functions N2, N1, and N6.

5.5.1 Basis function gradients and strains

The basis function gradients in the x, y coordinates are obtained from the standard expression (3.62).
The first ingredient is the matrix of gradients of the basis functions with respect to ξ, η

[
grad(ξ,η)N

]
=

−3 + 4ξ + 4η, −3 + 4ξ + 4η

4ξ − 1, 0
0, 4η − 1

4− 8ξ − 4η, −4ξ
4η, 4ξ
−4η, 4− 4ξ − 8η

 . (5.50)

The obvious observation here is that the gradients of the basis functions vary from point to point,
and the dependence on the parametric coordinates is linear. Consequently, also the Jacobian matrix
will be linear in the parametric coordinates ξ, η as follows from (3.60):

5.5 Quadratic triangle T6 145

[J] = [x]
T
[
grad(ξ,η)N

]
. (5.51)

Here [x] is a 6 × 2 matrix of the coordinates of the nodes. However, in the special case of the
physical triangle having straight edges and the nodes 4, 5, 6 located precisely at the midpoints of
their respective edges (Figure 5.11) the Jacobian matrix is constant across the entire element. The
formula for the gradients of the basis functions with respect to x, y (3.62) then yields linear variation
of the derivatives (and hence the strains!). This is very useful in modeling of bending deformations,
as evident from Figure 5.8.

Fig. 5.11. Mapping of the quadratic standard triangle into a straight-sided triangle with the 4, 5, 6 nodes
being precisely in the middle of the edges

However, when the Jacobian matrix is not constant within an element (as is the case when the
edges are straight but the mid-side nodes are not in the middle of the edges, or when the edges are
not straight, around holes or fillets), the inverse of the Jacobian matrix is a function of ξ, η, and

it multiplies
[
grad(ξ,η)N

]
(also a function of ξ, η) with the result that the derivatives of the basis

functions do not vary linearly across the element anymore, and nor do the strains. A vivid example
is provided in Figure 5.12: The locations of four nodes had been perturbed by dragging them along
the edges. The edges are still straight, but nodes 15, 14, 20, and 19 are no longer at the midpoints
of their respective edges. As a consequence the stress field is now wrong: the maximum for instance
occurs away from the expected location at the clamped edge, and the numerical values are also off.

33

32
31

30

29

28
27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10
9

87

6

5

4
3

21

S, S11

−2.932e+02
−2.405e+02
−1.878e+02
−1.351e+02
−8.240e+01
−2.971e+01
+2.299e+01
+7.568e+01
+1.284e+02
+1.811e+02
+2.338e+02
+2.865e+02
+3.392e+02

X

Y

Z

(b)

Fig. 5.12. Plane-stress beam model. Axial (bending) stress. Mesh of distorted quadratic triangles (T6)—call
for the locations of nodes 15, 14, 20, 19. Maximum tensile stress 339.2. Note that the maximum does not
occur in the expected location at the clamped edge. Elementary beam theory: maximum tensile stress 300.

It might seem wise then to avoid triangles with curved edges altogether, but there is a potential
trade-off here between the decreased accuracy of curved triangles and an improvement of the ability

146 FEM for Thermal and Stress Analysis

to approximate curved shape: Figure 5.14 shows the mesh of a part where some of the triangles
have curved edges because those edges are used to approximate the geometry of a circle. The ability
to approximate curved geometry sometimes offsets the decreased accuracy due to the distortion of
the triangle. Note that we will call an edge curved even when it appears to be straight. To explain

Fig. 5.13. Three six-node triangles. (a) triangle with constant Jacobian, (b) triangle with non-constant
Jacobian because of the mid-edge node having been displaced from the mid-point position, (c) triangle with
non-constant Jacobian due to an actual curved edge. Dashed line: zero level curve of the basis function at
the topmost node.

this paradox, we will refer to the Jacobian along this edge. If the Jacobian is not constant along
the edge, if it is a function of where it is computed, we would call the edge curved. Similarly for
the six node triangle itself: even when its edges appear straight, if the Jacobian varies from point
to point within the triangle, we call that triangle curved. Why? Because irrespectively whether the
non-constant Jacobian results from actual curved edges or just from the position of the mid-edge
nodes being dislocated from the midpoints of the edges, the non-constant Jacobian will result in
degraded accuracy of the element.

X

Y

Z

Fig. 5.14. Triangulation of a part that consists of quadratic triangles with curved edges around the circum-
ference of the hole

5.6 Quadratic curve element L3

The L3 element is needed to provide a mesh on the boundary of the triangulation with quadratic
(T6) elements: the boundary of a single quadratic triangle consists of three L3 curve elements.

The L3 element is developed from the L2 element by adding one more node inside the element.
Therefore in order for the basis functions to satisfy the condition that they are either zero or one
at a node, they will have to become quadratic polynomials. Nevertheless, the basis functions for
this element are still the Lagrange interpolation functions on the standard interval, as shown in
Figure 5.15. The quadratic Lagrange interpolation polynomial is developed as follows: for instance,
N1 is sought as a product of two linear polynomials which each vanish at the location of the remaining
nodes

5.6 Quadratic curve element L3 147

(ξ − 0)(ξ − 1) .

This expression is then normalized to become +1 at ξ = −1. Thus the basis functions N1, N2, and
N3 on the standard interval read

N1(ξ) =
ξ(ξ − 1)

2
, N2(ξ) =

ξ(ξ + 1)

2
, N3(ξ) = (1− ξ2) . (5.52)

Fig. 5.15. Quadratic basis functions on the standard interval

5.6.1 Distributed traction on the boundary

Let us consider traction load uniformly distributed along the straight L3 element with the third
node precisely at the midpoint of the edge. The elementwise mechanical load vector components for
the quadratic L3 finite element are due to the last term in (5.25)∫

Ct,r

Njtr tdC

where tr is the r−component of the traction vector (either r = x, or r = y), t is the thickness of
the plane-stress part, and Ct,r is the part of the boundary curve where the traction component is
prescribed. For a single element, the degrees of freedom are (j, r) where j = 1, 2, 3. The length of
the L3 element in the x, y coordinates is h(e) and then the integral reduces to

[L]
3×1

= tr t

∫
L(e)

Nj dC

where Nj is visualized in Figure 5.15. The areas under the quadratic curves are∫
L(e)

N1 dC =
1

6
h(e) ,

∫
L(e)

N2 dC =
1

6
h(e) ,

∫
L(e)

N3 dC =
4

6
h(e) , (5.53)

This process is called force lumping, because the distributed load is lumped into concentrated forces
acting at the nodes. The result is visualized in Figure 5.16: Clearly the lumping is rather unequal,,
the middle node attracts two thirds of the total loading on the element.

Fig. 5.16. Calculation of nodal forces from uniform distributed traction along an L3 element

The calculation will require numerical integration in more complicated cases, for instance when
the edge is curved or when the direction or magnitude of the traction loading varies along the edge.

See Box 12

148 FEM for Thermal and Stress Analysis

5.7 Case study: applying boundary conditions

We will consider the structure shown in Figure 5.17. It is made of a relatively thin sheet (t = 1.0mm),
and the material properties are E = 107MPa, ν = 0.3. It is loaded by pressure on the surface of the
circular hole in the plane of the sheet. The goal is to compute the maximum principal tensile stress.

The boundary conditions are entirely given in terms of tractions. For the interior surface (hole)
we select a cylindrical coordinate system. In this cylindrical coordinate system, the radial component
is prescribed as outward pressure p = 1.0MPa, and the shear component is zero. On the outer four
straight edges we can use Cartesian coordinates, and the two components of the traction are both
zero. Quite appropriately, we say that the structure is free-floating. The loading is entirely balanced
by itself, so a statically admissible solution exists.

Z

Y

X

X

Y

Z

Z

Y

X

X

Y

Z

Fig. 5.17. Sketch of the plane-stress structure. The thickness is 1 mm.

5.7.1 Free-floating structure

The structure is first analyzed as specified: only the pressure loading is applied on the boundary.
The displaced shape with the color-coded maximum principal stress is shown in Figure 5.18(a).
The unexpected thing is the deformed shape which incorporates an apparently random rotation:
the shape is symmetric and so is the loading, yet the displacement is not symmetric. Figure 5.18(b)
illustrates the pattern of the displacement by color coding the magnitude. The displacement is not
particularly easy to interpret.

We can observe that Abaqus does not report an error or a warning in the Monitor tool. We have to
look for the reasons for this behavior in the message file: three warnings are reported of “numerical
singularity”. Indeed as discussed in Section 5.4.3 the overall stiffness matrix of the structure is
singular, with a defect of 3.

Abaqus
- CAE file
- tutorial

5.7.2 Point supports

As the first pass at remedying the situation we will apply point supports to convert three degrees of
freedom from “free” to “fixed”. In Figure 5.19(a) this was done by setting the displacement in the x
and y at the lower left corner to zero and by setting the y displacement at the lower right corner to
zero. These supports are indicated by the orange triangles (projections of cones) in Figure 5.19(a).
The plot of the largest principal stress shows the same results as in Figure 5.18(a), but after the
supports were applied, the warning messages are gone, and the displacements are easier to interpret.

Abaqus
- CAE file
- tutorial

How good is the estimate of the maximum principal stress? Figure 5.19 (b) displays the largest
principal stress without the so-called nodal averaging. The primary quantity—the displacement, in
stress analysis, or the temperature, in heat conduction analysis—is guaranteed to be continuous

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/flatwhole.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/squarewhole-full-tutorial.pdf
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/flatwhole.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/squarewhole-full-point-tutorial.pdf

5.7 Case study: applying boundary conditions 149

S, Max. In−Plane Principal

−8.203e−02
+2.036e−01
+4.892e−01
+7.748e−01
+1.060e+00
+1.346e+00
+1.632e+00
+1.917e+00
+2.203e+00
+2.489e+00
+2.774e+00
+3.060e+00
+3.345e+00

X

Y

Z

U, Magnitude

+8.956e−07
+1.160e−06
+1.425e−06
+1.689e−06
+1.953e−06
+2.218e−06
+2.482e−06
+2.747e−06
+3.011e−06
+3.276e−06
+3.540e−06
+3.805e−06
+4.069e−06

X

Y

Z

(a) (b)

Fig. 5.18. Square with circular hole. Plane stress model. Full geometry without supports. (a) Largest
principal stress. (b) Displacement magnitude.

from element the element. Nodal averaging makes quantities which are normally discontinuous from
element to element, such as strains, stresses, heat flux, continuous by computing the value at the
node (which is shared by several elements) by taking the element values and forming some sort of
weighted average to represent the quantity at the node. The result is a visually pleasing picture,
which usually conveys an overly optimistic view of the quality of the results. Figure 5.19(b) should be
compared with Figure 5.20. The latter presents the stresses as continuous: that is flatly contradicted
by the former figure, which is a lot more honest about the actual quality of the results.

Z

Y

X

X

Y

Z

S, Max. In−Plane Principal

−8.203e−02
+2.036e−01
+4.892e−01
+7.748e−01
+1.060e+00
+1.346e+00
+1.632e+00
+1.917e+00
+2.203e+00
+2.489e+00
+2.774e+00
+3.060e+00
+3.345e+00

X

Y

Z

(a) (b)

Fig. 5.19. Square with circular hole. Plane stress model. (a) Full geometry with supports at the corners
of the bottom edge: x, y support at the lower left corner, y support at the lower right corner. (b) Largest
principal stress (maximum 3.345MPa).

Useful rule of thumb: display the stresses without nodal averaging. If the discontinuity
of the stresses across inter-element interfaces can be easily seen in the color-coded plots,
the mesh should be refined.

Since the geometry and the loading have two planes of symmetry, the vertical and the horizontal
plane passing through the center of the circle, an even better strategy than point supports at arbitrary
locations would be to apply supports at the planes of symmetry. Consider an even function, such
as cosx: the slope of the curve is zero at x = 0: the even function is symmetric with respect to the
plane x = 0. The displacements parallel to the plane of symmetry behave like this even function,
and therefore right angles at the plane of symmetry before deformation remain right angles after
deformation: there is no shear along the plane of symmetry. At the same time, the displacement
component normal to the plane of symmetry behaves like an odd function, it becomes zero on the
plane of symmetry. Therefore a straightforward observation is that on the plane of symmetry we

150 FEM for Thermal and Stress Analysis

(Avg: 100%)
S, Max. In−Plane Principal

−7.451e−09
+2.613e−01
+5.227e−01
+7.840e−01
+1.045e+00
+1.307e+00
+1.568e+00
+1.829e+00
+2.091e+00
+2.352e+00
+2.613e+00
+2.875e+00
+3.136e+00

X

Y

Z

Fig. 5.20. Square with circular hole. Plane stress model. Full geometry with supports at the corners of the
bottom edge. (b) Largest principal stress with nodal averaging (maximum 3.136MPa).

know that the shear tractions will be zero, and the normal component of displacement will be zero.
Since traction boundary conditions with zero value of traction need not be prescribed, all we have to
do is suppress the normal displacement component for any node that lies on the plane of symmetry.
(For the full development of symmetry and anti-symmetry conditions refer to a detailed discussion:

See Box 25)
In Figure 5.21 we are taking advantage of symmetry by partitioning the edges of the square, and

by applying symmetry boundary conditions at these four points: x support at the midpoints of the
horizontal edges, y support at the midpoints of the vertical edges.

Abaqus
- CAE file
- tutorial

Note well that the point supports lead to zero associated reactions: If the reactions
were not zero, we would have changed the original assignment, where the only applied
forces are in the interior of the circular hole and that load balances itself out entirely.

Z

Y

X

X

Y

Z

S, Max. In−Plane Principal

+8.616e−03
+2.883e−01
+5.680e−01
+8.477e−01
+1.127e+00
+1.407e+00
+1.687e+00
+1.967e+00
+2.246e+00
+2.526e+00
+2.806e+00
+3.085e+00
+3.365e+00

X

Y

Z

(a) (b)

Fig. 5.21. Square with circular hole. Plane stress model. (a) Full geometry with supports at the midpoints
of the edges: x support at the midpoints of the horizontal edges, y support at the midpoints of the vertical
edges. (b) Largest principal stress (maximum 3.365MPa).

5.7.3 Reduction using symmetry

The observed symmetry can be used not only to place supports on the symmetry plane, but also to
physically reduce the structure. For instance, if we consider two planes of symmetry, horizontal, and
vertical, we can model only a quarter of the entire square plate. On the edges where the cuts separate
the modeled quarter from the rest, the symmetry boundary conditions are employed: compare with
Figure 5.22(a).

Abaqus
- CAE file
- tutorial

Note well: even though the boundary conditions in terms of zero tractions are not applied ex-
plicitly, they are still enforced (albeit approximately). Figure 5.23 displays the shear stress σxy,

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/flatwhole.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/squarewhole-full-split-tutorial.pdf
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/flatwhole.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/squarewhole-full-quarter-tutorial.pdf

5.7 Case study: applying boundary conditions 151

X

Y

Z

S, Max. In−Plane Principal

−6.494e−03
+2.669e−01
+5.402e−01
+8.136e−01
+1.087e+00
+1.360e+00
+1.634e+00
+1.907e+00
+2.180e+00
+2.454e+00
+2.727e+00
+3.000e+00
+3.274e+00

X

Y

Z

(a) (b)

Fig. 5.22. Square with circular hole. Plane stress model. (a) Quarter geometry with supports at the edges
on the planes of symmetry: x support at the vertical edge, y support at the horizontal edge. (b) Largest
principal stress (maximum 3.274MPa).

which should be zero along the square sides because of the traction-free boundary conditions, and
also along the symmetry planes because of the no-shear boundary conditions. In the present case,
zero is color-coded as red. The values on the boundary are close to zero, but not precisely zero: the
boundary condition is only approximated.

S, S12

−2.140e+00
−1.958e+00
−1.777e+00
−1.595e+00
−1.413e+00
−1.232e+00
−1.050e+00
−8.682e−01
−6.865e−01
−5.048e−01
−3.231e−01
−1.414e−01
+4.034e−02

X

Y

Z

Fig. 5.23. Square with circular hole. Plane stress model. Quarter geometry with supports at the edges on
the planes of symmetry: shear stress σxy

The vertical and horizontal symmetry planes do not exhaust the possibilities. There are also two
symmetry planes at ±45o. With all four symmetry planes taken into consideration we can reduce the
original square to 1/8th as shown in Figure 5.24. The boundary condition on the inclined symmetry
plane needs a custom coordinate system aligned with the symmetry plane (the Datum CSYS shown
in green in Figure 5.24(a)). The displacement component orthogonal to the symmetry plane then
needs to be set equal to zero, and the shear traction component along the symmetry plane is again
zero. One advantage of modeling only a fraction of the entire geometry is that we can afford more
resolution: the number of finite elements in Figures 5.22 and 5.24 is roughly the same, which means
that in the 1/8th model we get better representation of the solution for the same cost. Compared
to the full model we are saving 7/8 of the solution effort.

Abaqus
- CAE file
- tutorial

5.7.4 Graded mesh

So what is the maximum of the largest principal stress? We calculated four different numbers above,
which one, if any, is the correct one? Generally speaking, the finer the mesh the better our chances
of getting an answer close to the correct one. The finest mesh used was for the 1/8th model. All
the meshes were uniform, meaning the elements were the same size everywhere (more or less). We
can use the computing resources much more efficiently if we direct the FE program to put small

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/flatwhole.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/squarewhole-full-eightth-tutorial.pdf

152 FEM for Thermal and Stress Analysis

Z

Y

X

X

Y

Z

S, Max. In−Plane Principal

−3.224e−03
+2.694e−01
+5.421e−01
+8.147e−01
+1.087e+00
+1.360e+00
+1.633e+00
+1.905e+00
+2.178e+00
+2.451e+00
+2.723e+00
+2.996e+00
+3.268e+00

X

Y

Z

(a) (b)

Fig. 5.24. Square with circular hole. Plane stress model. (a) 1/8 geometry with supports at the edges on the
planes of symmetry: x support at the vertical edge, y support at the horizontal edge. (b) Largest principal
stress (maximum 3.268MPa).

elements to where the stress is changing the fastest. The detailed discussion of the phenomena and
the proper procedures for controlling the error are the subject of Chapter 6.

The seeding of the geometry edges can be used to put much smaller elements around the red
spots (where the largest principal stress has a strong gradient) as shown in Figure 5.25. Even though

Abaqus
- CAE file
- tutorial

we are still displaying the stress without nodal averaging, we can no longer see strong discontinuities
where they matter (around the red spots); because we put large elements in the top right corner,
there are some stress discontinuities there, but the stress is practically zero in that area. This is
our best solution so far. Without a serious convergence study we still don’t know how far off the
estimate in Figure 5.25 is, but at least we can see that the numbers are not changing very much
anymore (3.234MPa is only around 1% below 3.268MPa).

S, Max. In−Plane Principal

−5.317e−03
+2.646e−01
+5.346e−01
+8.046e−01
+1.075e+00
+1.344e+00
+1.614e+00
+1.884e+00
+2.154e+00
+2.424e+00
+2.694e+00
+2.964e+00
+3.234e+00

X

Y

Z

Fig. 5.25. Square with circular hole. Plane stress model. 1/8 geometry with supports at the edges on the
planes of symmetry with graded mesh. Largest principal stress (maximum 3.234MPa).

5.8 Boundary conditions of the “Contact” type

Figure 5.26 shows a sketch of an aluminum slab of thickness 3 mm, perforated by four holes. The
line marked S shows the plane of symmetry that will be used in the modeling. Perfectly-fitting pins
are inserted in the holes labeled A and are forced to move away from each other in a straight line
by 0.4 mm total distance by an actuator. In our analysis in this section we will assume the pins are
not deformable (i.e. they are rigid), and we also assume that the pins are not fused with the slab,
meaning that they can freely turn in their holes, without friction. The goal is to find the maximum
of the von Mises stress.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/flatwhole.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/squarewhole-full-eightth-graded-tutorial.pdf

5.8 Boundary conditions of the “Contact” type 153

Fig. 5.26. Aluminum slab with circular holes. Pins in holes A are forced to move away from each other by
a given distance.

In this section we intend to discuss the implications of choosing different representations of the
boundary conditions applied to the interior of the holes labeled A. This will eventually lead to the
introduction of the so-called contact boundary condition.

5.8.1 Prescribed displacement of the circumference of the hole A

The goal is to simulate the effect of these pins moving away from each other, which in turn means
that the slab needs to stretch to accommodate the motion. The final state is determined from the
considerations of equilibrium: the pin exerts a force on the slab and vice versa. This force needs to be
large enough to stretch the slab sufficiently far so that the pin can move by a given amount and still
pass through the hole in the slab. This problem can be thought of in terms of reactions at supports
due to prescribed displacement of the supports, which motivates the first modeling approach: we
can assume that the points of the surface of the holes move in unison by the same amount as the
center of the pin. In this way the circular pin will certainly fit into the hole after it moves and after
the slab deforms.

This condition is implemented as prescribed displacement: along the circle that defines hole A we
prescribe in the global Cartesian coordinate system the given nonzero displacement in theX direction
and simultaneously zero displacement in the Y direction. The results are shown in Figure 5.27. We

Abaqus
- CAE file
- tutorial

can see the color mapping of the von Mises stress (averaged at the nodes), and the deformed shape
of the slab (with a 40× magnification of the displacements) is overlaid with an outline of the shape
of the slab before deformation. Upon closer inspection we can detect a problem: the surface of the
hole A does not rotate, while the upward-bent shape of the slab indicates that the right-hand side
end of the slab should rotate clockwise (which of course includes the neighborhood of the hole). In
reality that is precisely what the boundary condition we prescribed was expected to do: fixing the
displacements of all the points along the circumference of the circle simply translated the circle as
a rigid body, without rotation. That is okay to assume for the pin, but not for the slab. As stated
above, the pin can freely rotate without friction in its hole, which also means that the slab should
be able to freely rotate around the pin. The prescribed displacement boundary condition in effect
assumes that neither the pin nor the slab are allowed to rotate, which is a contradiction to the
situation we wish to model.

5.8.2 Rigid-body constraint applied to the hole A

The observations of the previous section motivate the model here: we will assume that the surface
of the hole A can move as a rigid body, and we will prescribe only the motion of the reference

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/slabwholes.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/slabwholes-fixed-tutorial.pdf

154 FEM for Thermal and Stress Analysis

(Avg: 75%)
S, Mises

+4.508e−01
+2.620e+01
+5.194e+01
+7.769e+01
+1.034e+02
+1.292e+02
+1.549e+02
+1.807e+02
+2.064e+02
+2.322e+02
+2.579e+02
+2.836e+02
+3.094e+02

Step: Step−static
Increment 1: Step Time = 2.2200E−16
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +4.000e+01

X

Y

Z

Fig. 5.27. Aluminum slab with circular holes. Model that prescribes the displacement of the surface of the
hole.

point of the rigid body (in our case that is naturally the center of the circle). In the global Cartesian
coordinate system we will prescribe for the reference point the given nonzero displacement in the
X direction and zero displacement in the Y direction, and we will not prescribe rotation of the
rigid body so that the slab can freely rotate around the pin. Figure 5.28 shows the von Mises

Abaqus
- CAE file
- tutorial

(Avg: 75%)
S, Mises

+5.330e−01
+2.254e+01
+4.455e+01
+6.655e+01
+8.856e+01
+1.106e+02
+1.326e+02
+1.546e+02
+1.766e+02
+1.986e+02
+2.206e+02
+2.426e+02
+2.646e+02

Step: Step−static
Increment 1: Step Time = 2.2200E−16
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +4.000e+01

X

Y

Z

Fig. 5.28. Aluminum slab with circular holes. Model that ties the surface of the hole into a rigid body.

stress displayed on the deformed shape, and the shape before deformation is again shown as outline.
Comparing with Figure 5.27 we can clearly see that the maximum of one Mises stress moved from
the hole A to the circumference of the large hole, and the magnitude of the bending deformation
visibly increased, which is consistent with the relaxed rotation constraint.

5.8.3 Modeling the contact of the hole A with the pin

The model discussed in Section 5.8.2 is not completely realistic in that the pin not only pushes
against the material of the slab, but it also pulls on it. But, if the pin is to freely rotate inside the
hole A, it is not likely to be able to pull on the material of the slab. Rather, if the pin moves away
from the edge of the hole, it should cleanly separate, opening a gap between the slab and the pin.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/slabwholes.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/slabwholes-rigbod-tutorial.pdf

5.8 Boundary conditions of the “Contact” type 155

The difficulty is that we don’t know beforehand precisely where the pin will push against the
hole and where it will pull away from the surface of the hole. Therefore, when we propose to apply
this condition in terms of the tractions acting on the circle A, we have to admit that we don’t know
on which part of the circle we could prescribe zero tractions (that would be the surface of the hole
exposed by the pin moving away from it), or nonzero tractions (on the part of the surface where
the pin pushes against it). Moreover, we don’t even know the magnitude of the tractions: all of
this needs to be found by solving for the equilibrium of the system slab+pin. This is a chicken and
egg problem: we can’t find the equilibrium until we specify the boundary conditions, and we can’t
specify the boundary conditions until we know the equilibrium. This leads to a nonlinear model (as
opposed to linear models discussed in this book) which needs to be solved by iteration. This type of
situation is usually referred to as a contact problem . Figure 5.29 shows the solution of the contact

Abaqus
- CAE file
- tutorial

problem. The deformed shape shows clearly where the pin pushes against the slab and where it pulls
away from it. The hole remains circular where the pin is in contact with the slab, but deforms into a
non-circular shape where the pin and the slab are separated. The maximum of the von Mises stress
moved back to the hole A, but is now situated next to the part of the surface where the pin-slab
contact occurs.

(Avg: 75%)
S, Mises

+1.561e+00
+2.839e+01
+5.522e+01
+8.205e+01
+1.089e+02
+1.357e+02
+1.625e+02
+1.894e+02
+2.162e+02
+2.430e+02
+2.698e+02
+2.967e+02
+3.235e+02

Step: Step−static
Increment 1: Step Time = 1.000
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +4.000e+01

X

Y

Z

Fig. 5.29. Aluminum slab with circular holes. Model that incorporates contact between a rigid pin and the
slab.

5.8.4 Summary

By progressively adding sophistication to our modeling we are able to capture more and more of
the correct physical behavior. The cost is modeling complexity: we need to construct more and
more complicated models. At some point we usually decide that we have reached a balance between
the amount of modeling difficulties and the payoff in terms of fidelity of the model, and we accept
the solution as a good approximation. Consider the case of the slab discussed in this section: we
could move on to more complicated models. The geometry could be considered changing during
the solution (the so-called nonlinear geometry option), the contact interaction may involve not only
pressure response along the contact surface, but also shear forces due to friction, and in fact we
could also introduce a pin that deforms and is not rigid. We shall not do that here, but the reader
is invited to construct these more complicated models and compare with the results shown above. If
the differences are found to be negligible, the model presented in Section 5.8.3 will be good enough;
otherwise that model may be deemed not acceptable, and the more complicated models would be
needed.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/slabwholes.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/slabwholes-pin-tutorial.pdf

156 FEM for Thermal and Stress Analysis

5.9 Thermal loading

Often the material from which a structure is built up reacts to its environment by deformation. The
material experiences the environment in possibly different ways or different measures in different
locations, and stresses are produced.

Think about a very small piece of material that is exposed to the environment. We can assume
that the resultant relative deformation is homogeneous and no stress is produced. For the sake of
this argument, let us consider one particular environmental effect: thermal expansion . However,
similar effects may be produced by shrinkage, swelling, and so on.

When the small sample of material is at a reference temperature it is unstressed, and we de-
fine its displacements and the associated strains to be zero in this state: the reference state. Then
the temperature is increased by ∆T , and the material responds by displacement, and because by
assumption the deformation is homogeneous, the entire sample experiences uniform strains. Based
on experimental evidence, the following model is adopted for isotropic materials to describe the
so-called thermal strains

[θε] =

 θεx
θεy
θγxy

 = ∆Tα

 1
1
0

 . (5.54)

Evidently, the thermal expansion is assumed not to cause any shear strains. The factor α is the
so-called coefficient of thermal expansion (CTE), and ∆T is the change of temperature from
the reference value.

Therefore, we have a modification of the constitutive equation (5.6): the stress is produced by
the net elastic strains (total strains from which thermal strains are subtracted)

[σ] = [D]
(
[ε]− [θε]

)
, (5.55)

where [ε] is the total strain, and [ε] − [θε] is the elastic strain. The total strain is related to the
displacement via the strain-displacement relation (5.97), and thus we may write

[σ] = [D]
(
[Bu]− [θε]

)
.

The weighted residual equation then picks up one more term, the thermal loading: For all DOFs
1 ≤ (j, r) ≤ Nf , require

Nf∑
(i,s)=1

∫
S

[
[Bj]

T [D][Bi]
]
rs
tdS[ui]s +

N∑
(i,s)=Nf+1

∫
S

[
[Bj]

T [D][Bi]
]
rs
tdS[ui]s

−
∫
S

Nj [b]r tdS −
∫
Ct,r

Njtr tdC −
∫
S

[
[Bj]

TD [θε]
]
r
tdS = 0 ,

(5.56)

where the essential boundary conditions imply for the fixed degrees of freedom

[ui]s = [ui]s node i on Cu,s and s = x or y . (5.57)

5.9.1 Thermal loads example

Consider again the three-node triangle from Section 5.4.1 (call for Figure 5.6). For this geometry,
the thermal loads in terms of forces acting at nodes of the triangle are calculated by a few lines
of Python: the strain-displacement matrices were calculated in Section 5.4.1, so now we add the

Python
- script

definition of the variables and the elastic material stiffness matrix (page 191)

35 DeltaT, CTE, E, nu, t = symbols(’DeltaT CTE E nu t’)
36 D = E/(1-nu**2)*Matrix([[1, nu, 0], [nu, 1, 0], [0, 0, (1-nu)/2]])

then we define the thermal strain

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpT3thermal.py

5.9 Thermal loading 157

37 eth = DeltaT*CTE*Matrix([1, 1, 0]).reshape(3, 1)

and for instance for node 1 we calculate the nodal forces as

40 F1 = simplify(Se*t*B1.T*sig)

which yields

Matrix([
[0],
[1.0*CTE*DeltaT*E*t/(nu - 1)]])

Cleaning up the expressions for the nodal forces for all three nodes results in[
θF1x
θF1y

]
=
α∆TEt

1− ν

[
0
−1

]
,

[
θF2x
θF2y

]
=
α∆TEt

1− ν

[
5/4
−1

]
,

[
θF3x
θF3y

]
=
α∆TEt

1− ν

[
−5/4

2

]
.

(5.58)

The forces are also visualized in Figure 5.30 (divided by the factor (α∆TEt/(1−ν))). The following

x

-2 0 2 4

y

-2

0

2

4

Fig. 5.30. Triangle from Section 5.4.1: thick red lines represent nodal forces corresponding to thermal
expansion scaled by (α∆TEt/(1− ν))

insights may be derived from the formulas and the picture:

1. The directions of the forces are given by the directions of the opposite edges: the force at a node
is orthogonal to the opposite edge and points outwards of the triangle (for positive change in
temperature, which means expansion). This corresponds to our intuitive understanding of the
change of area in a triangle: we change the area by moving a vertex at right angle to the opposite
edge.

2. All the x-components of the forces sum to zero, and all the y-components also sum to zero.

Observation 2 holds for any shape of element. In other words: the thermal loads are self-equilibrated
on each finite element.

5.9.2 Thermal strains in a bimetallic assembly

Consider an assembly of two bonded thin metal slabs. The inset is of aluminium, while the outer
frame is of steel: see Figure 5.31. The assembly is exposed to an increase of 70◦C from the stress-free
reference state. Of interest are the deformations produced by the unequal coefficients of thermal
expansion. Due to the thinness of the plate, we consider plane stress an adequate approximation.
Because of two-way symmetry, only a quarter of the plate is modeled.

Abaqus
- CAE file
- tutorial

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/alusteelround.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/alusteelround-tutorial.pdf

158 FEM for Thermal and Stress Analysis

X

Y

Z

Fig. 5.31. Aluminium-steel plate assembly, plane stress. Thickness 5 mm. Interior: aluminium, exterior
frame: steel. The shaded part is modeled.

S, Mises

+1.335e+00
+2.034e+01
+3.935e+01
+5.836e+01
+7.737e+01
+9.637e+01
+1.154e+02
+1.344e+02
+1.534e+02
+1.724e+02
+1.914e+02
+2.104e+02
+2.294e+02

X

Y

Z

Fig. 5.32. Aluminium-steel plate assembly, plane stress. Von Mises stress. Graded mesh.

Figure 5.32 shows the von Mises stress peaking in the vicinity of the rounded corner at the
interface where the two materials meet. We turn our attention to Figure 5.33. The fact that in the
present model we have two materials adjacent to each other across a bonded interface gives us an
opportunity to discuss the continuity of the stresses and strains. Stress can be converted to a traction
vector acting on the surface with a given normal. For instance at the horizontal part of the interface
the normal component of this traction vector will be the stress component σy. By the principle of
action and reaction, this component of the stress vector should be continuous across the horizontal
material interface. Figure 5.33(a) confirms this: even though the mesh could use some refinement,
the part of the interface with normal along y shows reasonable approximation of continuity of σy.
Strain, on the other hand, will not possess continuity of the same form. Rather, the amount of stretch
along an interface should be continuous. Thus, along the vertical part of the material interface (with
normal to the interface along the x direction) should have the strain component along the interface,
i.e. εy, continuous, and Figure 5.33(b) offers a good approximation of such continuity.

S, S22

−4.526e+01
−3.116e+01
−1.705e+01
−2.941e+00
+1.117e+01
+2.527e+01
+3.938e+01
+5.349e+01
+6.760e+01
+8.170e+01
+9.581e+01
+1.099e+02
+1.240e+02

X

Y

Z

E, E22

+5.009e−04
+6.092e−04
+7.175e−04
+8.258e−04
+9.342e−04
+1.042e−03
+1.151e−03
+1.259e−03
+1.367e−03
+1.476e−03
+1.584e−03
+1.692e−03
+1.801e−03

X

Y

Z

(a) (b)

Fig. 5.33. Aluminium-steel plate assembly, plane stress. (a) Stress component σy (S22). (b) Strain compo-
nent εy (E22)). The x coordinate is horizontal, the y coordinate is vertical.

5.10 Background, explanations, details 159

5.10 Background, explanations, details

Box 16. Mechanical balance of a deformable body

We can consider a deformable body to be a collection of particles, and apply the Newton’s
equation of motion of elementary dynamics to each particle, mv̇ = F , where v̇ is the particle
acceleration, m is the particle mass, and F is the applied force. The complicating circumstance is
that a deformable body can be thought of as a collection (of infinitely many) particles, all interacting
through contact. Furthermore, our goal is to formulate a continuum model rather than deal with
the discrete collection of particles.

The model that we are going to formulate in this chapter is sometimes referred to as the model
of elastodynamics. When inertial effects are not important, i.e. when the accelerations are negligible,
the case of elastostatics results. Analyzing either of these is often referred to as stress analysis.
This denomination reflects the importance of quantitative assessment of stresses in structures in
engineering practice, but in general other quantities are of interest as well: accelerations, velocities,
displacements, natural frequencies, and so on.

Balance of linear momentum

Let us consider a body with some distributed force on parts of the boundary (the reactions must
be included) and distributed force in the volume (for instance, gravity-induced load). For simplicity,
we draw a sketch in two dimensions, but obviously we are thinking of a three-dimensional body;
see Fig. 5.34. The distributed force on the boundary is therefore in units force/length2, and units
of the distributed force in the volume are force/length3. The distributed force on the boundary is
customarily called the traction .

Fig. 5.34. A continuous body with applied distributed force on the boundary, and within the volume (on
the left). The same body cut up into many small volumes (particles), with their interaction represented by
distributed forces along the cuts (on the right).

The continuous body will be now divided into many very small (infinitesimally small) volumes,
which we may consider “particles”. The interaction between the particles is mediated by contact
forces (tractions) along the cuts between the particles. Assuming we know these forces, the Newton’s
equation may be applied to each separately. However, we will apply this equation in the form of the
change of linear momentum

d

dt
(mv) = F ,

from which the previous form of the equation of motion may be obtained provided m does not
change. In our case, this will be true because each small volume holds a certain amount of material
and does not exchange material with any other volume, so the mass of each volume is conserved.

160 FEM for Thermal and Stress Analysis

As a consequence of the above, we may write for each small particle volume j the change of its
linear momentum

d

dt
(mjvj) = F j , (5.59)

where we use for the mass of the particle mj = ρVj , with Vj the volume of the particle, and ρ the
mass density, vj the velocity, all at some point within the volume of the particle (we are using the
mean-value theorem to express integrals over the volume of the particle!). The force F j includes the
body force b and the tractions t on the surface of the particle volume

F j = bVj +

∫
Sint

tdS +

∫
Sext

tdS , (5.60)

where the surface integral is split into two parts (see Fig. 5.35): the interior surfaces Sint, where
two particle volumes are separated, and the exterior surfaces Sext.

Fig. 5.35. Isolated particle volume.

Now we will collect the contributions of Eq. (5.59) by summing over all the particles

N∑
j=1

d

dt
(mjvj) =

N∑
j=1

F j , (5.61)

which may be rewritten in the limit of infinitely many particles as integrals

d

dt

∫
m

vdm =

∫
V

bdV +

∫
Sext

tdS +

∞∑
j=1

∫
Sint,j

tdS , (5.62)

where the last term (the sum) is over all the shared surfaces that separate the particle volumes. Using
Newton’s third law of action and reaction, we may conclude that whenever two particle volumes share
a piece of their boundary, the traction at the material point A on the surface of particle 1 is equal
in magnitude but opposite to the traction at the same material point (the one that has been split
by the cut separating the two particles) at the corresponding point A on the surface of particle 2.
Since the sum is over all the pairs of such surfaces, the last term in Eq. (5.62) cancels, and the final
statement of the balance of linear momentum of the material in the volume V reads

d

dt

∫
m

v dm =

∫
V

b dV +

∫
S

t dS , (5.63)

where m is the total mass of the material inside the volume V , and S is the bounding surface of
the volume V . While the surface S and the volume V change with deformation, and hence are time-
dependent, the total mass of the material m does not change (the same particles that were inside
the volume before deformation are there during the deformation).

Force Distributed on a Surface and Stress

The traction vector t may be written in terms of components in a surface-aligned Cartesian basis
as t = tnn + t1e1 + t2e2, where tn is the normal component, and tr are the shear components

5.10 Background, explanations, details 161

(r = 1, 2). The Cartesian basis is defined at the given point on the surface by first taking the (outer,
unit) surface normal as the third basis vector, and then picking arbitrary orthogonal directions in
the tangent plane– see Fig. 5.36. The normal component is extracted as

tn = n · t . (5.64)

The shear part of the traction ts is obtained by subtracting the normal part of the traction from
the traction vector t

ts = t− tnn . (5.65)

Fig. 5.36. Components of traction.

Next we need to relate the traction on the surface to the deformation of the material just below
the surface. The deformation will be measured by strains, and the response of the material to the
strains will be related to the tractions on the surface (and any body loads, if present) through the
mathematical device of the stress.

First, inspect Fig. 5.37: it is possible to define such a Cartesian coordinate system in the vicinity
of a given point that the coordinate planes will cut out a (curvilinear) tetrahedron from the solid.
Our plan is to make this tetrahedron very small indeed, but to still contain the given point on the
surface. An enlarged image of such a tetrahedron is shown on the right, and we see how the curved
edges may be approximated by straight lines in the limit of a very small tetrahedron. The goal is
to relate the traction at the given point to the tractions on the internal cut planes, because these
tractions are representations of the stress in the volume.

Fig. 5.37. Relating the components of traction to stress.

In anticipation of the definition of stress, the traction components on the three flat cut planes,
with normals pointing against the three Cartesian basis vectors, are called σx, σy, σz (the normal
components), and τxy, τyx, τxz, τzx, τyz, τzy, for the shear components on all three planes. The areas
of the triangular faces of the tetrahedron are related as Ax = nxA, and so forth, where nx, ny, nz

162 FEM for Thermal and Stress Analysis

are the components of the unit normal, and Ax is the area orthogonal to the x-axis and so on; this
can be deduced from the volume of the tetrahedron in Fig. 5.38 written in terms of the heights d,
ix, iy, iz, and the corresponding areas.

Fig. 5.38. Components of traction.

When we write the conditions of equilibrium in all three directions (the volume forces do not
play a role; why?), the following three equations result

tx = σxnx + τxyny + τxznz ,

ty = τyxnx + σyny + τyznz , (5.66)

tz = τzxnx + τzyny + σznz .

This equation relates the components of the traction on the surface with the components of the
traction on the special surfaces – coordinate planes – inside the volume. The components of the
traction on the internal surfaces are called normal stresses (σx, σy, σz), and shear stresses (τxy,
τyx, τxz, τzx, τyz, τzy). The form of Eq. (5.66) suggests the matrix expression txty

tz

 =

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 nxny
nz

 , (5.67)

where all matrices hold components in the Cartesian basis. A component-free version would read

t = Σ · n ,

where Σ would be defined as a Cartesian tensor, the Cauchy stress tensor . The traction vector
and the normal would then also become tensors. However, in this book the tensor notation is avoided,
and with a few exceptions tensors will not be needed. The two exceptions that may be mentioned
here are coordinate transformations and the calculation of the principal stresses which are the
eigenvalues of the matrix of the stress components.

First we will consider transformation of vectors from one Cartesian coordinate system into an-
other. The Cartesian coordinate axes are defined by a triple of orthonormal basis vectors, one by
the basis triple ex, ey, ez and the other by the basis triple ex, ey, ez. An arbitrary vector u may be
written in terms of components and basis vectors in either coordinate system as

u = uxex + uyey + uzez = uxex + uyey + uzez . (5.68)

This may be written as a matrix expression, with the basis vectors as columns of matrices

u =
[
ex, ey, ez

] uxuy
uz

 =
[
ex, ey, ez

] uxuy
uz

 . (5.69)

Now consider that the basis vectors themselves may be expressed in terms of their components on
some basis: we will pick ex, ey, ez as that basis. On this basis we can write the components of the
vectors ex, ey, ez themselves as

5.10 Background, explanations, details 163

[ex] =

1
0
0

 , [ey] =

0
1
0

 , [ez] =

0
0
1

We can now write, entirely in components,

[
[ex], [ey], [ez]

] uxuy
uz

 =

1
0
0

 0
1
0

 0
0
1

uxuy
uz

 =

uxuy
uz

 .

The components of the vectors ex, ey, ez are

[ex] =

ex · exex · ey
ex · ez

 , [ey] =

ey · exey · ey
ey · ez

 , [ez] =

ez · exez · ey
ez · ez

 ,

where ex · ex is the cosine of the angle between the two vectors ex and ex, and so on, so that we
can write entirely in terms of components

[
ex, ey, ez

] uxuy
uz

 =

ex · exex · ey
ex · ez

 ,
ey · exey · ey
ey · ez

 ,
ez · exez · ey
ez · ez

uxuy
uz

 = [Rm]

uxuy
uz

 .

where we have defined the transformation matrix

[Rm] =

ex · ex, ey · ex, ez · ex
ex · ey, ey · ey, ez · ey
ex · ez, ey · ez, ez · ez

 , (5.70)

composed of the direction cosines. In words, the columns of the transformation matrix consist of
the components of the vectors ex, ey, ez on the basis vectors ex, ey, ez. The transformation matrix
is recognized as an orthogonal matrix (rotation matrix), whose inverse is its transpose

[Rm]
−1

= [Rm]
T

Thus we have the transformation of vector componentsuxuy
uz

 = [Rm]

uxuy
uz

 and

uxuy
uz

 = [Rm]
T

uxuy
uz

 . (5.71)

Now we take up again the relationship between the traction vector, the stress at a point, and
the normal to a surface through the point (5.67) txty

tz

 =

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 nxny
nz

 ,

and we consider what happens when both vectors are expressed using components in a different
coordinate system. We apply (5.71) as txty

tz

 = [Rm]

 txty
tz

 and

nxny
nz

 = [Rm]

nxny
nz

so that we can write txty

tz

 = [Rm]

 txty
tz

 =

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 nxny
nz

 =

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 [Rm]

nxny
nz

 ,

164 FEM for Thermal and Stress Analysis

or

[Rm]

 txty
tz

 =

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 [Rm]

nxny
nz

 ,

and finally txty
tz

 = [Rm]
T

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 [Rm]

nxny
nz

 .

Since one also has txty
tz

 =

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 nxny
nz

 ,

we conclude that the stress tensor components transform when switching between coordinate
systems as σx τxy τxz

τyx σy τyz
τzx τzy σz

 = [Rm]
T

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 [Rm] (5.72)

Of course, as for vectors this transformation also works back and forth so that σx τxy τxz
τyx σy τyz
τzx τzy σz

 = [Rm]

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 [Rm]
T
. (5.73)

Let us look at an example: The stress components are given at the point A on the surface of the
sphere in the Cartesian coordinate system with basis ex, ey, ez as

[σ] =

−350, −150, 0
−150, −350, 0

0, 0, −200

Transform the stress components to the Cartesian coordinate system ex, ey, ez which is defined so
that ex is in the xy plane, at an angle of 45◦ from ex, and ez = ez.

Solution: The transformation (5.72) needs to be applied. Therefore, the transformation matrix
[Rm] is needed. The basis vector ex and ez follow the definition

exb = array([math.sqrt(2.)/2, math.sqrt(2.)/2, 0])
ezb = array([0, 0, 1.])

The third vector is obtained using the vector cross product

eyb = cross(ezb, exb)

5.10 Background, explanations, details 165

Therefore we can write [Rm] with these three basis vectors as columns

The vectors exb, eyb, ezb are going to become the rows
of RmT; to get the actual rotation matrix we need
to transpose
Rm = array([exb, eyb, ezb]).T

and the transformed stress components are obtained from the formula as

sigb = dot(Rm.T, sig).dot(Rm)

giving the resulting stress matrix

array([[-500., 0., 0.],
[0., -200., 0.],
[0., 0., -200.]])

This means that the shear stresses τxy, τxz, τyz are all zero, and the normal stresses are σx =
−500, σy = −200, σz = −200. End of example.

The principal directions are normals to such special surfaces that the traction vector acting
on the surface has only a normal component. We write this statement as t̂xt̂y

t̂z

 = σ̂

 n̂xn̂y
n̂z

 . (5.74)

In words, the traction vector [t̂] has the same direction as the normal to the surface [n̂] and (signed)
magnitude σ̂. Substituting for the traction vector from (5.67) leads to σx τxy τxz

τyx σy τyz
τzx τzy σz

 n̂xn̂y
n̂z

 = σ̂

 n̂xn̂y
n̂z

 , (5.75)

This is a standard eigenvalue problem, and for the solution to exist one further equation must be
true

det

 σx τxy τxz
τyx σy τyz
τzx τzy σz

− σ̂
 1 0 0

0 1 0
0 0 1

 = 0 . (5.76)

This equation is equivalent to the search for the roots of the cubic characteristic equation

−σ̂3 + C2σ̂
2 + C1σ̂ + C0 = 0

where C2 = (σx+σy+σz), C1 = (τ2xy+τ2xz +τ2yz−σxσy−σxσz−σyσz), C0 = −σzτ2xy+2τxyτxzτyz−
σyτ

2
xz − σxτ2yz + σxσyσz. Consequently, this being a cubic equation there must be three such roots

– principal stresses–which we denote

σ̂j j = 1, 2, 3 ,

and three mutually orthogonal principal directions (eigenvectors) n̂xn̂y
n̂z

j

j = 1, 2, 3 .

The matrix of the stress components being real and symmetric guarantees that the roots of the
characteristic equation are always real, and also the existence of the three eigenvectors that are
orthonormal is guaranteed.

As an example we will find the principal stresses of the stress matrix

166 FEM for Thermal and Stress Analysis

[σ] =

−350, −150, 0
−150, −350, 0

0, 0, −200

Solution: While there are formulas for the roots of cubic equations, in finite element programs

principal stresses are normally computed numerically and here we shall solve the eigenvalue problem
using numerical methods built-in into the Python linalg.eig solver: First we define the array of
the stress components

sig = array([[-350.00, -150.00, 0],
[-150.0, -350.00, 0],

[0, 0, -200.0000]])

which is subsequently passed to the solver

D, V = linalg.eig(sig)

The principal stresses are in the array D

[-200. -500. -200.]

Note that they are not sorted. The principal directions are the columns of the array V

[[0.70710678 0.70710678 0.]
[-0.70710678 0.70710678 0.]
[0. 0. 1.]]

By convention in continuum mechanics the principal stresses should be ordered σ̂1 ≥ σ̂2 ≥ σ̂3.
Therefore, we can sort the array D and then reorder both arrays, switching the columns of the
principal-direction matrix (note that the sort is in ascending order, but we need the descending
order; hence we use the order array reshuffled from last to first, order[::-1])

order = argsort(D)
print(’Sorted principal stresses’)
print(D[order[::-1]]) # reverse the order to make it descending
print(’Sorted principal directions’)
print(V[:, order[::-1]])

The code above prints

Sorted principal stresses
[-200. -200. -500.]
Sorted principal directions
[[0. 0.70710678 0.70710678]
[0. -0.70710678 0.70710678]
[1. 0. 0.]]

so that the principal stresses and principal directions are explicitly

σ̂1 = −200 ,

 n̂xn̂y
n̂z

1

=

0
0
1

σ̂2 = −200 ,

 n̂xn̂y
n̂z

2

=

 0.70710678
−0.70710678

0

and

σ̂3 = −500 ,

 n̂xn̂y
n̂z

3

=

0.70710678
0.70710678

0

End of example.

5.10 Background, explanations, details 167

Balance of angular momentum and stress symmetry.

It would appear that there are nine components of stress that need to be related to the deformation,
but it is straightforward to show that in the matrix (5.67) the elements reflected with respect to
the diagonal must be equal: Consider a rectangular volume of material (again, for convenience the
drawing in Fig. 5.39 is of a two-dimensional nature, but the argument applies to three dimensions).
When the balance of angular momentum is written for the rotation about the axis orthogonal
to the plane of the paper, the normal stresses and any body forces will turn out to be negligible
compared to the effect of the shear stresses, and from the resultant equation we obtain the symmetries

τxy = τyx , τxz = τzx , τyz = τzy . (5.77)

Fig. 5.39. Components of traction.

Consequently, there are only six components of the stress that are independent. It will be con-
venient to manipulate these six components as a vector (as opposed to a tensor)

[σ] = [σx, σy, σz, τxy, τxz, τyz]
T . (5.78)

Equation (5.66) may be rewritten in terms of the stress vector σ as

t = Pnσ , (5.79)

where the matrix “vector-stress vector dot product” operator is defined as

Pn =

nx 0 0 ny nz 0
0 ny 0 nx 0 nz
0 0 nz 0 nx ny

 . (5.80)

Equation (5.79) may be used in a variety of ways: any of the three quantities may be given, which
would then for another quantity being fixed produce the third as the result. Most useful are these two
possibilities: t given, produce the stress vector in dependence on the normal; and σ given, produce
the surface tractions for various normals.

Here is an illustration: Stress components at a point are given as

σx = 9 , σy = −3 , σz = 3 , τxy = −2 , τxz = 0 , τyz = 2

Find the magnitude of the normal and shear traction on the plane with normal [n] = [2, 1, 2]T /3.
Solution: This can be done in two ways. Firstly we can organize the stress components in a square

matrix and use equation (5.67). Secondly we can use (5.79) with the stress vector form.
The first approach: The traction vector is computed from the matrix representing the stress

sig = array([[9.00, -2.00, 0.00],
[-2.00, -3.00, 2.00],
[0.00, 2.00, 3.00]])

168 FEM for Thermal and Stress Analysis

and the normal

n = array([2.0, 1.0, 2.0])
n = n/linalg.norm(n)

as t = dot(sig, n)

array([5.33333333, -1. , 2.66666667])

The normal component of the traction is tn = dot(t, n), that is 5.0. The shear part of the traction
is the difference between the total traction vector and its normal part

ts = t - tn * n

and the shear traction vector is

array([2. , -2.66666667, -0.66666667])

The magnitude of the shear traction vector is linalg.norm(ts), i.e. 3.399346342.
The second approach computes the projection matrix from the normal

Pn = array([[n[0], 0, 0, n[1], n[2], 0],
[0, n[1], 0, n[0], 0, n[2]],
[0, 0, n[2], 0, n[0], n[1]]])

and then from the stress vector

sigv = array([9.00, -3.00, 3.00, -2.00, 0.00, 2.00])
sigv.shape = (6, 1)

evaluates, after the normal vector is made into a column n.shape = (3, 1) so that the matrices
are compatible,

t = dot(Pn, sigv)
tn = dot(t.T, n)
ts = t - tn * n
print(linalg.norm(ts))

which results in the precisely the same results as before. End of example.
Another example: Stress components at a point are given as

σx = 9 , σy = −3 , σz = 3 , τxy = −2 , τxz = 0 , τyz = 2

Find the largest possible shear stress at the given point. This means the maximum of the shear
stress acting on all planes that can be passed through the point.

Solution: The maximum possible shear stress is computed from the principal stress values as

τmax =
σ1 − σ3

2

i.e. as half the difference between the largest and the smallest principal stress. The principal stress
values and the principal stress directions are computed from

sig = array([[9.00, -2.00, 0.00],
[-2.00, -3.00, 2.00],
[0.00, 2.00, 3.00]])

princstrs, princdirs = linalg.eig(sig)

order = argsort(princstrs)
print(’Sorted principal stresses’)
princstrs = princstrs[order[::-1]]
print(princstrs)
print(’Sorted principal directions’)
princdirs = princdirs[:, order[::-1]]
print(princdirs)

5.10 Background, explanations, details 169

which gives

Sorted principal stresses
[9.34156488 3.54921973 -3.89078461]
Sorted principal directions
[[0.98434176 0.09670745 0.14737356]
[-0.16810829 0.26356552 0.94988042]
[-0.05301792 0.95978169 -0.27569587]]

and the maximum shear stress is therefore found as τmax = (9.342 − −3.891)/2 = 6.616. Notably
the maximum shear stress appears in the Tresca failure criterion

τmax ≤
σf
2

where σf is the failure stress of the material in uniaxial tension. End of example.
Ductile materials (such as metals) are often considered in failure analyses in relation to the stress

quantity that describes the distortion of the volume of the material (no change in volume), the von
Mises equivalent stress.

One more example: Stress components at a point are given as

σx = 9 , σy = −3 , σz = 3 , τxy = −2 , τxz = 0 , τyz = 2

Find the Von Mises equivalent stress at the given point.
Solution: The von Mises equivalent stress may be computed from the principal stresses as

σvm =
1√
2

√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ3 − σ2)2

or directly from the components of the stress as

σvm =
1√
2

√
(σx − σy)2 + (σx − σz)2 + (σz − σy)2 + 6(τ2xy + τ2xz + τ2yz)

Substituting given stress components we obtain σvm = 11.489. The von Mises equivalent stress is
compared in the von Mises failure criterion

σvm ≤ σf

with the failure stress of the material in uniaxial tension σf . End of example.

Equation of Local equilibrium

In complete analogy to the model of heat conduction, the global balance equation (5.62) (in this case,
balance of linear momentum, for the heat conduction it was balance of heat energy (2.12)) needs
to be converted to a local form. The local form expresses dynamic equilibrium of an infinitesimal
particle as an equation that holds at a point.

There are three terms in the global balance (5.62), and to produce the local form we’ll have
to convert all three integrals to volume integrals. The first one involves the time derivative of the
integral

d

dt

∫
m

v dm .

However, that causes no difficulties since the mass m inside the volume V does not change with
time. Therefore,

d

dt

∫
m

v dm =

∫
m

dv

dt
dm . (5.81)

170 FEM for Thermal and Stress Analysis

Introducing the mass density ρ (which as mass per unit volume depends on the deformation, and
hence varies with time), we may write dm = ρdV and∫

m

dv

dt
dm =

∫
V

dv

dt
ρ dV . (5.82)

The divergence theorem may be now applied to the third term in (5.62), that is to the surface
integral. However, if we introduce the abstract symbol for the divergence of stress by spelling out
its definition, we generate more questions than answers. Therefore, it will be instructive to get to
the needed form of the divergence theorem in a roundabout way.

Consider a small volume (parallelepiped) with faces parallel to coordinate planes of the global
Cartesian basis (Fig. 5.40, and refer also to Fig. 5.34); for simplicity, the box is drawn as two-
dimensional, and it is drawn twice so that we can display the normal and the shear stresses separately.
The center of the box is at x, y, z, and the stress components may be expanded into a truncated
Taylor series. For instance,

σx(x+ ξ∆x, y + η∆y, z + ζ∆z) ≈ σx(x, y, z) +
∂σx(x, y, z)

∂x
ξ∆x

+
∂σx(x, y, z)

∂y
η∆y +

∂σx(x, y, z)

∂z
ζ∆z ,

where −1 ≤ ξ ≤ +1, −1 ≤ η ≤ +1, and −1 ≤ ζ ≤ +1.

Fig. 5.40. Components of traction as functions of x, y along the sides of the box.

The box is loaded only by the tractions on its boundary, there are no body loads. Equilibrium
in the x-direction requires integration of the stress σx over the vertical sides of the box, τxy over the
horizontal sides, and τxz over the faces parallel to the plane of the paper. For instance, integrating
σx over the side at ξ = 1 leads to

∆y∆z

∫ +1

−1

∫ +1

−1
σx(x+∆x, y + η∆y, z + ζ∆z) dηdζ ≈

∆y∆z

∫ +1

−1

∫ +1

−1

[
σx(x, y, z) +

∂σx(x, y, z)

∂x
∆x

+
∂σx(x, y, z)

∂y
η∆y +

∂σx(x, y, z)

∂z
ζ∆z

]
dηdζ .

The terms with η and ζ integrate to zero, and the result is

4∆y∆z

[
σx(x, y, z) +

∂σx(x, y, z)

∂x
∆x

]
.

Next, integrating σx over the side at ξ = −1 leads to

5.10 Background, explanations, details 171

∆y∆z

∫ +1

−1

∫ +1

−1
−σx(x+∆x, y + η∆y, z + ζ∆z) dηdζ ≈

∆y∆z

∫ +1

−1

∫ +1

−1

[
−σx(x, y, z) +

∂σx(x, y, z)

∂x
∆x

−∂σx(x, y, z)

∂y
η∆y − ∂σx(x, y, z)

∂z
ζ∆z

]
dηdζ .

The terms with η and ζ integrate to zero, and the result is

4∆y∆z

[
−σx(x, y, z) +

∂σx(x, y, z)

∂x
∆x

]
.

Adding these two together gives the total contribution of the stress σx as

8∆x∆y∆z
∂σx(x, y, z)

∂x
= ∆V

∂σx(x, y, z)

∂x
,

with the elementary volume ∆V = 8∆x∆y∆z. The same exercise is now repeated for the stress
components τxy and τxz, giving the total force on the elementary volume in the x-direction

∆b∗x = ∆V

[
∂σx(x, y, z)

∂x
+
∂τxy(x, y, z)

∂y
+
∂τxz(x, y, z)

∂z

]
, (5.83)

and analogously in the other two directions

∆b∗y = ∆V

[
∂τyx(x, y, z)

∂x
+
∂σy(x, y, z)

∂y
+
∂τyz(x, y, z)

∂z

]
, (5.84)

and

∆b∗z = ∆V

[
∂τzx(x, y, z)

∂x
+
∂τzy(x, y, z)

∂y
+
∂σz(x, y, z)

∂z

]
. (5.85)

Now the same argument that was established around Eq. (5.60) will be pursued: put together the
total force on the body by collecting the contributions from all the elementary volumes. This can be
done in two ways:

1. Add up all the tractions on the bounding faces of the elementary volumes. The tractions on the
shared faces (internal surfaces) will cancel; only the tractions on the exterior surface will be left:∫

S

t dS

2. Add up all the resultant equivalent volume forces (5.83-5.85), which in the limit will become a
volume integral∫

V

b∗ dV

where the imaginary force b∗ has components on the Cartesian basis

[b∗] =

∂σx(x, y, z)

∂x
+
∂τxy(x, y, z)

∂y
+
∂τxz(x, y, z)

∂z

∂τyx(x, y, z)

∂x
+
∂σy(x, y, z)

∂y
+
∂τyz(x, y, z)

∂z

∂τzx(x, y, z)

∂x
+
∂τzy(x, y, z)

∂y
+
∂σz(x, y, z)

∂z

(5.86)

and may be recognized as the stress divergence.

172 FEM for Thermal and Stress Analysis

These two forces are equal, and we have the following form of the divergence theorem∫
V

b∗ dV =

∫
S

t dS .

Using the template of the “vector-stress vector dot product” operator (5.80), we may write the stress
divergence as

b∗ = BTσ , (5.87)

where the stress-divergence operator BT is defined as

BT =

∂/∂x 0 0 ∂/∂y ∂/∂z 0
0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y

 . (5.88)

This operator (un-transposed) will make its appearance shortly yet again as the symmetric gradi-
ent operator to produce strains out of displacements. Using the definitions of both of these useful
operators, the divergence theorem may be written in terms of stress as∫

V

BTσ dV =

∫
S

Pnσ dS . (5.89)

Putting the three integrals from (5.62) into the volume-integral form leads to a pointwise expres-
sion of local equilibrium:∫

V

ρ
dv

dt
dV =

∫
V

b dV +

∫
V

BTσ dV ⇒ ρ
dv

dt
= b+ BTσ . (5.90)

This is a statement of dynamic equilibrium of a point particle: On the left-hand side we have
the inertial force (mass times acceleration), on the right-hand side is the body load and the force
generated by a stress gradient across the particle. Analogously to the heat conduction problem, this
local balance equation contains too many variables. The stress plays the role of the heat flux, and
it also will be replaced by reference to measurable variables – the strains.

End Box 16

Box 17. Strains and displacements

The strains measure the relative deformation, and based on the effect they represent when ex-
pressed in Cartesian coordinates, they may be divided into two groups: the normal strains (stretches),
and the shear strains.

The strains are an expression of the local variations in the positions of material particles after
deformation. The deformation (motion) is expressed as displacements. The displacement u is ex-
pressed in the Cartesian coordinates by components, and connects the locations of a given material
point (particle) A before deformation and after deformation

[u(A, t)] =

x(A, t)
y(A, t)
z(A, t)

−
x(A, 0)
y(A, 0)
z(A, 0)

 . (5.91)

It will be useful to approach the meaning of strains from the point of view of what happens to
tangents to material curves during the deformation. A material curve consists of the same material

5.10 Background, explanations, details 173

Fig. 5.41. Material curves, and tangents to material curves. Left: before deformation, right: after deforma-
tion.

points (particles) at any point in time. A visual may be useful: recall that some specimens have a
square grid etched upon them before they are being mechanically tested (deformed). The etching
curves that go in one direction may be thought of as sets of points whose one coordinate changes
and the other is being held fixed. Figure 5.41 shows a blob of material with two material curves
before and after deformation. Before deformation, the curve that is horizontal consists of points P
such that the coordinates are

[P] =

[
x

y = constant

]
,

and the curve that is vertical consists of points M such that

[M] =

[
x = constant

y

]
.

The parameter that varies along the curve through the point P is x. Therefore, the tangent vector
to this curve is

∂

∂x
[P] =

[
1
0

]
. (5.92)

The parameter that varies along the curve through the point M is y. Therefore, the tangent vector
to this curve is

∂

∂y
[M] =

[
0
1

]
. (5.93)

The tangent vectors (5.92) and (5.93) are of course just the basis vectors of the Cartesian coordinates.
After deformation, the curve that used to be horizontal consists of points P such that

[P] =

[
x+ ux

(y = constant) + uy

]
,

and the curve that is vertical consists of points M such that

[M] =

[
(x = constant) + ux

y + uy

]
.

Since these are material curves, they are still parameterized by the same parameters as before
deformation. Consequently, for the originally horizontal curve we have the tangent vector after
deformation

∂

∂x
[P] =

1 +
∂ux
∂x

∂uy
∂x

 . (5.94)

174 FEM for Thermal and Stress Analysis

The parameter that varies along the curve through the point M is y. Therefore, after deformation
the tangent vector to this curve is

∂

∂y
[M] =

∂ux
∂y

1 +
∂uy
∂y

 . (5.95)

The stretches measure the relative change in length of the tangent vectors at the same material
point before and after deformation. For instance, the tangent vector (5.92) is of unit length before
deformation, and the vector (5.94) is of length√

(1 +
∂ux
∂x

)2 + (
∂uy
∂x

)2 =

√
1 + 2

∂ux
∂x

+ (
∂ux
∂x

)2 + (
∂uy
∂x

)2 .

If we now make the assumption that the derivatives of the displacement components are very small
in magnitude,

|∂uk
∂j
| � 1, k, j = x, y, z , (5.96)

the length of the tangent vector may be expressed as√
1 + 2

∂ux
∂x

+ (
∂ux
∂x

)2 + (
∂uy
∂x

)2 ≈ 1 +
∂ux
∂x

,

and the relative change in length (the stretch in the x direction) is

1 +
∂ux
∂x
− 1

1
= εx .

The shears measure the change in the angle between originally orthogonal directions of pairs
of the Cartesian axes. Therefore, we could measure the change in the angle between the tangents of
two intersecting material curves before and after deformation. For the two curves in Fig. 5.41, the
initial angle is π/2; the cosine of the angle after the deformation is

∂

∂x
[P]T

∂

∂y
[M] = (1 +

∂ux
∂x

)
∂ux
∂y

+
∂uy
∂x

(1 +
∂uy
∂y

)

which, again using the assumption (5.96), gives for the change of the angle

∂ux
∂y

+
∂uy
∂x

= γxy .

In this way we define all six strain components: three stretches, and three shears. In fact, we
could have defined nine strains (components of the strain tensor), which would correspond to the
nine components of the Cauchy stress tensor. However, we will stick to the vector representation in
this book.

The six strain components are a mixture of the derivatives of the displacement components, and
may be expressed in an operator equation, using the definition (5.87)

ε = Bu , (5.97)

where B is called the symmetric gradient (or strain-displacement) operator.
The components of the strain are

[ε]T = [εx, εy, εz, γxy, γxz, γyz]
T (5.98)

Note the transpose, the strain vector has six rows and one column. The first three components are
the stretches, the last three components are the shears.

5.10 Background, explanations, details 175

End Box 17

Box 18. Elastic constitutive equation

The stress now needs to be linked to the strains. Then we will be in a position to replace it in
the balance equation (5.90) by reference to the primary variable, the displacement. As for the heat
conduction model, this link is the constitutive equation.

The constitutive equation that will be of interest in this book is the model of linear elasticity .
It is expressed as a linear relationship between the strain and the stress, and since these are vectors,
the linear relationship, the constitutive equation , is expressed as a matrix product

σ = Dε , (5.99)

where D is a 6× 6 matrix of the elastic coefficients (also known as the elasticities); D may be also
referred to as the material stiffness matrix. If the material stiffness matrix changes from point to
point, we call the material inhomogeneous; otherwise when the matrix is uniform across the material,
we call the material homogeneous.

The total energy density stored in the material in the volume dV is

φ(ε) =
1

2
εTDε dV . (5.100)

Mathematically, the expression 1
2ε
TDε is known as a quadratic form. One interesting property

of the quadratic form is that the unsymmetrical part of the matrix D does not contribute to the
energy:

1

2
εTDε =

(
1

2
εTDε

)T
=

1

2
εTDT ε ⇒ 1

2
εT (D −DT)ε = 0 .

Because the energy of deformation is a fundamental quantity, from physical principles, and from
the point of view of mathematical modeling, this is a very good reason for postulating a priori the
symmetry of the material stiffness, D = DT .

Material stiffness of linearly elastic materials

The strain displacement operator (symmetric gradient operator) (5.97) links displacements in terms
of their components in the global Cartesian basis to strains. The strains could be expressed in the
same Cartesian basis, but need not be. In fact, it will be most useful not to express the strains in
the same global Cartesian coordinate system. The motivating factor is the constitutive equation:
For some materials it will be important to keep track of the local orientation of the material volume.
For instance, fiber reinforced materials will have very different stiffness properties along the fibers
as opposed to orthogonally to the fibers.

The components of the material stiffness matrix (or the material compliance matrix) are to be
understood as being expressed in the local coordinate system ex, ey, ez attached to the material
point in the form of the rotation matrix (7.40).

General anisotropic material. Because of the symmetry of the material stiffness, for the most general
elastic material the number of elastic coefficients is only 21 out of the total of 36 elements of the
material stiffness matrix. Still, to identify all of these constants represents a major experimental
effort, and few engineering materials are characterized as fully anisotropic.

176 FEM for Thermal and Stress Analysis

Orthotropic material. If a material has three mutually orthogonal planes of symmetry, it is known as
an orthotropic material. For instance wood is often characterized as such type of material, and fiber-
reinforced composites are in more sophisticated analyses also treated as orthotropic. The compliance
matrix

C = D−1 ,

has a pleasingly simple appearance

C =

E1
−1 , −ν12

E1
, −ν13

E1
, 0 , 0 , 0

−ν12
E1

, E2
−1 , −ν23

E2
, 0 , 0 , 0

−ν13
E1

, −ν23
E2

, E3
−1 , 0 , 0 , 0

0 , 0 , 0 , G12
−1 , 0 , 0

0 , 0 , 0 , 0 , G13
−1 , 0

0 , 0 , 0 , 0 , 0 , G23
−1

.

All nine coefficients are independent, and need to be provided as input [4]. The material stiffness
matrix is a bit of a mess. The nonzero elements are

D11 =
C22C33 − C23C23

C
, D12 =

C13C23 − C12C33

C
,

D13 =
C12C23 − C13C22

C
, D22 =

C33C11 − C13C13

C
,

D23 =
C12C13 − C23C11

C
, D33 =

C11C22 − C12C12

C
,

D44 = G12, D55 = G13, D66 = G23.

Here C = C11C22C33 − C11C23C23 − C22C13C13 − C33C12C12 + 2C12C23C13.

Transversely isotropic material. If a material has an infinite number of planes of symmetry passing
through an axis (in this case, the local x-axis), and one plane of symmetry orthogonal to this axis, it
is known as a transversely isotropic material. Unidirectionally reinforced composites are of this type,
as are for instance muscles. The direction of the fibers is special (oriented along the local x-axis), but
the material behaves isotropically in the planes orthogonal to the fibers. Layered materials are also
modeled as transversely isotropic: here the direction orthogonal to the layers is special. Figure 5.42
offers an illustration of these two types.

Fig. 5.42. Transversely isotropic model is appropriate for layered or fiber-reinforced materials

The compliance matrix is obtained from the orthotropic compliance by setting E2 = E3, ν12 =
ν13, G12 = G13, and importantly

G23 =
E2

2(1 + ν23)
,

requiring five independent constants, E1, E2, ν12, G12, and ν23.

5.10 Background, explanations, details 177

Isotropic material. If a material has an infinite number of planes of symmetry of all possible orien-
tations, it is known as an isotropic material. The compliance matrix of isotropic material is based
on two material properties, for instance the Young’s modulus E and Poisson’s ratio ν

C =

E−1 , − ν
E
, − ν

E
, 0 , 0 , 0

− ν
E
, E−1 , − ν

E
, 0 , 0 , 0

− ν
E
, − ν

E
, E−1 , 0 , 0 , 0

0 , 0 , 0 , G−1 , 0 , 0

0 , 0 , 0 , 0 , G−1 , 0

0 , 0 , 0 , 0 , 0 , G−1

.

The shear modulus G is not independent, but is expressed as

G =
E

2(1 + ν)
.

The material stiffness is then

D =

λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 ,

where we introduce the Lamé constant

λ =
Eν

(1 + ν)(1− 2ν)

for convenience.

End Box 18

Box 19. Plane Strain and Plane Stress, and Axisymmetric Model Reduction

We can reduce the three-dimensional elastodynamic model to require solutions in terms of only
two space variables (and the time). This is possible by introducing various assumptions for strains
or stresses (and some restrictions on the form of the constitutive equation and loads).

Plane strain model reduction

The starting point is the observation that for some solids of uniform cross-section (right angle
cylinders), such as the one shown in Fig. 5.43, the set of assumptions that (i) uz(x, y, z) = 0, and
ux = ux(x, y), uy = uy(x, y) seems to approximate the deformation well. As examples consider a
long pipe under internal pressure (well removed from any valves or caps), or a straight concrete dam,
or the midsection of a wall panel. The reduction to two space variables will be possible if the third
balance equation is satisfied by design

178 FEM for Thermal and Stress Analysis

Fig. 5.43. Right-angle cylinder

∂τzx
∂x

+
∂τzy
∂y

+
∂σz
∂z

+ bz = ρüz .

The identically vanishing uz also implies εz = 0. Furthermore, we have for the shear strains

γzx = 0, γzy = 0 .

Provided the constitutive equation allows, the conjugate shear stresses may also vanish. The condi-
tion for τzx is (ii)

τzx = [D]5,(1:6)[ε] = 0 ,

where [D]5,(1:6) is taken to mean columns 1 through 6 of row 5. This condition is satisfied provided
the coefficients of the material stiffness that multiply the nonzero strains are zero,

D51 = D52 = D54 = 0 .

Symmetry also implies D15 = D25 = D45 = 0. Analogously, for the stress τzy the conditions on the
material stiffness coefficients applies to row 6 (column 6). The situation is illustrated in Fig. 5.44:
coefficients which could be nonzero are filled, coefficients which must be zero are marked as such,
and coefficients which are probably best set to zero are blanks (those would couple τxy and σz).

The general orthotropic material (See Box 18) complies with these conditions provided (iii)
one of the orthotropy axes is aligned with the z−axis. A more general material model could be
devised, but for practical purposes it is sufficient to consider the orthotropic material.

Fig. 5.44. Entries of the material stiffness matrix for plane strain

As a consequence of the assumptions on the displacements, and of the constraints on the form
of the material stiffness, the third equilibrium equation becomes

∂σz
∂z

+ bz = 0 .

But since we already have εx = εx(x, y) and εy = εy(x, y), we can write

σz = [D]3,(1:2)

[
εx
εy

]
,

5.10 Background, explanations, details 179

and we see that σz = σz(x, y) provided (iv) all the coefficients [D]3,(1:2) and [D](1:2),3 are functions
of x, y but not of z. Then, the equilibrium equation simply becomes (v) a definition of the admissible
loads

bz = 0 .

The boundary conditions consistent with the modeling assumptions and constraints (i)-(v) are

• top and bottom plane: uz = 0, tx = 0, ty = 0;
• cylindrical surface: mixture of essential and natural boundary conditions, where none of the fixed

components depend on z.

The initial conditions satisfy the modeling assumptions and constraints (i)-(v) provided the initial
displacements and velocities do not depend on z.

Since εz = 0, the constitutive equation is written for the nonzero normal stresses and the shear
stress as σxσy

τxy

 =

[
[D](1:2),(1:2) 0

0 D44

] εx
εy
γxy

 . (5.101)

The stress-divergence operator for the plane strain model with just two balance equations and
three stresses assumes the form

BT =

[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

]
. (5.102)

At this point we are still dealing with the three-dimensional elasticity problem. However, when
we substitute all the assumptions and constraints into the Eqs. (7.53), (7.55), (7.56), (7.57), (7.58),
and (7.60), the following observations are made. Firstly, the values of all the degrees of freedom in
the direction of the z-axis are known to be zero. Secondly, all the loads in this direction are also
zero. Consequently, the third equilibrium equation may be ignored, and the test and trial function
will have only two components, x and y. Thirdly, all the volume integrals may be precomputed in
the z direction as all the integrands are independent of z. Thus, for instance the stiffness matrix
integral (7.59) may be written as

K(j,i)(k,m) =

[∫
V

BT (Nj(x))DB (Nk(x)) dV

]
im

= (5.103)[∫
S

BT (Nj(x))DB (Nk(x)) ∆z dS

]
im

. (5.104)

Here ∆z is the thickness of the slab in the z direction, S is the cross-sectional area of the cylinder.
Only σx, σy, τxy (and correspondingly εx, εy, γxy) matter, and the strain-displacement matrix is the
transpose of (5.102).

Plane stress model reduction

The plane stress model idealizes the following situation: imagine a thin slab of uniform thickness
(the technical term would be membrane) with both plane surfaces at the top and bottom (see
Fig. 5.45) traction free, and the boundary conditions on the cylindrical surface independent of the
z coordinate. Based on energy considerations we may presume that only the in-plane stresses would
play a major role.

Therefore, we formulate a model starting from (i) the assumptions ux = ux(x, y), uy = uy(x, y),
and uz symmetric with respect to the midplane of the membrane. To reduce the problem to two
dimensions, we have to try to get rid of the third equilibrium equation.

∂τzx
∂x

+
∂τzy
∂y

+
∂σz
∂z

+ bz = ρüz .

180 FEM for Thermal and Stress Analysis

Fig. 5.45. Right-angle cylinder/thin slab/membrane

Neither of the stresses in it will be exactly zero, since the corresponding strains are in general nonzero.
Nevertheless, making an inference from the uniform, and small, thickness of the membrane, we adopt
yet another assumption, (ii) |τzx| � 1, |τzy| � 1, and |σz| � 1. Next, (iii) the through-the-thickness
body load component is assumed to be zero, bz = 0. Finally, in order for the third equilibrium
equation to be truly negligible, (iv) we invoke the symmetry with respect to the midplane, and
establish that the integral of this equation through the thickness of the membrane will vanish, i.e.
the resultant orthogonal to the plane of the membrane will vanish∫ h/2

−h/2

∂τzx
∂x

+
∂τzy
∂y

+
∂σz
∂z

+ bz dz =

∫ h/2

−h/2
ρüz dz = 0 .

Furthermore, in order to comply with the symmetry requirement, we shall assume that (v) the
material is orthotropic, with one orthotropy axis orthogonal to the midplane. The material stiffness
matrix will therefore have the appearance shown in Fig. 5.46.

Fig. 5.46. Entries of the material stiffness matrix for plane stress

As the last step, the strain εz is eliminated from the constitutive equation. Assuming σz ≈ 0, we
have

σz = [D]3,(1:3)

 εxεy
εz

 ≈ 0 ,

which gives

εz = −D−133 [D]3,(1:2)

[
εx
εy

]
.

Therefore, we obtain[
σx
σy

]
=
[
[D](1:2),(1:2), [D](1:2),3

] εxεy
εz

 =

(
[D](1:2),(1:2),−D−133 [D](1:2),3[D]3,(1:2)

) [εx
εy

]
, (5.105)

5.10 Background, explanations, details 181

which together with τxy = D44γxy may be substituted into the first two equilibrium equations,
rendering them functions of x, y only, provided (vi) the body load is bx = bx(x, y), by = by(x, y).

The boundary conditions consistent with the modeling assumptions and constraints (i)-(vi) are

• top and bottom plane traction-free (tz = 0, tx = 0, ty = 0);
• cylindrical surface: mixture of essential and natural boundary conditions, where none of the fixed

components depend on z.

The initial conditions satisfy the modeling assumptions and constraints (i)-(vi) provided the initial
displacements and velocities do not depend on the z coordinate.

Model reduction for axial symmetry

The last model reduction approach to be discussed in this chapter, is the case of torsionless axial
symmetry (Fig. 5.47). The main assumption is that (i) all planes passing through the y axis are
symmetry planes. (The y axis will be referred to as the axis of symmetry.) Therefore, points in any
particular cross-section move only in the radial and axial direction, and do not leave the plane of the
cross-section (the circumferential displacement is identically zero). Furthermore, points on circles in
planes orthogonal to the axis of symmetry, with centers on the axis of symmetry, experience the
same radial and axial displacements.

Fig. 5.47. Axially symmetric geometry

Let us consider one particular cross-section, for instance as indicated in Fig. 5.47. Since the
displacements in the plane of the cross-section are symmetric with respect to the axis of symmetry,
we will consider only the part to one side of the axis of symmetry (hatched in Fig. 5.47). The reduction
from three equations of equilibrium to two equations in the plane of the cross-section, where x is
the radial direction, and y is the axial direction, will succeed provided the equilibrium equation in
the direction orthogonal to the plane of the cross-section (z) is satisfied. Thus, we consider

∂τzx
∂x

+
∂τzy
∂y

+
∂σz
∂z

+ bz = ρüz ,

where as the first simplification we note uz = 0→ üz = 0. Furthermore, by symmetry we must have
bz = 0.

Concerning the stresses: As indicated in Fig. 5.48, by assumption the circles in planes orthogonal
to the axis of symmetry are transformed by the deformation again into circles in planes orthogonal to
the axis of symmetry. Therefore, right angles between the plane of the cross-section and the tangent
to the circle where it intersects the cross-section will remain right angles, and the shear strains are
γzx = 0, and γzy = 0. If the material is (ii) orthotropic, with one axis of orthotropy orthogonal to
the cross-section (for instance a wound composite, with the reinforcing fibers running approximately
in circles around the axis of symmetry), we may conclude that τzx = 0, and τzy = 0. Finally, since

182 FEM for Thermal and Stress Analysis

the material on a given circle experiences the same stress in all cross sections, ∂σz/∂z = 0 (while in
general σz 6= 0). Conclusion: the equation of motion in the z direction for each cross-section plane
(and in particular the one in which the two-dimensional model is formulated) is satisfied exactly.

Fig. 5.48. Axially symmetric geometry: geometry of circles in planes orthogonal to the axis of symmetry

It remains to express the circumferential strain in terms of the displacements in the plane of the
cross-section. By inspection of Fig. 5.48, displacement of the circle in the y direction does not change
its circumference, while displacement radially means that the circle of radius x will experience strain

εz =
2π(x+ ux)− 2πx

2πx
=
ux
x
.

The strain-displacement operator for this model may therefore be written as

B =

∂/∂x 0

0 ∂/∂y
1/x 0
∂/∂y ∂/∂x

 . (5.106)

The stress divergence operator (the transpose of (5.106)) gives the reduced form for the equations
of equilibrium (5.90)

∂σx
∂x

+
∂τxy
∂y

+
σz
x

+ bx = ρüx

∂τxy
∂x

+
∂σy
∂y

+ by = ρüy

where the presence of σz should be noted: recall that the equation of motion in the radial direction
holds for a wedge-shaped element, hence the contribution of the circumferential stress to the radial
direction must be included.

The constitutive equation is obtained from the full three-dimensional relationship by extracting
appropriate rows and columns

σx
σy
σz
τxy

 =

[
[D](1:3),(1:3) 0

0 D44

]
εx
εy
εz
γxy

 . (5.107)

End Box 19

Box 20. Boundary conditions for stress analysis

The boundary conditions for general three-dimensional stress analysis may be expressed as
(see (5.80))

5.10 Background, explanations, details 183

ti = (Pnσ)i = ti on St,i for i = x, y, z (5.108)

as the traction (natural) boundary condition for the ith component, and

ui = ui on Su,i for i = x, y, z (5.109)

as the displacement (essential) boundary condition for the ith component. When setting up
a finite element model, note that the natural boundary condition need only be specified explicitly
when ti 6= 0; the case of ti = 0 is implicitly active when we say nothing. In particular, no boundary
condition needs to be explicitly defined for any component for a traction-free surface.

End Box 20

Box 21. Derivation of weighted residual equations for stress analysis

Incorporation of the natural boundary conditions

The natural boundary condition leads to the residual

rt,i = (Pnσ)i − ti on St,i for i = x, y, z , (5.110)

which will be incorporated into the balance residual equation, and the displacement boundary con-
dition (5.109) gives the residual

ru,i = ui − ui on Su,i for i = x, y, z , (5.111)

that will be made zero by the choice of the trial functions (which takes care of the step 2).
The weighted residual equations are integrals of the residuals over the corresponding surface.

Since the displacement boundary condition residual is identically zero, it may be ignored. The
traction boundary condition residual equation reads∫

St,i

rt,iϑi dS ,

or, expanded,∫
St,i

rt,iϑi dS =

∫
St,i

[
(Pnσ)i − ti

]
ϑi dS = 0 . (5.112)

Rearranging the balance equation (5.90) into the residual form leads to

rB = ρ
dv

dt
− b− BTσ , (5.113)

which is a statement of imbalance when the force residual is nonzero.
The balance weighted residual reads∫
V

ϑ · rB dV =

∫
V

ϑ ·
(
ρ

dv

dt
− b− BTσ

)
dV , (5.114)

where ϑ is a vector test function (with three components). At this point, we only require that the
test function be sufficiently smooth for the integral to exist. The dot product of the residual and the
vector test function is written in the “dot” form; when the weighted residual equation is written in
terms of the components, transposes must be used as

∫
V

ϑ · rB dV =

∫
V

[rB]T [ϑ] dV =

∫
V

[ϑ]T [rB] dV .

184 FEM for Thermal and Stress Analysis

Shifting of derivatives

While the first two terms on the right-hand side of (5.113) present no difficulties, the stress term
needs to be treated similarly to the previous two models to move one derivative from the stress to
the test function. Therefore, in the next few paragraphs we focus on the integral∫

V

ϑ · BTσ dV .

It will be sought as one constituent of the chain-rule result (analogously to Eq. (3.137) for the heat
conduction). The inner product of ϑ and σ may be expressed using the vector-stress vector dot
product operator (5.80) in the form Pϑσ (which is a vector). Therefore, we need an identity for

the chain rule applied to the divergence div
(
Pϑσ

)
: in one

div
(
Pϑσ

)
= (Bϑ) · σ + ϑ · BTσ . (5.115)

It may not be immediately clear why the right-hand side has this form, but to verify this formula
is straightforward, albeit tedious. Expressing the rightmost term of (5.115) by the other two, we
obtain

∫
V

ϑ · BTσ dV =

∫
V

div
(
Pϑσ

)
dV −

∫
V

(Bϑ) · σ dV .

The divergence theorem (2.18) may be applied to the first term on the right to yield

∫
V

ϑ · BTσ dV =

∫
S

(
Pϑσ

)
· n dS −

∫
V

(Bϑ) · σ dV .

The traction boundary condition (5.108) references Pnσ. To extricate this form from
(
Pϑσ

)
· n

we note that the result of this dot product is a scalar (a number). This indicates that the stress is
involved in a double dot product: the stress tensor is dotted with one vector, which is subsequently
dotted with the second vector. Indeed, it is easily verified by multiplying through that(
Pϑσ

)
· n = (Pnσ) · ϑ .

As a result we obtain∫
V

ϑ · BTσ dV =

∫
S

ϑ · (Pnσ) dS −
∫
V

(Bϑ) · σ dV .

It will be useful to summarize the balance weighted residual (5.114) now as∫
V

ϑ · rB dV =

∫
V

ϑ · ρdv

dt
dV −

∫
V

ϑ · b dV

−
∫
S

ϑ · (Pnσ) dS +

∫
V

(Bϑ) · σ dV . (5.116)

Boundary conditions

The surface will now be split, for each component, into the part where traction is known, and the
part where displacement is being fixed∫

S

ϑ · (Pnσ) dS =
∑

i=x,y,z

∫
St,i

ϑi (Pnσ)i dS +

∫
Su,i

ϑi (Pnσ)i dS ,

where ϑi = (ϑ)i is the ith component of the test function. On the St,i subset the traction component
i is known from (5.108), but on the Su,i subset of the bounding surface, the component i of the

5.10 Background, explanations, details 185

traction is not known, it represents the reaction. To be able to ignore the reactions, we will resort
to the same trick as for the other PDE models, namely we will put in place the requirement

ϑi = 0 on Su,i .

Therefore, with the constraint on the trial function to satisfy the essential boundary conditions on
Su,i, and a constraint on the test function to vanish on Su,i, we have the weighted balance residual∫

V

ϑ · ρdv

dt
dV −

∫
V

ϑ · b dV −
∑

i=x,y,z

∫
St,i

ϑi (Pnσ)i dS +

∫
V

(Bϑ) · σ dV (5.117)

To the weighted balance residual (5.117) we now add the weighted residuals of the natural boundary
condition (5.112) and set the result equal to zero.∫

V

ϑ · ρdv

dt
dV −

∫
V

ϑ · b dV −
∑

i=x,y,z

∫
St,i

ϑi (Pnσ)i dS +

∫
V

(Bϑ) · σ dV

+
∑

i=x,y,z

∫
St,i

ϑi
[
(Pnσ)i − ti

]
dS = 0 (5.118)

We can see that the terms with ϑi (Pnσ)i cancel and we obtain the final form of the weighted
residual equation∫

V

ϑ · ρdv

dt
dV −

∫
V

ϑ · b dV −
∑

i=x,y,z

∫
St,i

(ϑ)i ti dS +

∫
V

(Bϑ) · σ dV = 0

ui = ui and (ϑ)i = 0 on Su,i for i = x, y, z .

(5.119)

So far we have been using the velocity and the stress vector for convenience and brevity, but to
produce a displacement-based computational model these will have to be replaced by references to
the displacement field. Using

v =
du

dt
⇒ dv

dt
=

d2u

dt2
= ü ,

and the constitutive equation (5.99) and the displacement-strain relation (5.97), the form that goes
into the discretization process reads∫

V

ϑ · ρü dV +

∫
V

(Bϑ) ·DBu dV −
∫
V

ϑ · b dV −
∑

i=x,y,z

∫
St,i

(ϑ)i ti dS = 0 (5.120)

ui = ui and (ϑ)i = 0 on Su,i for i = x, y, z .

Box 22. Method of weighted residuals as the principle of virtual work

An alternative route to Eq. (5.119) is via the principle of virtual work. The test function is
interpreted as a virtual displacement . The constraint on the test function is postulated a priori:
virtual displacement is kinematically admissible. The various terms in (5.119) are interpreted as
the virtual work of the inertial forces, applied body load, applied tractions, and internal forces.

This approach tends to seem somewhat arbitrary, since a number of concepts are postulated to
be taken on faith. In this book we therefore avoid this viewpoint. Nevertheless, it may be useful
to be aware of these possible interpretations of the various terms as virtual quantities (especially
work).

End Box 22

186 FEM for Thermal and Stress Analysis

Box 23. Integration for two-dimensional models

As discussed earlier, the volume integrals for plane strain, such as the one required for the stiffness
matrix, incorporate the third dimension as a “thickness”. Integration through the third dimension
reduces to multiplication with the thickness.

Fig. 5.49. Volume integration for axisymmetric analysis

The volume integrals for the axial-symmetry model reduction approach differ from plane stress
or plane strain in that the “gratis” integration in the third direction is performed along the circum-
ference of the rotationally symmetric body, not “through the thickness”. For instance, the stiffness
matrix integral (7.59) may be written as

K(j,i)(k,m) =

[∫
V

BT (Nj(x))DB (Nk(x)) dV

]
im

=[∫
S

BT (Nj(x))DB (Nk(x)) 2πx dS

]
im

, (5.121)

where 2πx dS is the volume element of the ring generated by revolving the area dS around the axis
of symmetry y—compare with Fig. 5.49. The volume integration may be performed by numerical
quadrature over the area S but using a volume Jacobian

∫
V

f dV =

∫
S

f2πx dS ≈
M∑
k=1

f(ξk, ϑk)Jvol(ξk, ϑk)Wk ,

where the volume Jacobian is defined as (det [J(ξk, ϑk)] is the surface Jacobian)

Jvol(ξk, ϑk) = 2πx(ξk, ϑk) det [J(ξk, ϑk)] . (5.122)

In this way, all volume integrals are performed in exactly the same way, be they defined over a
three dimensional manifold (solid), a two-dimensional manifold (surface equipped with a thickness,
or swept around an axis of symmetry), a one dimensional manifold (curve equipped with a cross-
sectional area), or a zero-dimensional manifold (point endowed with a chunk of volume).

Traction loads, such as prescribed pressure on part of the bounding surface, need to be evaluated
with surface integrals. Quite analogously to the volume integration, in the reduced analysis the
surface integrals are numerically evaluated along curves, but the Jacobians are surface Jacobians.
Compare with Figs. 5.45 and 5.50: for instance, for axial symmetry the surface Jacobian is

Jsurf(ξk) = 2πx(ξk) det [J(ξk)] . (5.123)

Here det [J(ξk)] is the curve Jacobian (3.157).

5.10 Background, explanations, details 187

Fig. 5.50. Surface integration for axisymmetric analysis

End Box 23

Box 24. Inadmissible “concentrated” boundary conditions

Fig. 5.51. Concentrated force as the limit of traction on infinitesimally small area.

Consider that a resultant force of magnitude F is to be applied along the z-direction, that is
orthogonal to the surface shown in Fig. 5.51, as traction tz applied to the area ∆x∆y. As we need
to have

F = tz∆x∆y ,

if ∆x → 0, ∆y → 0, the traction component must approach infinity tz → ∞. In addition, since
from the boundary conditions we have σz = tz, we must conclude that in the immediate vicinity
of the infinitesimal patch on the surface, at least some of the stresses must approach infinity as the
traction component approaches infinity. The problem of a force applied to an infinite half space has
been solved analytically by Boussinesq and others [7], and perhaps the most significant conclusion
is that the displacement under the force is infinite. Consequently, for any finite force, the energy in
the system is infinite. As a consequence, we should remember the following caveats when using a
concentrated force as a boundary condition:

1. Trying to obtain a converged solution for the displacement under the force or for the energy is
pointless;

2. Displacements and stresses near the point of application of the force are most likely wrong for
any purpose;

3. Displacements or stresses removed from the point of application of the force may be useful, but
we have to always ask ourselves whether the concentrated force is truly needed or whether we
use it only because we haven’t thought the problem through.

Furthermore, as a corollary, we must conclude that if we apply a displacement boundary condition
at a point, the associated reaction will be zero in the limit, which is wrong, unless we can guarantee
for instance from global force equilibrium conditions that the reaction should be zero.

188 FEM for Thermal and Stress Analysis

Very similar analysis may be performed for a distributed load along a curve: Figure 5.52. To
maintain a finite value of the distributed load (force per unit length) as ∆y → 0, the traction tz
must approach infinity. The same list of caveats applies.

Fig. 5.52. Distributed load along a curve as the limit of traction on infinitesimally small area.

To summarize, the following should be remembered for concentrated force boundary conditions:

Do not use the concentrated force or force along a curve boundary condition unless it is
essential. Remember the caveats.

Furthermore, this should be remembered for concentrated displacement boundary conditions
(support at a point, or support along a curve):

Do not use the concentrated support boundary condition unless the associated reaction is
guaranteed to be zero.

End Box 24

Box 25. Symmetry and anti-symmetry

Considerable benefits may be often derived when the solution is expected to possess either sym-
metry, or anti-symmetry.

For the solution to display symmetry with respect to reflection in a symmetry plane, all the
ingredients that go into the definition of the problem must display the same kind of symmetry: the
geometry, the material, the boundary conditions, the initial conditions.

Let us first look at the conditions that must hold for the displacements on the plane of symmetry:
Figure 5.53. By inspection, we see that the arrow representing displacement at point P is reflected
into an arrow at point P ′ which is best described in components which are (i) in the plane of sym-
metry: these are the same for both arrows; and (ii) orthogonal to the plane of symmetry: these have
opposite signs. Therefore, if P is made to approach the plane of symmetry, its mirror image merges
with it when they both reach the plane of symmetry (point M), and since the two displacements
then must be the same, we may conclude that the orthogonal component of displacement u⊥ at a
point on the plane of symmetry must be zero

u⊥ = 0 . (5.124)

Now for the tractions on the plane of symmetry. By the symmetry conditions, the shear part of the
traction at point M on the surface with normal n must be equal to the shear part of the traction
on the surface with the opposite normal −n, i.e.

5.10 Background, explanations, details 189

Fig. 5.53. Symmetric displacement pattern.

ts(−n) = ts(n) .

Furthermore, using equation (5.65) we have

ts(n) = t(n) −
(
n · t(n)

)
n ,

and substituting from (5.80) with σ being the stress at the point M (which is the same irrespectively
of the normal)

ts(n) = Pnσ − (n · Pnσ)n ,

ts(−n) = P−nσ − (−n · P−nσ) (−n) = −Pnσ + (n · Pnσ)n = −ts(n) .
In order for both requirements to be satisfied,

ts(n) = 0 , (5.125)

must hold.

Fig. 5.54. Anti-symmetric displacement pattern.

The state of anti-symmetry with respect to reflection in a plane is defined by conditions
that specify it as the opposite of symmetry. The situation is illustrated in Fig. 5.54. The arrow
representing displacement at point P is transformed into an arrow at point P ′ which in terms of
components gives (i) opposite sign parallel with the plane of anti-symmetry; and (ii) same sign in
the direction orthogonal to the plane of anti-symmetry. Therefore, when P is made to approach
the plane of symmetry and its mirror image merges with it at point M , we conclude that the two
components of displacement u‖,i at a point on the plane of symmetry must be zero

u‖,i = 0 for the two in-plane directions i . (5.126)

For the tractions, an analysis quite similar to that leading to Eq. (5.125), but applied to the normal
component of the traction, leads to the condition

t⊥ = 0 . (5.127)

Therefore, we can summarize the boundary conditions on the plane of symmetry or on the plane of
anti-symmetry with the delightfully simple Table 5.2.

The boundary conditions that need to be explicitly prescribed in finite element analyses are boxed
in the Table 5.2: zero tractions are incorporated automatically (natural boundary conditions!) and
need not be explicitly specified. Note that the unknown tractions are the reactions.

190 FEM for Thermal and Stress Analysis

Table 5.2. Boundary conditions on the plane of symmetry or anti-symmetry

Quantity Symmetry Anti-symmetry

Tractions ‖ 0 unknown

Displacements ‖ unknown 0

Traction ⊥ unknown 0

Displacement ⊥ 0 unknown

End Box 25

Box 26. Alternative indexing for heat conduction

The WR equation (3.67) may be rewritten using an alternative indexing. For each free degree of
freedom, 1 ≤ (j) ≤ Nf , where j is the node number, we write one equation

N∑
(i)=1

T(i)
∑
e

∫
e

gradNj κgradNT
i ∆z dS −

∑
e

∫
e

NjQ ∆z dS = 0 . (5.128)

The symbol

N∑
(i)=1

T(i) (5.129)

means sum over all the nodes i such that the degree of freedom number 1 ≤ (i) ≤ N .

End Box 26

5.11 Code listings

pnpT3thermal.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017, Petr Krysl
4 #
5 """
6 Strain patterns calculated for a single triangle.
7 """
8

9 from numpy import array, dot, linalg
10

11 ##
12 xall = array([[-1, -1/2], [3, 2], [1, 2]]) #Coordinates of the nodes
13 conn = [1, 2, 3] # The definition of the element, listing its nodes
14

15 gradNpar = array([[-1, -1], [1, 0], [0, 1]]) #Gradients of the basis fncs wrt
the param. coords

16 zconn = array(conn)-1
17 x = xall[zconn,:] # The coordinates of the three nodes
18 J = dot(x.T, gradNpar) # Compute the Jacobian matrix
19 gradN = dot(gradNpar, linalg.inv(J))
20

21 def Bn(gradNn):
22 """
23 One-liner function to compute the nodal strain-displacement matrix.
24 """
25 return array([[gradNn[0], 0],
26 [0, gradNn[1]],
27 [gradNn[1], gradNn[0]]])
28

29 B1=Bn(gradN[0,:])
30 B2=Bn(gradN[1,:])
31 B3=Bn(gradN[2,:])
32

33 from sympy import symbols, Matrix, simplify
34

35 DeltaT, CTE, E, nu, t = symbols(’DeltaT CTE E nu t’)
36 D = E/(1-nu**2)*Matrix([[1, nu, 0], [nu, 1, 0], [0, 0, (1-nu)/2]])
37 eth = DeltaT*CTE*Matrix([1, 1, 0]).reshape(3, 1)
38 sig = D*eth
39 Se = linalg.det(J)/2
40 F1 = simplify(Se*t*B1.T*sig)
41 F2 = simplify(Se*t*B2.T*sig)
42 F3 = simplify(Se*t*B3.T*sig)
43 print(’Thermal forces’)
44 print(’Node 1:’, F1)
45 print(’Node 2:’, F2)
46 print(’Node 3:’, F3)

Listing 5.1. pnpT3thermal.py

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/pnpT3thermal.py

6

How to deal with errors

6.1 Where is this applicable?

It is important to realize that in this chapter we can talk about both the heat conduction finite
element models and the stress analysis finite element models. Table 6.1 summarizes the correspon-
dence between the heat conduction and stress analysis models. In each row we have quantities that
correspond to each other in the models.

Designation of type Heat conduction Stress analysis

Primary quantity Temperature Displacement
Derived quantity Temperature gradient Strains
Flux quantity Heat flux Stress

Table 6.1. Comparison of the heat conduction and stress analysis models

The implication is that when we state something for the heat conduction model in terms of
temperature, it will also apply to the stress analysis model expressed in terms of displacement.
For instance, we know that the heat conduction finite element model can always represent linear
variation of temperature exactly. Analogously, we know that the stress analysis finite element model
can exactly represent linear displacements.

The value of this analogy will become obvious below, where when we say something about the
error for the much simpler model of heat conduction, it will be directly applicable to the more
complicated model of stress analysis.

6.2 Simple examples

First we look at an example. We pick a problem that has an analytical solution so that one can
define true errors for the quantity v as

Ev,h = vex − vh (6.1)

as the difference between the true solution vex and the computed solution vh, where by the notation
·h we mean that the computed solution was obtained with a finite element mesh and h indicates
some measure of the properties of the mesh (here it means the element size).

The variable can be anything of interest in the solution of the problem. For instance, for a heat
conduction problem the variable v could stand for the temperature, or the heat flux, or perhaps
the temperature gradient at some point (local, or pointwise, quantity). It could also be a global
quantity, such as the total heat flux through a face of the domain, or the global range of temperatures
(maximum minus minimum).

194 FEM for Thermal and Stress Analysis

In the examples below we consider heat conduction through a wall, and we observe the error in
the temperature and the error in the heat flux. The appealing characteristic of this problem is its
one-dimensional character. The analytical solution is easily derived, and the finite element models
are also very straightforward.

6.2.1 Uniformly heated wall

A wall is exposed to given temperature T = 0oC at both faces. Heat is generated internally at the
uniform rate Q. We use a mesh of seven equal-length L2 finite elements. Our goal is to compute the
exact error of the temperature and of the heat flux. Set L = 6m, κ = 4W/m/oK, Q = 0.1W/m3.

Fig. 6.1. Wall with prescribed temperatures at the boundary and uniform internal heat generation. Finite
element mesh of seven L2 elements.

The solution is abbreviated as follows: The numbering of the nodes is shown in Figure 6.1. The
free degrees of freedom 1,...,6 are assigned to the nodes 2,...,7. The elements are numbered left to
right. Therefore, the elementwise conductivity matrices and source heat load vectors are assembled
as

[K] =
κ

L/7

2, −1, 0, 0, 0, 0
−1, 2, −1, 0, 0, 0

0, −1, 2, −1, 0, 0
0, 0, −1, 2, −1, 0
0, 0, 0, −1, 2, −1
0, 0, 0, 0, −1, 2

and

[F] =
QL

7

1
1
1
1
1
1

The solution is

[T] =

T1
T2
T3
T4
T5
T6

 =
QL2

49κ

3
5
6
6
5
3

The two degrees of freedom T7 = T8 = 0oC are known, and so we can plot the finite element solution
using the trial function expansion

T (x) =

8∑
i=1

N〈i〉(x)Ti

6.2 Simple examples 195

Fig. 6.2. Wall with prescribed temperatures at the boundary and uniform internal heat generation. The tem-
perature distribution on the left, dotted curve exact, solid curve approximate. The error of the temperature
on the right.

and compare with the analytical solution. In Figure 6.2 (on the left) the dotted curve is the analytical
solution, the finite element solution is the solid curve. The error is there, but perhaps difficult to see
at this resolution. It is visible that the finite element solution agrees with the exact solution at the
nodes (it doesn’t happen in general, only in 1-D!). The character of the error of the temperature is
clearly brought out in Figure 6.2 (on the right) which displays the error

ET,h(x) = Tex(x)− Th(x)

On each of the seven L2 elements the temperature error is represented by a little parabolic arc. The
error is zero at the nodes.

The error of the primary variable (temperature) apparently depends on the curvature of
the exact solution: the finite element solution has curvature zero within each element.
So the more curved the exact solution, the bigger the error. Conversely, if the true
solution was linear, the finite element solution would match it exactly.

The heat flux is computed using the definition

q = −κT ′

The gradient of the temperature is computed using the definition of the trial function

T ′(x) =

8∑
i=1

N ′〈i〉(x)Ti

It can be computed conveniently element-by-element taking advantage of the fact that over each
element only two basis functions are nonzero. We write for the L2 element that connects nodes K,M

T ′(x) = N ′〈K〉(x)TK +N ′〈M〉(x)TM

where we easily work out N ′〈K〉(x) = −1/h and N ′〈M〉(x) = +1/h, with h being the length of the
element, so that

T ′(x) =
TM − TK

h

and the heat flux is within the element K,M

196 FEM for Thermal and Stress Analysis

q = −κTM − TK
h

Note that within each element the heat flux is uniform, which goes hand-in-hand with the linear
variation of the temperature within the element. For instance, for element 1 we get

q = −κ
QL2

49κ × 3− 0

L/7
= −3QL

7
= −0.2571

Compare the calculated value with Figure 6.3. The horizontal lines represent the uniform heat flux
within each element. The true heat flux is indicated with the continuous dotted line. The difference

Fig. 6.3. Wall with prescribed temperatures at the boundary and uniform internal heat generation. The
heat flux on the left, dotted curve exact, solid curve approximate. Error of the heat flux on the right.

between the discontinuous curve of the finite element heat fluxes and the continuous line of the true
heat flux is the error of the heat flux. In Figure 6.3 on the right the error in the heat flux is shown
and we see that it is represented by a linear function within each element.

The finite element solution for the heat flux can only produce constant values within
each element. How big can the heat flux error get? The larger the element, the larger it
gets: the error of the heat flux depends on the size of the element linearly. Conversely,
if we make the elements smaller, the absolute value of the heat flux error will also
decrease.

6.3 Interpolation errors

In this section we will consider interpolation errors. The finite element solution in general does not
interpolate the exact solution– meaning that the finite element nodal value is different from the
value of the exact solution at the node, but it turns out that the interpolation errors are related to
the actual errors in the numerical solution. We will not investigate this relationship, suffice it to say
that the errors of the actual finite element solution and the errors of the interpolation of the true
solution on the finite element mesh are related, and we can understand where errors occur and how
to control them in terms of the simpler errors, the errors of interpolation.

We will estimate the difference between the “true” distribution of temperature, T (x), and an
interpolation of this function on a finite element mesh, ΠhT (x). Here h means the element “size”,
or characteristic dimension. Typically, element size is taken to mean edge length, or the diameter of
the smallest ball that completely encloses an element –see Figure 6.4.

6.3 Interpolation errors 197

Fig. 6.4. Element size h as a “diameter” of an element: diameter of the tight-fitting circle that encloses a
triangle or a quadrilateral, and of the smallest sphere that is circumscribed to a tetrahedron

6.3.1 Interpolation error of temperature

Let us pretend we know the true distribution of temperature. We can approximate this true distri-
bution on the finite element mesh by interpolation: The interpolating function is defined as

ΠhT (x) =
∑
k

Nk(x)T (xk) , (6.2)

where xk is the location of the node k, and T (xk) is the value of the temperature at the location of
the node k. Figure 6.5 offers a visual of what it means to approximate the true curve by a broken
line (which is the representation of the interpolating function on a mesh consisting of L2 elements).

Fig. 6.5. Interpolating the temperature function on a mesh

Then we can write the error of the interpolation as proportional to some power of the element

size See Box 27

|T (x)−ΠhT (x)| ≈ hβ , (6.3)

For instance, specializing this to the simplest finite elements, L2 in one dimension, T3 and Q4 in
two dimensions, and four-node tetrahedra T4 and six node hexahedra H8 in three dimensions, we
can write

|T (x)−ΠhT (x)| ≤ C
(
∂2T

)
h2 , (6.4)

where we agree to mean by C
(
∂2T

)
some constant whose magnitude depends on the curvatures of

the function T . Curvature here means second derivatives of the temperature. (Parabolic distribution
would have constant curvature.)

From a practical standpoint, it is really important to realize that the curvature of the temperature
distribution is proportional to the first derivatives of the gradient of temperature, and since in our
linear model the gradient of temperature is proportional to the heat flux, the curvature of the
temperature can be measured by looking at how fast the heat flux changes from point to point. So
the constant C

(
∂2T

)
may be understood as measuring the rate of change of the heat flux in the

immediate neighborhood of a given point.
The value of Equation (6.4) is twofold:

• Firstly, it states that the errors of interpolation will get bigger the higher the curvature of the
function of the exact temperature T (that is the faster the heat flux is changing) and the bigger
the elements (i.e. the error will increase with h2). So to find locations in the mesh where the
errors are large, we look for places where the heat flux changes strongly, and where the elements
are large;

198 FEM for Thermal and Stress Analysis

• Secondly, if we are interested in the error at a given location, the curvature of the true solution
at that location needs to be considered given, and the Equation (6.4) then says that the error
at that location can be controlled by decreasing the element size, as the error will diminish as
O(h2) as h → 0 (order-of estimate: reduce h with a factor of two, and the error will decrease
with a factor of four, i.e. = 22).

6.3.2 Interpolation error of temperature gradient

To estimate errors for the gradient of temperature, we start with the interpolation (6.22), of which

we take the gradient. See Box 27 We obtain

|gradT (x)− gradΠhT (x)| ≤ C
(
∂2T

)
γh . (6.5)

Here C
(
∂2T

)
is the same curvature-dependent constant as above: large curvature of the temperature

means a large error constant, and vice versa. In addition, there is another factor related to the
“shape” of the element. This factor comes in through the needs to differentiate the temperature:
poorly shaped elements would tend to amplify errors due to differentiation. More below.

The value of Equation (6.5) is again twofold:

• Firstly, it states that the errors of interpolation for the gradient of temperature will get bigger
the higher the curvature of the function of the exact temperature T , the larger the elements (i.e.
the error will increase with h), and the larger the quality measure γ (i.e. the worse the shape of
the triangle);

• Secondly, considering the curvatures of the temperature function at a fixed location as given,
equation (6.5) states that the error can be reduced by making the element size h smaller, so the
error will decrease as O(h) as h→ 0. Note that this is one order lower than for the temperature
itself: when we reduce reduce h with a factor of two, and the error will decrease with the same
factor.

The visualize the effect of the shape of the element, let us consider a triangular element with
three nodes. To estimate the magnitude of the gradient of the basis function, we invoke the picture
of the basis function as a plane that assumes value one at one node and drops off to zero along the
opposite edge. Therefore, the largest magnitude of the basis function gradient will be produced by
the smallest height in the triangle. The shortest height dmin may be estimated from the radius of
the largest inscribed circle, ρ (see Figure 6.29), as dmin ≈ O(ρ). This can be linked to the so-called
“shape quality” of a triangle using the quality measure

γ =
h

ρ
. (6.6)

Fig. 6.6. Triangle quality measures using the radius of the inscribed circle and the diameter of the cir-
cumscribed circle. Good (almost equilateral) triangle on the left; bad triangles (obtuse, needle-like) on the
right.

Considered from yet another angle, take the right angle triangle in Figure 6.7. The temperatures
at the three corners of the triangle are T1, T2, and T3. Because of its shape we can calculate the
gradient across this triangle to be

6.4 Estimation of True Solution 199

gradΠhT (x) =

[
T2 − T1

d
,
T3 − T1

b

]
(6.7)

Now let’s take T1 = T2. The correct slope in the x direction is then zero.

gradΠhT (x) =

[
0,
T3 − T1

b

]
(6.8)

If the triangle is very skinny, d� b, any small change of T2 could lead to large error in the gradient.
For instance, change T2 to read T2 = T1 + ε(T3 − T1), where we take ε very small (for instance
ε = 1/1000). Then T2 − T1 = ε(T3 − T1), and the gradient then becomes

gradΠhT (x) =

[
ε(T3 − T1)

d
,
T3 − T1

b

]
=

[
εb

d

(T3 − T1)

b
,
T3 − T1

b

]
(6.9)

It is now easy to see that if the fraction εb/d is comparable to 1.0, a very small difference in
temperatures at the second node (T2 = T1 −→ T2 = T1 + ε(T3 − T1)) results in an error of the
gradient of the temperature which is comparatively speaking huge.

Fig. 6.7. Illustration of how a poorly shaped triangle can magnify errors in temperature to become large
errors in temperature gradient

Importantly, Equation (6.5) allows us to make a general observation: the quantity calculated
in the finite element solution is the temperature, the gradient (or, alternatively, the heat flux) is
obtained by differentiation of the computed temperature, which immediately results in a reduction
of the order of dependence on the mesh size. Phrased differently: the temperature results will con-
verge faster than the temperature-gradient results (or, equivalently, heat flux results), because h2

approaches zero much quicker than h as h→ 0.

For linear elements the error of the heat flux depends linearly on the element size. It also
depends on the rate of change of the heat flux: the faster the heat flux changes around
the point, the greater the error will be at that location. Finally, the error depends on
the shape of the elements: poorly shaped elements will leads to larger errors.

6.4 Estimation of True Solution

The observation that the error depends on the element size we made earlier in this chapter is very
important. The element size is one of the knobs we can use to control the error. We can create a
so-called graded mesh by changing the element size to reflect the distribution of error: large error
– small elements and vice versa. If we set up the finite element procedure to solve the problem
repeatedly with graded meshes designed to respect the distribution of error, we obtain the so-
called adaptive refinement technique, or h−adaptive refinement method . The h stands for
the element size as the control of the error.

On the other hand, we could try to reduce the error by increasing the number of terms matched in
the Taylor series (6.20). This could be achieved by using higher order polynomials as basis functions.
The resulting procedure would be called the p−adaptive refinement method , where the p stands
for the polynomial order as the control of the error.

200 FEM for Thermal and Stress Analysis

In this book, we will select the polynomial order of the elements only by choosing the element type,
linear or quadratic. We will not do this adaptively which would involve increasing the polynomial
order in a targeted fashion, locally, and to much higher order than just quadratic. Hence, we will
focus on the control of the error by adjusting the element size.

6.4.1 The uses of the element-size control

As discussed above, we will adopt the point of view of the h−adaptive refinement method. In order
to be able to control the error, it must depend on the element size h, and furthermore it must be
expressible as a positive (but not necessarily integral) power of h. Only then decreasing h will lead
to a reduction of the error. For instance, for quantity q we require for the error

Eq(h) = qex − qh ≈ Chβ , (6.10)

as the error then can be reduced by decreasing the element size

lim
h→0

Eq(h) = lim
h→0

Chβ = 0 for β > 0 . (6.11)

The exponent of the element size β is called the convergence rate (or rate of convergence).

We require the error to depend on the mesh size, but how do we get it? The answer is:
by element design. If we use a properly designed finite element, one that is appropriate
for the task at hand, the properties of the FE will guarantee convergence.

Equation (6.5) tells us how to reduce the error. Consider that at a given location x, C
(
∂2T

)
cannot be controlled as it is determined by the behavior of the exact solution at x. What we can
influence is the shape of the elements (γ), and the element size (h). Now let the point x range across
the computational domain. At some locations C

(
∂2T

)
is small, and at others it is large.

As an illustration, let us contemplate Figure 6.8. The copper part is axially symmetric, and
temperatures are prescribed at the top (circular) and bottom (cylindrical) surfaces, while all the
other surfaces are insulated. The generating cross-section was used for axially symmetric modeling.

Abaqus
- CAE file

The heat flux arrows are shown at the quadrature points. The constant C
(
∂2T

)
will be large

where the heat flux arrows either strongly change direction or strongly stretch or shrink (or both).
Intuitively, those are the locations where reducing the error will make a difference. In Figure 6.8 this
is the vicinity of the reentrant corner. The error is not large in the upper vertical portion of the part
even though the heat flux arrows are large: the heat flux does not change there, all the arrows are
roughly the same size and the same direction.

In the locations where the error constant is large, the elements should be made smaller. How
much? The answer to that question is somewhat elusive: in general a trial and error procedure
or iteration will be required to construct a mesh that delivers the answer within acceptable error
bounds. Automatic procedures to estimate the relative desired element size are becoming available
in commercial softwares, and the trend is nowadays to provide some means for the user of finite
element softwares to estimate and control error. Abaqus provides an automatic adaptive procedure.
Figure 6.9(a) shows the temperature distribution on the adaptively refined mesh (the fifth iteration
of the process). Clearly the adaptive process thinks elements should be made much smaller around
the corner, and can be actually very large in the top portion of the domain.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/t-shape-heat-flux.cae

6.4 Estimation of True Solution 201

X

Y

Z

(a) (b)

Fig. 6.8. Copper axially-symmetric part. Temperatures prescribed at the top and bottom surfaces, all others
insulated. (a) Geometry, the generating section is shown shaded. (b) Heat flux, shown as arrows whose length
indicates the magnitude.

X

Y

Z X

Y

Z

(a) (b)

Fig. 6.9. Copper axially-symmetric part. Temperatures prescribed at the top and bottom surfaces, all others
insulated. Adaptively refined mesh and the solution. (a) Temperature distribution. (b) Heat flux, shown as
arrows.

202 FEM for Thermal and Stress Analysis

To summarize, the h−adaptive method will attempt to control the error by designing
graded meshes, with small elements located in regions of expected high error, and
proportionally large elements elsewhere.
A very good indication of the presence of large errors are the so-called reentrant
corners (concave corners), where the solution typically displays singularities in the
form of infinite curvature(s) of the temperature directly in the corner: the heat flux
direction (and perhaps also the magnitude) changes discontinuously in the corner.

6.5 Richardson extrapolation

The second important use of the fact that the error decreases asymptotically as some power of the
element size is a procedure to improve the estimate of the exact (true) answer based on a series of
calculated solutions: in other words, element-size-based extrapolation.

Richardson extrapolation is a way of extracting an asymptotic estimate of some quantity of
interest from a series of its computed values. If we assume that the true error in the quantity q may
be expanded in a Taylor series at element size h = 0, we may write

Eq(h) = qex − qh ≈ Chβ , (6.12)

where qex is the unknown true value of the quantity, qh is the approximate value for nonzero h,
Eq(h) is the true error, C is an unknown constant of the leading term hβ , with β, again, unknown.
Provided C, and β do not depend on h for small element sizes (this is presumed to hold in the
so-called asymptotic range), we might be able to compute all of the three quantities qex, C, and
β, if three numerical solutions, qhi , are obtained for three different element sizes hi, h1 < h2 < h3.
(It does not matter whether the solutions are obtained with uniform or graded meshes, but there’s
a caveat: see below.)

Remarkably, the estimate of the exact solution is available from a very easily solvable equation
if the condition

h2
h1

=
h3
h2

= α ,

holds, where α < 1 is the so-called refinement factor, as we may then combine

qex − qh1

qex − qh2

=
hβ1

hβ2
and

qex − qh2

qex − qh3

=
hβ2

hβ3
,

to yield an estimate of the true solution as

qex =
q2h2
− qh1

qh3

2qh2
− qh1

− qh3

. (6.13)

Alternatively put, we have the estimated true error

Eq(hj) = qex − qhj . (6.14)

It is then straightforward to extricate the other two quantities. The constant C is of limited value, but
the exponent β is the rate of convergence. The computation is implemented in the Python function
richextrapol. The detailed derivation of the Richardson extrapolation procedure (applicable even

Python
- script

for non-uniform refinement factor α) is provided in See Box 28 .
Extrapolation is a tricky procedure in general. Therefore, before we attempt the Richardson ex-

trapolation (6.13) to estimate the true error, the so-called approximate error should be considered.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/richextrapol.py

6.6 Graded meshes 203

Eq,j = qhj+1 − qhj . (6.15)

It relies only on computed quantities, qhj+1 , and qhj for two different meshes with element sizes
hj+1 and hj . We can expect it to be more “honest” about the approach to the true solution than
the extrapolation formula. The property of the approximate error that makes it so useful is that
it depends on the element size in the same way as the true error. We can see that by adding and
subtracting the true value to/from the approximate error as

Eq,j = qhj+1
− qhj = qhj+1

− qhj + qex − qex .

Regrouping the terms we obtain

Eq,j =
(
qhj+1 − qex

)
+
(
qex − qhj

)
= −Eq(hj+1) + Eq(hj) . (6.16)

i.e. as the difference of the true errors for the element sizes hj and hj+1. Consequently, we see that
in the limit of the element size decreasing towards zero the approximate error will behave as a
power of the element size, and the convergence rate will be the same as that of the true error of
equation (6.12). We show this by introducing (6.12) into (6.16) to obtain

Eq,j = −Eq(hj+1) + Eq(hj) = −Chβj+1 + Chβj

If all the meshes are related by a constant mesh refinement factor α < 1 such that the element sizes
for two successive meshes are hj+1 = αhj , we arrive at

Eq,j = −Chβj+1 + Chβj = −C(αhj)
β + Chβj =

(
1− αβ

) (
Chβj

)
=
(
1− αβ

)
Eq(hj) (6.17)

In words, the approximate error Eq,j is within a constant factor of the true error Eq(hj), provided
a constant refinement factor α is used.

6.6 Graded meshes

A word on the meaning of the element size in graded meshes is in order. The element size in
graded meshes varies from point to point, as opposed to uniform meshes, where the element size
does not vary from location to location. If we take one particular graded mesh M0, and produce a
series of progressively finer meshes from M0 by scaling the element size as a function of x by the
same number α < 1 everywhere in the domain, we may extrapolate with respect to the refinement
factor α, instead of the element size which would be the natural choice for uniform meshes. For
instance, mesh M1 would be produced with element size h1(x) = αh0(x), mesh M2 with element
size h2(x) = αh1(x) = α2h0(x), and so on. Note that we are keeping the refinement factor constant
when going from mesh M0 to M1 to M2 and so on. The extrapolation formula (6.13) relies on this.

Graded meshes not produced by the process just described are not suitable for extrapolation. An
example is shown in Figure 6.10 which presents three meshes for an adaptive solution process (with
quadratic triangles). The goal of the adaptive remeshing is to design a mesh that distributes the

Abaqus
- CAE file

error equally to all the elements and consists of the target number of elements. As we can see, the
mesh is strongly focused around the perimeter of the hole. Importantly, while from mesh 1 to mesh
2 to mesh 3 the elements around the hole are getting smaller, at the same time they are actually
getting much bigger near the right-hand-side edge (with the distributed tensile load). So, there is
no consistency in the change of the element size within the mesh: while at one point the elements
are getting smaller, elsewhere they may be getting larger. It is not possible to extrapolate from the
results for this mesh sequence, as there is no variable with respect to which the extrapolation could
be performed.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/unsymmplatewhole.cae

204 FEM for Thermal and Stress Analysis

X

Y

Z X

Y

Z X

Y

Z

Fig. 6.10. Thin aluminium slab with a circular opening. Left to right: Initial mesh (mesh 1), mesh 2, mesh
3. Each of the meshes corresponds to one adaptive solution in succession.

Meshes produced by adaptive processes (such as those of Figure 6.10) will not allow
extrapolation to be performed. There is no constant refinement factor α to produce
mesh j + 1 from mesh j, hj+1(x) = αhj(x). Rather, the meshes are generated from
the condition that the local error be equilibrated across the mesh (each element should
have about the same “amount of error”). This naturally means that the refinement
factor varies from point to point. The precondition of the application of the Richardson
extrapolation is therefore absent.

6.6.1 Thin aluminium slab: estimation of maximum tensile stress

The maximum tensile stress in a thin aluminium slab with a circular hole placed off-center was
studied by Szabó and Babuška [8]. Using the p-version of the finite element method they estimated
this stress as 259.2 MPa. The dimensions of the three-dimensional slab are shown in Figure 6.11, and
the material properties were taken as representative of the aluminium alloy 6061-T6, E = 70 GPa,
ν = 0.35. The part is here studied as a plane-stress case (as in [8]). The plane of symmetry was
applied, plus a point support in the y direction to suppress rigid body displacement.

Z

Y

X

X

Y

Z

Fig. 6.11. Thin aluminium slab: dimensions and orientation

Three models were used to calculate the maximum of the largest principal stress. Figure 6.13(a)
shows the coarsest mesh (model 1), and Figure 6.13(b) shows the finest mesh (model 3). The element

Abaqus
- CAE file

size was varied with the mesh refinement factor α = 4/5. The seeds for the coarsest mesh are shown
in Figure 6.13 — the part seed dictates what the element size should be away from places where edge
seeds are used. Three of the edges have associated edge seeds. The two straight edges are associated
with local biased seeds, where the minimum and maximum element size along the edge is given.
The circular edge is associated with a local unbiased seed where only the average element size is
given (0.13). The mesh generated from these prescriptions for model 1 was shown in Figure 6.13(a).
For model 2, all the numbers in Figure 6.13 are multiplied by the refinement factor α = 4/5.
For model 3 the process is repeated, so that the seed numbers in Figure 6.13 are multiplied with

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/unsymmplatewhole.cae

6.6 Graded meshes 205

S, Max. In−Plane Principal

−5.887e+00
+1.392e+01
+3.372e+01
+5.352e+01
+7.332e+01
+9.313e+01
+1.129e+02
+1.327e+02
+1.525e+02
+1.723e+02
+1.921e+02
+2.119e+02
+2.317e+02

X

Y

Z

S, Max. In−Plane Principal

−4.233e+00
+1.652e+01
+3.727e+01
+5.802e+01
+7.877e+01
+9.953e+01
+1.203e+02
+1.410e+02
+1.618e+02
+1.825e+02
+2.033e+02
+2.240e+02
+2.448e+02

X

Y

Z

(a) (b)

Fig. 6.12. Thin aluminium slab with a circular opening. (a) Largest principal stress for model 1. (b) Largest
principal stress for model 3.

α2 = (4/5)2 = 16/25. This procedure is crucial for the applicability of extrapolation: provided the
meshes are generated using this algorithm, the required limit values can be extrapolated with the
respect to the sequence of numbers α0 = 1, α1 = α = 4/5, and α2 = 16/25 as the independent
variable.

X

Y

Z

Fig. 6.13. Thin aluminium slab with a circular opening. Association of mesh seeds with the part and the
edges for model 1

When we inspect the distribution of the principal stress, especially in the close-up of Figure 6.14,
we can appreciate that even with the finest mesh used in this study the results are not anywhere
near “converged”: the representation of the stress is blocky, and the transitions from element to
element are clearly visible. Nevertheless, such results can be used for extrapolation. The value of
extrapolation then is that it (a) provides an improved estimate of the solution without the need for
excessively fine mesh, and (b) can be used to judge how reliable such estimate will be.

Model Result in MPa

1 231.7
2 239.1
3 244.8

Table 6.2. Un-symmetric plate with a hole. Results of the refinement study. Target quantity: Maximum of
the largest principal stress.

206 FEM for Thermal and Stress Analysis

S, Max. In−Plane Principal

−4.233e+00
+1.652e+01
+3.727e+01
+5.802e+01
+7.877e+01
+9.953e+01
+1.203e+02
+1.410e+02
+1.618e+02
+1.825e+02
+2.033e+02
+2.240e+02
+2.448e+02

X

Y

Z

Fig. 6.14. Thin aluminium slab with a circular opening. Close-up of the largest principal stress for model
3 near the circular opening.

Now we can discuss the actual extrapolation: The results obtained with the three meshes are
summarized in Table 6.2. We can use the Python function richextrapol. We define the solution

Python
- script

list (page 220)

86 sol = [231.7, 239.1, 244.8]

and the list of the element sizes only needs to define values in the correct ratios (these are actually
the powers of the refinement factor): the absolute values of the element sizes will not be needed in
the extrapolation:

87 h = [(4./5.)**i for i in range(0, 3)]

i.e. [1.0, 0.8, 0.64]. The function richextrapol can then be applied as
Python
- script

88 xestim, beta, c, residual = richextrapol(sol, h)
89 print(’xestim, beta, c =’, xestim, beta, c)

giving

xestim, beta, c = 263.91176470588067 1.1697126080157385 32.21176470588068

to yield the estimate of the limit value of the largest principal stress (263.9 MPa), but also the
convergence rate (1.17), and the constant in (6.12). Finally, also the accuracy with which these
quantities have been calculated are returned. The estimated true errors can be presented on a log-log
scale graph: Figure 6.15. We can appreciate that the error of the best solution (model 3) with respect
to the predicted true solution is around 8%. We would probably strive for engineering accuracy, say
below 5%. This would be an argument then for not using the actual computed numbers, but rather
to attempt to go to the limit to improve our guess of the true solution.

We should always check the quality of the extrapolation using the approximate errors. The
approximate errors of the maximum of the largest principal stress are computed as

91 Ea = diff(sol)

that is

[7.4 5.7]

If the approximate errors indeed depend on the element size through a power relationship then there
is a way of presenting the data graphically to confirm this. Take the absolute value of (6.17) and
write

|Eq,j | =
∣∣∣(1− αβ)C (hβj)∣∣∣ =

∣∣(1− αβ)C∣∣ ∣∣∣hβj ∣∣∣
Now take the log of both sides to obtain

log |Eq,j | = log
∣∣(1− αβ)C∣∣+ β log hj ,

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/richextrapol.py
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/richextrapol.py

6.6 Graded meshes 207

100

Refinement factor (ND)

10-2

10-1

N
o
rm

a
liz
e
d
 e
rr
o
r
(N

D
)

Estimated errors

Fig. 6.15. Estimated normalized true errors (solid line), and normalized approximate errors (dotted line).

which is a linear relationship between log |Eq,j | and log hj . On a log-log plot the slope of the straight
line is the convergence rate β.

The estimated true errors and the approximate errors are visualized in Figure 6.15. The estimated
true errors are shown with a solid line, plotted as (page 220)

99 nEt = [(xestim-s)/xestim for s in sol]
100 plt.loglog(h, nEt, ’k-s’, linewidth=3)

The approximate errors can also be normalized, for instance by the largest computed solution. Here
we normalize by the largest computed value and plot as:

101 plt.loglog(h[1:3], Ea/max(sol), ’r--+’, linewidth=3)

We can appreciate that the estimated true errors and the normalized approximate errors seem to lie
on straight lines whose slope is approximately 1.0 (compare with the predicted convergence rate of
1.17). The behavior of the approximate error matching the estimated true error is a confirmation of
the validity of the extrapolation process.

An alternative way of estimating the true error may be deduced from equation (6.17). We ex-
press the true error Eq(hj) in terms of the approximate error and a factor which depends on the
convergence rate. So, provided we can reliably estimate the convergence rate (when we plot the
approximate errors they lie on a straight line on a log-log plot of slope β), we can express the true
error as

Eq(hj) =
Eq,j

1− αβ .

Substituting the definitions of the true error and of the approximate error we get

qex − qhj =
qhj+1

− qhj
1− αβ

or

qex = qhj +
qhj+1

− qhj
1− αβ , (6.18)

which can be used as an alternative to the estimator (6.13).
Consider again the data computed above. Computing the approximate error and eyeballing the

slope (i.e. the convergence rate) on the graph as 1.0, the alternative estimation of equation (6.18)
yields

110 print(sol[1]+(sol[2]-sol[1])/(1-(4/5)**1.0))

208 FEM for Thermal and Stress Analysis

i.e. 267.60. This is not too far off of the extrapolated value of 263.9 obtained from the general Richard-
son extrapolation formula (6.13). Of course, we can directly compute the slope of the approximate-
error line (rise over run on a log-log scale)

111 print((log(Ea[1])-log(Ea[0]))/(log(h[2])-log(h[1])))

as 1.1697. Using this convergence rate estimate, the alternative estimation of the limit from approx-
imate errors would yield

112 print(sol[1]+(sol[2]-sol[1])/(1-(4/5)**1.1697))

i.e. 263.9120. This value is within 2% of the stress reported by Szabó and Babuška [8]. Using finer
meshes for the extrapolation may lead to an even better estimate.

6.7 Meshes and Mesh generation

In this book we focus on the family of continuum finite elements. The other families in Abaqus are
for instance structural elements (beams and shells) and specialized elements such as connectors. Of
the continuum finite elements we discuss only the basic (general-purpose) types for two-coordinate
models (plane strain, plane stress, axially symmetric) and three-coordinate models (fully three-
dimensional).

The general-purpose continuum finite elements are of two elementary shapes. This aspect is
best explained with the help of a picture—please consider Figure 6.16. In three dimensions the two
elementary shapes are the tetrahedron and the hexahedron. The former has four bounding faces that
are triangular, the latter has six bounding faces which are quadrilateral. There are varieties of both
elementary shapes with different numbers of nodes. For instance tetrahedron with four nodes (T4)
and tetrahedron with 10 nodes (T10).

Furthermore, the bounding faces of these three-dimensional shapes can be understood as shapes
with two intrinsic coordinates–surfaces. A tetrahedron has a boundary that consists of four triangles.
Depending on how many nodes the tetrahedron has, the triangles may have three nodes (T3) or six
nodes (T6). The triangles, in turn, are bounded by three curves. Again, these are finite elements
with one intrinsic coordinate (distance along the curve), and may have two or three nodes. These
curve finite elements also have a boundary, which consists of two distinct points. The points may
also be understood as finite elements, which may have uses such as representing a concentrated mass
etc.

We say that the tetrahedron, its bounding triangle, the bounding curve of the triangle, and the
points at the ends of the curve, form a compatible group: compatible here means “fitting together”
without gaps or cracks.

Similar group of compatible finite elements may be constructed for the hexahedral elementary
shape. As a consequence of having two elementary shapes, the finite element programs commonly
offer a choice between hexahedra and tetrahedra, quadrilaterals and triangles, to reflect this basic
distinction.

6.7.1 Mesh generation

While it is certainly possible to design meshes by hand, this activity is limited by its laborious nature.
Beyond say a dozen elements meshes generated by hand tend to take too long and the process is
too error-prone. What one generally needs is a software component that can take a description of
the geometric part and produce a finite element mesh whose shape approximates the part. These
components are called mesh generators.

Mesh generators tend to fall into two groups: structured and unstructured (free). The structured
mesh generator would work from a few basic recipes, such as how to fill a region that looks like a
box (possibly with curved sides, but with nice and clean six-face topology). Figure 6.17(a) presents
a simple example.

6.7 Meshes and Mesh generation 209

Fig. 6.16. The compatible groups of finite elements and their boundaries. The symbol ∂ means “extract the
boundary”. Note that only one finite element of the boundary set is shown. For instance, the T4 boundary
consists of four T3 finite elements, the boundary of one T3 consists of three L2 elements, and the boundary
of one L2 consists of two P1’s.

X

Y
Z

X

Y
Z

(a) (b)

Fig. 6.17. Geometrical part: circular cylinder with a circular axis. (a) Structured mesh. Hexahedra. (b)
Unstructured (free) mesh. Tetrahedra.

The unstructured (free) mesh generator would try to fill the space of the part element-by-element,
using an algorithm, and generally in a much freer (less constrained) procedure than the structured
mesh generator. Figure 6.17(b) shows an unstructured mesh of the same part, but filled with tetra-
hedra instead of hexahedra. This illustrates one powerful reason for having both hexahedral and
tetrahedral elementary shape at your disposal: the hexahedral shapes tend to be better at repre-
senting the solution, but the tetrahedral shapes are so much better at meshing in an unstructured
way. In fact, there are mathematical theorems that say that tetrahedra will be able to fill practically
arbitrary shapes, whereas no such theorems exist for hexahedra. Hence it is much less likely to have
an automatic generator of tetrahedra fail, whereas generation of hexahedral meshes fails often.

Figure 6.18 presents a persuasive example: the same cylindrical shape as before, except that
a straight cylindrical hole has been drilled from one circular face. The unstructured generator of
hexahedral elements will refuse the job: it cannot do it. The unstructured generator of tetrahedral
elements built the mesh without a problem.

6.7.2 Element distortions

We have seen that the errors in the finite element solution depends not only on the element size h
but also on the distortion of the element (i.e. the so-called shape quality).

210 FEM for Thermal and Stress Analysis

X

Y

Z

Fig. 6.18. Circular cylinder with a circular axis. Circular hole drilled orthogonally to one of the terminal
faces.

Automatic mesh generation takes away the drudgery but also the control. In contrast with
hand-designed meshes, the user has limited control over the shapes of the automatically generated
elements.

The user still retains the veto power: the quality of the elements can be checked and
displayed, and if the mesh has too many poorly shaped elements it can be (and probably
should be) rejected.

Figure 6.19 shows three typical distortions: aspect ratio, skew angle, and taper. The elongated
rectangle and the parallelogram shapes correspond to a constant Jacobian matrix, and are not as
deleterious as the taper. The quality measures for the quadrilateral can be expressed for instance
as acceptable range for the aspect ratio and for the minimum and maximum corner angle (as in
Abaqus).

(a) (b) (c)

Fig. 6.19. Distortions of four-node quadrilaterals. (a) Large aspect ratio (in this case around 5:1). (b) Skew
angle. (c) Taper.

Abaqus provides a tool to check the shape quality of the generated elements. Figure 6.20 shows
a graded quadrilateral mesh, where two elements have been found lacking in shape quality (too
distorted based on the user-specified criteria of aspect ratio and corner angles). The printout

Part: shaft
Quad elements: 124

Min angle on Quad Faces < 10: 0 (0%)
Average min angle on quad faces: 73.66, Worst min angle on quad faces: 27.10
Max angle on Quad faces > 160: 0 (0%)
Average max angle on quad faces: 108.07, Worst max angle on quad faces: 145.77
Aspect ratio > 5: 2 (1.6129%)
Average aspect ratio: 1.68, Worst aspect ratio: 12.00

Number of elements : 124, Analysis errors: 0 (0%), Analysis warnings: 1 (0.806452%)

indicates that the criterion of interior angles passed, but two elements were found to exceed the
maximum aspect ratio of 5.0.

In three-node triangles, the minimum and the maximum angle are usually checked. Figure 6.21
shows two distorted shapes: a needlelike triangle and a sliver-like triangle with both large and small
interior angle. Both shapes should be avoided.

In quadratic quadrilaterals and triangles the situation becomes considerably more complicated
as the location of the mid-edge nodes will also induce distortions. Figure 6.22 shows three examples
of distortions. All result in the Jacobian matrix being not constant, which makes the variation of the
derivatives of the basis functions quite complicated. In the first case, the mid-edge node was moved

6.7 Meshes and Mesh generation 211

X

Y

Z

Fig. 6.20. Two elements highlighted as their shape quality raises concern.

(a) (b)

Fig. 6.21. Distortions of three-node triangles. (a) Small interior angle. (b) Both a small and a large interior
angle.

away from the center of the edge, so even though the edges are technically straight, the Jacobian
now varies (wildly) across the element. The other two distortions are usually justifiable because they
are introduced to approximate a curved boundary. They tend to lower the accuracy though. Similar
figures could be drawn for quadratic triangles, with similar conclusions.

(a) (b) (c)

Fig. 6.22. Distortions of four-node quadrilaterals. (a) Place mid-edge node off-center. (b) Curved edge to
approximate the shape of the part. (c) Two curved edges to mesh a curved thin part.

Elements typically get even worse distortions in three dimensions. Three-dimensional elements,
tetrahedra and hexahedra, have many patterns of distortion. As a general rule, distortion with a
constant Jacobian is mostly acceptable, distortion with non-constant Jacobian needs to be watched.
Too many distorted elements, and the accuracy goes out the window.

6.7.3 Interior mesh and Boundary mesh

The shapes of the finite elements in the toolkit are linked together through the “extract the bound-
ary” operation (symbol ∂ in Figure 6.16). This capability is crucial because some finite element
expressions need to be evaluated over the interior of the domain (the volume), while others should
be evaluated over the boundary of the domain (the surface). Also, the volume and surface integrals
may need to be computed for models of different number of space dimensions. Accordingly, we need
different meshes for the calculations of integrals over the interior and for the calculations over the
boundary.

Figure 6.16 summarizes how the various types of finite elements discussed in this book fit together.
Some of these types have been presented already, some make their appearance later in the book. It is

212 FEM for Thermal and Stress Analysis

important that these families exist; if we had an element whose boundary could not be represented
by another element in our library, we could not evaluate the terms on the boundary of the domain.
That would be a fatal flaw.

Table 6.3 shows the terms in the Galerkin equations for the general heat conduction IBVP in
three dimensions. The types of elements used for the volume integrals will be selected by the user
depending, among other things, on the dimension of the model (one, two, three), the desired accuracy,
efficiency considerations, and so on. The types of elements used for the surface integrals will then
be determined by this choice.

For instance, if the model is fully three-dimensional we could select four-node tetrahedra T4 for
the volume integrals, which would imply the use of three-node T3 triangles for the surface integrals.
Another example: the model is two-dimensional (the domain is a two-dimensional figure), and we
could choose to cover the interior of the domain with four-node Q4 quadrilaterals. This would then
imply that the boundary is to be covered with two-node L2 finite elements. Or, if we decided to
use 6-node triangles of type T6 for the interior, the boundary integrals would be evaluated with L3
finite elements.

Term Interior (volume) integral Boundary (surface) integral

Conductivity matrix

∫
V

(gradη) κ(gradT)T dV

Capacity matrix

∫
V

ηcV
∂T

∂t
dV

Prescribed heat flux −
∫
S2

η qn dS

Internal heat generation

∫
V

ηQ dV

Surface heat transfer matrix

∫
S3

η hT dS

Surface heat transfer load

∫
S3

η hTa dS

Table 6.3. Heat conduction IBVP in three dimensions. Classification of terms into interior (volume) and
boundary (surface) integrals.

6.8 Lumping: How the FEM works

The finite element method is a systematic approach to lumping. What is lumping? It is the con-
version of continuous properties (attributes) to concentrated, or lumped, properties and attributes.
Figure 6.23 illustrates what that means. Figure 6.23(a) shows a continuous structure with distributed
loading. The mathematical model works with the continuous geometry and the distributed traction
loading. Figure 6.23(b) shows the geometry replaced with a finite element mesh approximation. The
geometry is now a collection of triangles. The loading in the form of distributed traction is applied
on the edges of the triangles.

Figure 6.23(c) shows the discrete model produced by the finite element machinery. The motion of
the solid in response to the loading is expressed as displacements of discrete points (the nodes, showed
as filled circles). The continuous property of elastic resistance has now been lumped into discrete
springs that connect the nodes. The distributed traction loading has been converted (lumped) into
concentrated forces applied at the nodes.

The method of weighted residuals is in effect an optimal way of determining the lumping of
the properties so that the response of the original continuous structure under the original loads is
approximated as closely as possible by a discrete system of masses and springs and forces derived
from a given finite element mesh.

6.8 Lumping: How the FEM works 213

Fig. 6.23. From a continuous mathematical model to a discrete finite element model: lumping.

So, if the finite element method produces always lumped forces, is there anything wrong with
applying a lumped force? Figure 6.24(a) shows a rectangle domain with an applied concentrated
force. Figure 6.24(b) shows a lumped finite element model that results from meshing the rectangle
with six quadrilaterals. The given applied concentrated force carries over from the continuous model
and is applied directly to the middle node of the vertical edge on the right. Figure 6.24(c) shows the
finite element discrete model obtained by meshing the rectangle with four times as many quadrilateral
finite elements. The concentrated force is again applied at the original value at the middle node on
the right vertical edge. The problem is that in the finer mesh the lumped springs are also finer
(softer). The finer the mesh, the smaller and weaker the springs. In order to balance the force, which
maintains its magnitude, the softer springs have to stretch more. The weaker the springs, the more
they have to stretch. In the limit, the springs will have infinitesimal stiffness, and they will have to
stretch by an infinite amount to balance the force: not good. Not good because this is not physically
meaningful.

Fig. 6.24. Inadmissible modeling with a concentrated force. (a) Continuous model: rectangle with a con-
centrated applied force. (b) Coarse discrete model. (c) Finer discrete model.

As an example consider Figure 6.25: a block of material is clamped at the bottom, and a con-
centrated force is applied at the top-right corner. The mesh is then adaptively refined at the corner,
and while the overall deflection of the block does not seem to change with the refinement, the point
where the fixed force is applied can be seen to be progressively pulled into a thread by the applied
force. The smaller the elements, the less resistance they offer, and the more they have to stretch and
deform in order to balance the force. In the limit, the corner will get more and more stretched out
into a thread, and the deflection of the point of application will tend to infinity.

Now consider distributed loading. Figure 6.26 illustrates how the concentrated forces that result
from lumping of a distributed loading (Figure 6.26(a)) are still appropriate after refinement of the
mesh. The finite element model of a rectangle loaded by distributed load at the top edge produces
concentrated forces acting at the nodes in Figure 6.26(b). When the mesh is refined, such as in the
Figure 6.26(c), the forces are again obtained by lumping the original distributed loading, and they

214 FEM for Thermal and Stress Analysis

Fig. 6.25. Block of material with a fixed concentrated force applied horizontally at the top-right corner.
Left: initial mesh. Right: refined mesh in the vicinity of the corner. Rightmost: zoomed detail of the corner.

end up smaller than for the coarse mesh. The finer the mesh, the smaller the lumped concentrated
forces at the nodes. And, since the springs and the forces are now both getting “smaller” at the
same time, they are matched. In the limit we get a perfectly fine physically meaningful answer.

Fig. 6.26. Admissible concentrated forces resulting from the finite element lumping process. (a) Continuous
model: rectangle with a distributed loading. (b) Coarse discrete model. (c) Finer discrete model.

Avoid concentrated forces and nonzero reactions at point supports. Mesh refinement
will not lead to convergence, and the results will be meaningless.

6.9 Background, explanations, details 215

6.9 Background, explanations, details

Box 27. Interpolation errors

We will estimate the difference between the “exact” distribution of temperature, T (x), and an
interpolation of this function on a finite element mesh, ΠhT (x). Here h means the mesh “size”, or
characteristic dimension. Typically, mesh size is taken to mean edge length, or the diameter of the
smallest ball that completely encloses an element.

Interpolation error for temperature

The interpolating function is defined as

ΠhT (x) =
∑
k

Nk(x)T (xk) , (6.19)

where xk is the location of the node k, and T (xk) is the value of the temperature at the location of
the node k. For interpolation on a mesh consisting of three-node triangles, when x is in the interior
of the element ∆e, only three basis functions Nk are nonzero at x. The basic tool is the Taylor series

Fig. 6.27. Interpolating the temperature function on a mesh

which we use to expand the temperature at x

T (y) = T (x) + gradT (x) · (y − x) +R1(y,x) , (6.20)

where the remainder is written as

R1(y,x) =
1

2
(y − x) ·H(T)(y − x) . (6.21)

The matrix of second derivatives (Hessian) is evaluated at ξ somewhere between the points y and x

[H(T)] =

∂2T (ξ)

∂x1∂x1

∂2T (ξ)

∂x1∂x2

∂2T (ξ)

∂x2∂x1

∂2T (ξ)

∂x2∂x2

 .

The Taylor series (6.20) may be used to express the value of the temperature at the nodes– plug in
xk for y– which then may be substituted into the interpolation (6.19) to yield

ΠhT (x) =
∑
k

Nk(x)T (xk) =∑
k

Nk(x) [T (x) + gradT (x) · (xk − x) +R1(xk,x)] .

Due to the construction of the basis functions, we have these important equalities

216 FEM for Thermal and Stress Analysis∑
k

Nk(x) = 1 ,
∑
k

Nk(x)xk = x . (6.22)

Therefore, the first term in (6.22) simplifies as∑
k

Nk(x)T (x) = T (x)
∑
k

Nk(x) = T (x) ,

and the second will vanish∑
k

Nk(x)gradT (x) · (xk − x) = gradT (x) ·
∑
k

Nk(x)(xk − x) = 0 .

Substituting into (6.22) gives

ΠhT (x) = T (x) +
∑
k

Nk(x)R1(xk,x) ,

or, reshuffling to get the error on one side,

T (x)−ΠhT (x) = −
∑
k

Nk(x)R1(xk,x) . (6.23)

To estimate the magnitude of the difference, |T (x)−ΠhT (x)|, we compute

|
∑
k

Nk(x)R1(xk,x)| ≤ max|R1(xk,x)| |
∑
k

Nk(x)| = max|R1(xk,x)| ,

and make use of standard norm inequalities

|v ·Av| ≤ ‖v‖‖Av‖ ≤ ‖A‖‖v‖2 .
This may be applied to the definition of the remainder (6.21) together with (see Fig. 6.28)

‖xk − x‖ ≤ h ,
and an estimate of the norm of the matrix of second derivatives of the temperature H(T) to give

|T (x)−ΠhT (x)| ≤ Ch2‖H(T)‖ . (6.24)

Here C is a generic constant with respect to h. If we wrap the norm of the matrix of the second
derivatives into the constant, we may write

|T (x)−ΠhT (x)| ≤ C
(
∂2T

)
h2 , (6.25)

where we agree to mean by C
(
∂2T

)
some constant whose magnitude depends on the curvatures of

the function T . Importantly, C
(
∂2T

)
may also be understood as measuring the rate of change of

the heat flux in the immediate neighborhood of x.

Fig. 6.28. Mesh size h as a “diameter” of an element: diameter of the tight-fitting circle that encloses a
triangle or a quadrilateral, and of the smallest sphere that is circumscribed to a tetrahedron

The value of Eq. (6.25) is twofold:

• Firstly, it states that the errors of interpolation will get bigger the higher the curvature of the
function of the exact temperature T (that is the faster the heat flux is changing) and the bigger
the elements (i.e. the error will increase with h2);

• Secondly, if we are interested in the interpolation error at a particular location, we may consider
the curvatures at that location as given, and the Eq. (6.25) then says that the error will decrease
as O(h2) as h→ 0 (order-of estimate: reduce h with a factor of two, and the error will decrease
with a factor of four).

6.9 Background, explanations, details 217

Interpolation error for temperature gradient

To estimate errors for the gradient of temperature, we start with the interpolation (6.22), of which
we take the gradient

gradΠhT (x) =
∑
k

gradNk(x)T (xk) =∑
k

gradNk(x) [T (x) + gradT (x) · (xk − x) +R1(xk,x)] =∑
k

gradNk(x)T (x) +
∑
k

gradNk(x)gradT (x) · (xk − x)

+
∑
k

gradNk(x)R1(xk,x) =

T (x)
∑
k

gradNk(x) + gradT (x) ·
∑
k

gradNk(x)(xk − x)

+
∑
k

gradNk(x)R1(xk,x) .

(6.26)

Differentiating (6.22) we obtain∑
k

gradNk(x) = 0 ,
∑
k

xkgradNk(x) = 1 , (6.27)

which upon substitution into (6.26) yields

gradΠhT (x) = gradT (x) +
∑
k

gradNk(x)R1(xk,x) .

(6.28)

Again, an estimate of the magnitude is desired,

|gradT (x)− gradΠhT (x)| = |
∑
k

gradNk(x)R1(xk,x)| ≤

max|R1(xk,x)|
∑
k

|gradNk(x)| .

To estimate the magnitude of the gradient of the basis function, we invoke the picture of the basis

Fig. 6.29. Triangle quality measures using the radius of the inscribed circle and the diameter of the cir-
cumscribed circle. Good (almost equilateral) triangle on the left; bad triangles (obtuse, needle-like) on the
right.

function as a plane that assumes value one at one node and drops off to zero along the opposite edge.
Therefore, the largest magnitude of the basis function gradient will be produced by the smallest
height in the triangle. The shortest height dmin may be estimated from the radius of the largest
inscribed circle, ρ (see Fig. 6.29), as dmin ≈ O(ρ). This can be linked to the so-called “shape quality”
of a triangle using the quality measure

γ =
h

ρ
,

218 FEM for Thermal and Stress Analysis

as dmin ≈ O(γ−1)h. The magnitude of the basis function gradient may be then estimated as

max gradNk(x) =
1

dmin
≈ γ

h
.

Putting everything together, we obtain

|gradT (x)− gradΠhT (x)| ≤ Ch2 γ
h
‖H(T)‖ = C

(
∂2T

)
γh . (6.29)

The value of Eq. (6.29) is again twofold:

• Firstly, it states that the errors of interpolation for the gradient of temperature will get bigger
the higher the curvature of the function of the exact temperature T , the larger the elements (i.e.
the error will increase with h), and the larger the quality measure γ (i.e. the worse the shape of
the triangle);

• Secondly, considering the curvatures at a fixed location as given, the equation (6.29) states
that the error will decrease as O(h) as h → 0 (note that this is one order lower than for the
temperatures themselves: reduce h with a factor of two, and the error will decrease with the same
factor).

Importantly, Eq. (6.29) allows us to make a general observation: the quantity calculated in the
finite element solution is the temperature, the gradient (or, alternatively, the heat flux) is obtained by
differentiation of the computed temperature, which immediately results in a reduction of the order
of dependence on the mesh size. Phrased differently: the temperature results will converge faster
than the temperature-gradient results (or, equivalently, heat flux results), because h2 approaches
zero much quicker than h as h→ 0.

End Box 27

Box 28. Richardson extrapolation

If we assume that the true error in the quantity q may be expanded in a Taylor series at element
size h = 0, we may write Eq(h) as the true error of the quantity q for some nonzero element size h
in the form

Eq(h) = qex − qh = Chβ +R , (6.30)

where qex is the true solution, qh is the approximate solution obtained with element size h, C is
some constant which does not depend on the element size, β > 0 is the so-called convergence rate,
and R is the remainder term. If the remainder term R is negligible compared to Chβ , we may write

Eq(h) = Chβ . (6.31)

Then, provided we obtain the solution of the finite element problem for three different element
size values h1 < h2 < h3, so that we have a sequence of solutions qhj , we can write the so-called
approximate error as the difference of two successive solutions

Eq,j = qhj+1
− qhj . (6.32)

Replacing the approximate solutions with the true errors and the true solution qhj = qex − Eq(hj),
we obtain

Eq,j = −Eq(hj+1) + Eq(hj) . (6.33)

Substituting from (6.31), we get

6.9 Background, explanations, details 219

Eq,j = −Chj+1
β + Chj

β = C
(
−hj+1

β + hj
β
)
. (6.34)

This equation may be written twice, for two successive approximate errors,

Eq,1 = C
(
−h2β + h1

β
)

and Eq,2 = C
(
−h3β + h2

β
)
, (6.35)

which may be readily solved for C to yield

Eq,1

−h2β + h1
β

=
Eq,2

−h3β + h2
β
. (6.36)

This nonlinear equation may be solved for the convergence rate β. Then the constant C follows as

C =
Eq,1

−h2β + h1
β

=
Eq,2

−h3β + h2
β
, (6.37)

and the estimate of the true error for any element size then follows from (6.31). Obviously, with the
estimate of the true error we also have the estimate of the true solution qex.

End Box 28

6.10 Code listings

richextrapol.py

Python
- script

1 # Finite Element Modeling with Abaqus and Python for Thermal and
2 # Stress Analysis
3 # (C) 2017-2018, Petr Krysl
4 """
5 Richardson extrapolation.
6 """
7

8 import math
9 from numpy import diff

10

11 def bisection(fun, xl, xu, tolx, tolf):
12 if (xl > xu):
13 xl, xu = xu, xl
14 fl = fun(xl);
15 fu = fun(xu);
16 while True:
17 xr = (xu + xl) * 0.5 # bisect interval
18 fr = fun(xr) # value at the midpoint
19 if fr * fl < 0.0: # (fr < 0.0 && fl > 0.0) || (fr > 0.0 && fl < 0.0)
20 xu, fu = xr, fr # upper --> midpoint
21 else:
22 xl, fl = xr, fr # lower --> midpoint
23 if (abs(xu-xl) < tolx) or (abs(fr) <= tolf):
24 return xl, xu # We are done
25 return xl, xu
26

27 def richextrapol(xs, hs):
28 """
29 Richardson extrapolation.
30

31 xestim, beta, c, residual = richextrapol(xs,hs)
32

33 Richardson extrapolation. This function is applicable to fixed ratio
34 between the element sizes, hs[0]/hs[1] == hs[1]/hs[2], in which case
35 the solution follows explicitly, But it is also applicable to non-uniform
36 refinement factor (for arbitrary element sizes).
37

38 Arguments
39 xs = list of the calculated quantities,
40 hs = list of the element sizes
41

42 Returns
43 xestim= estimate of the asymptotic solution from the data points
44 in the xs array
45 beta= convergence rate
46 c = constant in the estimate "error = c*h**beta"
47 residual = residual after equations from which the above quantities were
48 solved (this is a measure of how accurately was the system solved)
49 """
50 # Normalize the solutions so that we work with nice numbers
51 nxs = [x/xs[0] for x in xs]
52 c, beta = 0.0, 1.0 # some defaults to be overwritten below
53 if abs(hs[0]/hs[1] - hs[1]/hs[2]) > 1.0e-6:
54 # In the hard case, with a non-uniform refinement factor, we must

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/py/richextrapol.py

6.10 Code listings 221

55 # solve a nonlinear equation 1st.
56 nea1 = nxs[1]-nxs[0]
57 nea2 = nxs[2]-nxs[1]
58 tol = 0.000000001
59 h0, h1, h2 = hs[0], hs[1], hs[2]
60 eqn = lambda b: nea1 - nea2 * ((-h1**b+h0**b) / (-h2**b+h1**b))
61 lo = tol # lower bound on the convergence rate
62 hi = 10.0
63 b1, b2 = bisection(eqn, lo, hi, tol, tol)
64 beta = (b1 + b2) / 2.0
65 c = xs[0]*nea1/(-hs[1]**beta+hs[0]**beta)
66 xestim = xs[2] + c * hs[2]**beta
67 else:
68 # In the easy case, with a uniform refinement factor, the solution
69 # is obtained explicitly.
70 xestim = ((-(nxs[0]*nxs[2]-nxs[1]**2)/(2*nxs[1]-nxs[0]-nxs[2])))*xs[0]
71 if (xestim-xs[0]) <= 0:
72 beta = math.log((xestim-xs[1])/(xestim-xs[2]))/math.log(hs[1]/hs[2])
73 else:
74 beta = math.log((xestim-xs[0])/(xestim-xs[2]))/math.log(hs[0]/hs[2])
75 c = (xestim-xs[0])/hs[0]**beta
76

77 # just to check things, calculate the residual
78 residual = [0, 0, 0]
79 for I in range(0, 3):
80 residual[I] = (xestim-xs[I])-c*hs[I]**beta# this should be close to zero
81

82 return xestim, beta, c, residual
83

84 def _test():
85 """
86 Test of Richardson extrapolation.
87 """
88 xs = [93.0734, 92.8633, 92.7252]
89 hs = [0.1000, 0.0500, 0.0250]
90 xestim, beta, c, residual = richextrapol(xs, hs)
91 print(’xestim, beta, c, residual =’, xestim, beta, c, residual)
92 print(’to be compared with ’, 92.46031652777476, 0.6053628424093497,

-2.471055221256022, \
93 [0.0, 5.534461777756405e-13, 3.6376457401843254e-13])
94

95 xs = [13.124299546191557, 12.192464513175167, 12.026065694522512]
96 hs = [1.0, 0.5, 0.25]
97 xestim, beta, c, residual = richextrapol(xs, hs)
98 print(’xestim, beta, c, residual =’, xestim, beta, c, residual)
99 print(’to be compared with ’, 11.989892116202842, 2.485429379525128,

-1.1344074299887144, \
100 [0.0, -8.93729534823251e-15, -1.5959455978986625e-15])
101

102 xs = [18.279591331058882, 18.260877354949294, 18.255333231883284]
103 hs = [0.25, 0.125, 0.0625]
104 xestim, beta, c, residual = richextrapol(xs, hs)
105 print(’xestim, beta, c, residual =’, xestim, beta, c, residual)
106 print(’to be compared with ’, 18.25299931817398, 1.7550849296401745,

-0.3029825595040225, \
107 [0.0, -3.975153539670373e-13, -1.1776647365624449e-13])
108

109 sol = [231.7, 239.1, 244.8]

222 FEM for Thermal and Stress Analysis

110 h = [(4./5.)**i for i in range(0, 3)]
111 xestim, beta, c, residual = richextrapol(sol, h)
112 print(’xestim, beta, c =’, xestim, beta, c)
113 print(’to be compared with ’, 263.91176470588067, 1.1697126080157385,

32.21176470588068)
114

115 # This Tests the case of non-uniform refinement factor
116 sol = [7.446, 7.291, 6.87] # f = lambda h: -3.333 * h**1.2 + 6.66
117 h = [0.3, 0.25, 0.1]
118 xestim, beta, c, residual = richextrapol(sol, h)
119 print(’xestim, beta, c =’, xestim, beta, c)
120 print(’to be compared with ’, 6.66, 1.2, -3.333)
121

122 _test()
123

124 def examples():
125 """
126 Examples from the textbook.
127 """
128 sol = [231.7, 239.1, 244.8]
129 h = [(4./5.)**i for i in range(0, 3)]
130 xestim, beta, c, residual = richextrapol(sol, h)
131 print(’xestim, beta, c =’, xestim, beta, c)
132 #
133 Ea = diff(sol)
134 print(Ea)
135 # Plotting
136 import matplotlib.pyplot as plt
137 plt.figure()
138 plt.xlim((0.5, 1.1))
139 plt.ylim((0.005, 0.2))
140 # Normalized true error estimate
141 nEt = [(xestim-s)/xestim for s in sol]
142 plt.loglog(h, nEt, ’k-s’, linewidth=3)
143 plt.loglog(h[1:3], Ea/max(sol), ’r--+’, linewidth=3)
144

145 plt.grid()
146 plt.title(’Estimated errors’)
147 plt.xlabel(’Refinement factor (ND)’)
148 plt.ylabel(’Normalized error (ND)’)
149 plt.show()
150

151 from math import log
152 print(sol[1]+(sol[2]-sol[1])/(1-(4/5)**1.0))
153 print((log(Ea[1])-log(Ea[0]))/(log(h[2])-log(h[1])))
154 print(sol[1]+(sol[2]-sol[1])/(1-(4/5)**1.1697))
155

156 #examples()

Listing 6.1. richextrapol.py

7

Further Developments of FEA for General Stress Analysis

The concepts introduced in the previous chapters are refined and expanded here. The present chap-
ter intends to firstly review finite element techniques for three-dimensional stress analysis. The
performance of the three-dimensional solid elements, the tetrahedra and the hexahedra, is illus-
trated using a variety of examples. Secondly, we deal with the plane-strain and axially symmetric
reduced models of stress analysis. Thirdly, we discuss a couple of practically important modeling
techniques: the principle of equivalent loads (St. Vénant), and the use of point supports to stabilize
free-floating structures. Fourthly, dynamics is introduced by way of examples: free-vibration analy-
sis and harmonic forced vibration. Finally, we introduce considerations appropriate for thin-walled
solids (shells) and we discuss laminated structures.

7.1 Stress analysis in three dimensions

There are now three displacements at a given point, ux, uy, and uz, all expressed in the global
Cartesian basis. The six total strains are arranged in a vector as

[ε] =

εx
εy
εz
εxy
εxz
εyz

 (7.1)

and are derived from the displacements as ε = Bu with the the symmetric gradient operator B

B =

∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

∂/∂y ∂/∂x 0

∂/∂z 0 ∂/∂x

0 ∂/∂z ∂/∂y

(7.2)

The stress components are also arranged in a vector

[σ] =

σx
σy
σz
τxy
τxz
τyz

 (7.3)

224 FEM for Thermal and Stress Analysis

and are related to the strains by the constitutive equation

[σ] = [D]
(
[ε]− [θε]

)
, (7.4)

where the elastic strains are the difference of the total strains and the thermal strains [θε].
For an isotropic material we can write the material stiffness matrix as

D =

λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 ,

where we introduce the Lamé constant

λ =
Eν

(1 + ν)(1− 2ν)
(7.5)

and the shear modulus G

G =
E

2(1 + ν)
. (7.6)

Both of these constants are expressed in terms of the Young’s modulus E and the Poisson’s ratio ν.
For an isotropic material the thermal strains are

[θε] = α∆T

1
1
1
0
0
0

 . (7.7)

The solution of the stress analysis problem is to satisfy a balance equation which, in the form
valid at a point, is written as

[B]
T

[σ] +
[
b
]

= [0] . (7.8)

Equation (7.8) is valid for statics (negligible accelerations). The stress-divergence operator BT
is the transpose of (7.2)

BT =

∂/∂x 0 0 ∂/∂y ∂/∂z 0
0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y

 . (7.9)

7.2 Weighted residual equation for three dimensions

For finite elements applied in three dimensions the weighted residual equation is a fairly simple
variation on the weighted residual equation we wrote down for the plane-stress analysis (5.25): For
each free degree of freedom (j, r), i.e. for 1 ≤ (j, r) ≤ Nf , where j is a node number and the
component is r = x, y, z, there will be one equilibrium (force balance) equation

Nf∑
(i,s)=1

∫
V

[
[Bj]

T [D][Bi]
]
rs

dV [ui]s +

N∑
(i,s)=Nf+1

∫
V

[
[Bj]

T [D][Bi]
]
rs

dV [ui]s

−
∫
V

Nj [b]r dV −
∫
St,r

Njtr dS −
∫
V

[
[Bj]

TD [θε]
]
r

dV = 0

(7.10)

7.3 Tetrahedra 225

where the essential boundary conditions imply for the fixed degrees of freedom

[ui]s = [ui]s node i on Su,s and s = x or y or z . (7.11)

The necessary changes are limited to the number of degrees of freedom per node (three displacements,
instead of two), and the integral over the interior of the domain is now a true volume integral. Finally,
the integral over the surface where a traction component is prescribed, St,r, is a true surface integral.
Note that again loads will be produced by nonzero displacements prescribed in some direction s on
the part of the boundary Su,s (“support-settlement” loads).

The first term will result in a square stiffness matrix multiplied with the vector of the unknown
displacement degrees of freedom; the second term will result in the contribution to the load vector
due to the prescribed (known) displacement degrees of freedom (i.e.the support-settlement load);
the third and fourth term are contributions to the load vector due to the known body load and
traction loads on the boundary. The last term is the thermal-load contribution.

The nodal strain-displacement matrix is written explicitly by applying the partial derivatives to
the argument Nk, i.e. the basis function associated with node k, (compare with the expression for
the plane stress model (5.21))

[Bj] = B (Nj) =

∂Nj
∂x

0 0

0
∂Nj
∂y

0

0 0
∂Nj
∂z

∂Nj
∂y

∂Nj
∂x

0

∂Nj
∂z

0
∂Nj
∂x

0
∂Nj
∂z

∂Nj
∂y

. (7.12)

7.3 Tetrahedra

Tetrahedra are one elementary shape with which true 3-D solid shapes can be meshed. The second
elementary shape, the hexahedron, will be covered in the next section. Tetrahedra are either linear
or quadratic, where “linear” and “quadratic” refers to the variation of the interpolated quantities
within the element. Linear elements described linear variation of displacements (temperatures), and
analogously for the quadratic elements.

7.3.1 Tetrahedron T4

The tetrahedron with four nodes at the corners (element T4) is a straightforward extension of the
triangle T3 to three dimensions. The standard tetrahedron is shown in Figure 7.1. The basis functions
in the parametric coordinates are designed to be linear functions of ξ, η, ζ, and there are four corners
at which to use the Kronecker delta property. It is straightforward to deduce that

N1(ξ, η, ζ) = 1− ξ − η − ζ , N2(ξ, η, ζ) = ξ , N3(ξ, η, ζ) = η , N4(ξ, η, ζ) = ζ . (7.13)

Using the nodal strain-displacement matrices we can compute the strain vector inside a finite
element from the nodal displacements as

[ε] =
∑
k

[Bk][uk] (7.14)

226 FEM for Thermal and Stress Analysis

Fig. 7.1. Standard tetrahedron

Entirely analogously to the three-node triangle, the strain-displacement matrices [Bk] consists only of
constants. Consequently the strains are constant across the entire element (recall that the three-node
triangle is also known as the constant-strain triangle, CST). Table 7.1 defines two integration rules
for tetrahedra [3]. The one-point rule is adequate for stiffness (or conductivity) matrix evaluation,
as we deduced from the strains being constant across the element.

Table 7.1. Numerical integration rules on the standard tetrahedron; a = 0.1381966, b = 0.5854102.

Rule Coordinates ξj , ηj , ζj Weights Wj Integrates exactly

1-point 1/4, 1/4, 1/4 1/6 linear polynomial

4-point

a, a, a
b, a, a
a, b, a
a, a, b

1/24
1/24
1/24
1/24

quadratic polynomial

The four-node tetrahedron is delightfully simple. It is also dismally ineffective: when
we’re in doubt whether it will work for our particular problem, we should assume that
it won’t.

The stiffness matrix of the four-node tetrahedron is really the smallest stiffness matrix of any
three-dimensional element, it is 12×12. It has the structure shown in Figure 7.2, where we illustrate
how the matrix is composed of 3×3 blocks corresponding to the nodal strain-displacement matrices.
Consider a single element, tetrahedron with four nodes, 1, 2, 3 and 4 (Figure 7.2). Let us also assume

Fig. 7.2. Composition of the element stiffness matrix of submatrices (blocks)

7.3 Tetrahedra 227

that all the degrees of freedom are free (the stiffness matrix is then singular). The stiffness matrix
of this single element has 12 rows and columns.

K(j,r)(k,s) =

[∫
Ve

Be
j
TDBe

k dV

]
rs

, j, k = 1, 2, 3, 4 , and r, s = 1, 2, 3 (i.e. x, y, z) . (7.15)

For j, k fixed, say j = 2 and k = 4, the matrix∫
Ve

Be
L
TDBe

P dV , (7.16)

is a 3× 3 submatrix of the element stiffness matrix: compare with the illustration in Figure 7.2 (the
off-diagonal block). Similarly, for j = 2 and k = 2 we obtain the diagonal block. Therefore, the entire
element stiffness matrix may be computed in one shot as

Ke =

∫
Ve

BeTDBe dV , (7.17)

using the blocked matrix (the elementwise strain-displacement matrix)

Be = [Be
A,B

e
B ,B

e
C ,B

e
D] . (7.18)

Correspondingly, the displacements at the nodes will be ordered into a column vector of displacement
components in the global Cartesian basis

U e =

uA
uB
uC
uD

 . (7.19)

The important point we must make here is that these submatrices express the stiffness coupling
between the nodes of the element. The diagonal sub matrices express how the three-dimensional
displacement of a node affects the elastic restoring force acting on that same node; the off-diagonal
submatrices express how the three-dimensional displacement of one node affects the elastic restoring
force acting on another node.

7.3.2 Simplex elements

The point P1, the segment L2, the triangle T3, and the tetrahedron T4, are all examples of the
so-called simplex elements. By definition, an n-dimensional simplex is the convex hull of n+1 points
(vertices) in the n-dimensional space. (We can think of the convex hull in terms of a rubber band
or rubber sheet stretched over n + 1 points in space.) Tiling domains with simplex elements is
attractive, because a number of mathematical properties guarantee the success of automatic tools
for mesh generation. This is to be contrasted with the generation of quadrilaterals in two dimensions,
and of bricks (shapes bounded by six quadrilateral faces) in three dimensions: not an easy task–
mesh generators often fail to produce good-quality meshes, or often they just fail to produce any
mesh at all.

While the linear simplex elements perform adequately in the heat conduction models, in other
types of analyses their inherent simplicity tends to work against them. For instance, in stress analysis
the response of meshes composed of linear simplex elements is quite poorly represented – they are
“too stiff”.

7.3.3 Tetrahedron T10

The elements of the simplex shape are saved by the quadratic types: the six-node triangle and
the 10-node tetrahedron. These elements can usually deliver acceptable results, and the meshes are
relatively easily generated by automatic software components (mesh generators).

228 FEM for Thermal and Stress Analysis

The quadratic tetrahedron is a simple extension of the quadratic triangle to three dimensions
(refer to Figure 7.3 for the definition of the order of the nodes: start with the vertices, and then
number the midpoints of the edges). The same idea of constructing the basis functions as (normal-
ized) products of planes will work, yielding for the basis functions the quadratic expressions in the
parametric coordinates ξ, η, ζ

N1 = (1− ξ − η − ζ)[2(1− ξ − η − ζ)− 1] , N2 = ξ(2ξ − 1) ,

N3 = η(2η − 1) , N4 = ζ(2ζ − 1) , N5 = 4(1− ξ − η − ζ)ξ ,

N6 = 4ξη , N7 = 4η(1− ξ − η − ζ) , N8 = 4(1− ξ − η − ζ)ζ ,

N9 = 4ξζ , N10 = 4ηζ . (7.20)

Since the basis functions are quadratic in the parametric coordinates, their gradients with respect
to the parametric coordinates will be linear functions of ξ, η, ζ. Provided the Jacobian matrix in
equation (3.57) is constant (independent of ξ, η, ζ), the gradients of the basis functions with respect
to x, y, z as computed from (3.56) are going to be linear in the x, y, z coordinates. Hence, computing
the elements of the stiffness matrix can be done exactly with the four-point rule from Table 7.1. In
contrast, for curved elements (when a mid-edge node is moved from the mean of the locations of the
corners) the four-point rule will not be able to integrate the stiffness matrix exactly. However, when
the distortion of the element is not excessive, the integration error can be accepted.

Fig. 7.3. The standard quadratic tetrahedron for the T10 element.

Four-point integration is considered a “full integration” of the stiffness (conductivity) matrix. The
linear stress-analysis element in Abaqus is called C3D10: C= continuum, 3D= three-dimensional,
10= number of nodes.

7.4 Hexahedra

Hexahedra are sometimes referred to as bricks. As already indicated in Figure 6.16, the hexahedra
are compatible with quadrilateral finite elements, since quadrilaterals constitute their boundaries.

7.4.1 Eight-node hexahedron (H8)

To extend the quadrilateral Q4 (whose basic properties were discussed in Chapter 4) to three di-
mensions is quite straightforward: instead of a Cartesian product of two intervals on the standard
square, we consider the Cartesian product of three intervals on the standard cube (Figure 7.4).
The Q4 quadrilateral is compatible with the discretization on the faces of the hexahedron, which is
essential for the implementation of the integrals of the surface terms (heat flux or traction loads).

The numbering of the nodes is given in Figure 7.4. The basis function N1 may be written as the
product of one one-dimensional Lagrange interpolation function on the interval −1 ≤ ξ ≤ +1, one

7.4 Hexahedra 229

Fig. 7.4. Numbering of the nodes of the hexahedron H8. Node 1 is at ξ = −1, η = −1, ζ = −1, node 2 is at
ξ = +1, η = −1, ζ = −1,..., and node 8 is at ξ = −1, η = +1, ζ = +1

on the interval −1 ≤ η ≤ +1, and one on the interval −1 ≤ ζ ≤ +1; all functions correspond to the
left-hand side end of the interval

N1(ξ, η, ζ) =
ξ − 1

−1− 1
× η − 1

−1− 1
× ζ − 1

−1− 1
=

(ξ − 1)(η − 1)(ζ − 1)

8
. (7.21)

This process is analogous for the remaining functions.
Gauss integration at 2×2×2 points is considered a “full integration” of the stiffness (conductivity)

matrix. The linear stress-analysis element in Abaqus is called C3D8.

7.4.2 Thin simply-supported square plate with uniform distributed load

The plate is illustrated in Figure 7.5. This is one of the classic benchmarks for plate structures, see
for example Reference [10]. To match the thin-plate analytical solution is typically quite challenging
for plate finite elements (that is structural elements specialized for bending deformations). Here
we will attempt to compute this solution with solid elements. The essential boundary condition is
applied by suppressing the displacement degrees of freedom orthogonal to the plate surface along
the circumference.

Abaqus
- CAE file

Fig. 7.5. Simply-supported square plate with uniform distributed load

Due to the symmetry of the problem, we will discretize just one quarter of the geometry, and apply
symmetry boundary conditions. For a moderately thick plate, thickness/span = 1/30, the deflected
shape is shown in Figure 7.6(a); the thin plate, thickness/span = 1/200, is shown in Figure 7.7(a).

7.4.3 Shear locking

If we use the linear hexahedron C3D8, we find that the computed deflections are way too small,
especially for the thin plate. Even with many thousands of elements, the normalized computed

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/sssqunif.cae

230 FEM for Thermal and Stress Analysis

X

Y

Z

Number of dofs
0 500 1000 1500 2000 2500

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

at
 c

en
te

r

0

0.2

0.4

0.6

0.8

1

1.2

C3D8

C3D20R

(a) (b)

Fig. 7.6. Simply-supported square plate with uniform distributed load. Moderately thick plate (thickness/s-
pan = 1/30). (a) Deflected shape (highly magnified): note the ratio of the thickness to the span. Mesh with
four edges on the side of the modeled quarter-domain of the plate. (b) Comparison of the normalized de-
flection for the standard eight-node hexahedron (C3D8) and the reduced-integration 20-node hexahedron
(C3D20R). Four results are shown for four meshes: 2, 4, 6, and 8 element edges on the side of one quarter of
the plate. The deflection is normalized by the thin-plate solution, which explains why the C3D20R solution
appears to converge to a number greater than 1.0: the thick plate is shear-flexible and the shear flexibility
makes the deflection larger than for bending-only deformation characteristic of thin plates.

X

Y

Z

Number of dofs
0 500 1000 1500 2000 2500

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

at
 c

en
te

r

0

0.2

0.4

0.6

0.8

1

1.2

C3D20R

C3D8

(a) (b)

Fig. 7.7. Simply-supported square plate with uniform distributed load. Thin plate (thickness/span = 1/200).
(a) Deflected shape (highly magnified): note the ratio of the thickness to the span. (b) Comparison of the
normalized deflection for the standard eight-node hexahedron (C3D8) and the reduced-integration 20-node
hexahedron (C3D20R). For results are shown for four meshes: 2, 4, 6, and 8 element edges on the side of
one quarter of the plate.

7.4 Hexahedra 231

deflection is just a fraction of the analytical solution. We say that the C3D8 element locks in bending
(which is sometimes called shear locking)— call for Figure 7.7(b). As the plate is so thin, most of
the energy should be in bending, but the element deformation mode puts most of it into shear and
as a result the model is way too stiff. Even for thicker plates (up to the span/thickness ratio of 30,
when the plate would be considered rather thick), the element C3D8 delivers only disappointing
accuracy: see Figure 7.6(b).

The equivalent element in two dimensions (where a picture is much easier to produce) is the four-
node quadrilateral Q4, in plane-stress analysis called CPS4 (and CPE4 for plane strain). Figure 7.8
provides a visual explanation of the phenomenon of shear locking. In order for the element to
assume a “bent” configuration, it really needs to experience shear strains γ because its sides must
stay straight. Consider a beam modeled with the quadrilateral element. When the beam (and the
quadrilateral element) are very stocky, the energy stored in bending is comparable with the energy
stored in shear. On the other hand, when aspect ratio increases and the beam and the finite element
become very thin, most of the energy should be stored in bending and only very little in shear.
Unfortunately, the thin element needs to experience shear deformation in order to bend, and to
attain a bent configuration the energy that needs to be stored in shear becomes many times larger
than the energy stored in bending. Correspondingly, the moment to bend the finite element becomes
much larger than necessary to bend the actual beam. The deformation of the finite element will be
therefore much smaller than it should be, and we say the element locked.

Fig. 7.8. Illustration of a deformation pattern that leads to shear locking

For span-to-thickness ratio greater than around 1:5 we shouldn’t use the plane-vanilla quadrilat-
erals or hexahedra: they would be much too stiff. The cure is described in the following section (use
quadratic elements), and in Section 7.10 where we introduce advanced stress analysis elements.

7.4.4 Quadratic element H20

The quadratic tetrahedron T10 managed to improve upon T4. The quadratic hexahedron H20 is a
significant step up from the hexahedron H8.

Contrary to (likely) expectations, the quadratic element will not be derived by taking the Carte-
sian product of the basis functions of the quadratic one-dimensional element L3 (Section 5.6). The
result would have been an element with 27 nodes: 3×3×3 = 27, the so-called quadratic Lagrangean
hexahedron.

The quadratic hexahedron H20 is a member of the so-called serendipity family. The nodes asso-
ciated with basis functions are located at the corners and the midpoints of the edges: see Figure 7.9;
eight corners plus the midpoints of 12 edges gives 20 basis functions. The derivation of the basis
functions may proceed as follows: start with the basis functions of the hexahedron H8, and add in
the quadratic functions associated with the midpoints. Then modify the original linear functions so
that all the basis functions add up to one at any point within the element.

The functions that are being added for the midpoints are produced as products of one quadratic
function (in one variable) and two linear functions (in the remaining two variables). For instance,
consider the basis function N11: the variation of this function along the edge 3, 4 should be the

232 FEM for Thermal and Stress Analysis

Fig. 7.9. Numbering of the nodes of the hexahedron H20

quadratic (1 − ξ2) (Figure 7.10). Furthermore, N11 should vanish at all the nodes except 11. The
function (1− ξ2) is zero along the faces 2, 3, 7, 6 and 4, 1, 5, 8. To make it vanish also along the two
faces 7, 8, 5, 6 and 1, 2, 6, 5, we multiply it with the two functions (η + 1) and (ζ − 1). Finally, this
product is normalized to assume value +1 at the node 11. The result is

N11 =
(1− ξ2)(η + 1)(ζ − 1)

8
.

The basis functions for all the other mid-side nodes are obtained in the same fashion. The final
step is to subtract half of each mid-side basis function from the two corner basis functions that are
borrowed from H8 along that edge so that the basis functions again add up to one everywhere within
the element

20∑
k=1

Nk(ξ, η, ζ) = 1 .

Thus, for instance for N1 we have

N1 =
(ξ − 1)(η − 1)(ζ − 1)

8
− N11

2
− N10

2
− N19

2
.

Detailing all the other basis functions would take up too much space: please consult [3] or the Abaqus
manuals.

Fig. 7.10. Visualization of the three functions whose product gives the basis function N11 for the hexahedron
H20

Gauss integration at 3×3×3 points is considered a “full integration” of the stiffness (conductivity)
matrix. This element would be known as C3D20 in Abaqus. However, the theoretically insufficient

7.5 Model reduction for plane strain 233

Gauss scheme 2× 2× 2 points often leads to much improved results, giving a less constrained model
with considerably improved flexibility. Such an element is labeled “reduced-integration”, and it is
known as C3D20R. The simply-supported plate problem was modeled with the 20 node hexahedron
C3D20R.

Consider the results presented earlier in Figures 7.6 and in 7.7: The hexahedron C3D20R with
the reduced 2 × 2 × 2 numerical integration scheme performs very well for both the thick and the
thin plate: refer to Figures 7.6 and 7.7. For this particular problem it delivers engineering-accuracy
results with very coarse meshes.

One note is in order: The deflections are normalized by the analytical solution obtained for a
thin plate, i. e. without consideration of shear deformations [10]. However the numerical results are
produced by solid elements, which do incorporate shear. That is why the numerical results apparently
converge to a deflection higher than that predicted analytically.

The 20-node hexahedron will usually work very well. The contraindications are few,
for instance in contact problems: consult the manuals.

7.4.5 Quadratic element Q8

The quadratic quadrilateral Q8 is compatible with the faces of the brick element H20 (compare
Figure 7.9 with Figure 7.11). Therefore, to write down the basis functions for the quadrilateral, we
may for instance substitute ζ = −1 into the basis functions Nj , j = 1, 2, 3, 4 (corner functions), and

Nj , j = 9, 10, 11, 12 (mid-side functions) of the hexahedron.

Fig. 7.11. Numbering of the nodes of the quadrilateral Q8

The Abaqus plane-stress element of the Q8 form is called CPS8 when used with full Gauss
integration of 3 × 3 points, and CPS8R when used with the reduced Gauss integration of 2 × 2
points. Again, the reduced-integration version of the element is more flexible and therefore has an
edge on the fully-integrated element.

7.5 Model reduction for plane strain

The plane-stress model developed in Chapter 5 is easily extended to handle the case of the so-called
plane strain. The starting point is the observation that for some solids of uniform cross-section (right
angle prisms), the set of assumptions that ux = ux(x, y), uy = uy(x, y) and uz(x, y, z) = 0 seems
to approximate the deformation well. In words, only the in-plane displacements are non-zero, and
the third displacement component is identically zero. A classical example that is modeled as plane
strain is a pipe with fixed ends. The following figures show 3-D simulations of a piping connector
between two massive, stiff components. The middle portion (well removed from the two ends) can

be modeled profitably with the plane strain model. See Box 19
Abaqus
- CAE file

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/PipingConnector.cae

234 FEM for Thermal and Stress Analysis

Z

Y

X

X

Y

Z

Fig. 7.12. Half of the cross-section of the piping connector. Pressure in the larger-diameter pipe is indicated
by arrows.

Figure 7.12 shows (half of) the cross-section of a counter-flow pipe which is loaded in the larger-
diameter opening with interior pressure. Symmetry boundary conditions are applied, and the end-
points of the pipe are clamped. Figure 7.13(a) illustrates the distribution of the maximum principal
strain. Clearly, away from the ends the distribution of the maximum principal strain is essentially
independent of the position in the z (axial) direction. This would correspond to the strain being
generated by in-plane (x, y) components of displacement. This can be correlated with Figure 7.13(b)
where the εz = 0 can be observed to hold away from the ends of the pipe. Figure 7.14(a) shows the

(Avg: 100%)
E, Max. Principal

+1.085e−06
+9.073e−06
+1.706e−05
+2.505e−05
+3.304e−05
+4.103e−05
+4.902e−05
+5.700e−05
+6.499e−05
+7.298e−05
+8.097e−05
+8.896e−05
+9.695e−05

X

Y

Z

(Avg: 100%)
E, E33

−1.041e−05
−5.862e−06
−1.316e−06
+3.229e−06
+7.775e−06
+1.232e−05
+1.687e−05
+2.141e−05
+2.596e−05
+3.050e−05
+3.505e−05
+3.960e−05
+4.414e−05

X

Y

Z

(a) (b)

Fig. 7.13. Piping connector. (a) Largest principal strain. (b) Axial strain (εz). Note that the axial strain is
essentially zero in the middle portion of the structure.

von Mises stress. Again, the essentially two-dimensional distribution along the pipe within a certain
distance from the end sections can be appreciated. The axial stress, σz is not zero, as indicated in
Figure 7.14(b).

(Avg: 100%)
S, Mises

+2.424e−01
+1.990e+00
+3.738e+00
+5.486e+00
+7.234e+00
+8.982e+00
+1.073e+01
+1.248e+01
+1.423e+01
+1.597e+01
+1.772e+01
+1.947e+01
+2.122e+01

X

Y

Z

(Avg: 100%)
S, S33

−2.163e+00
−1.242e+00
−3.205e−01
+6.007e−01
+1.522e+00
+2.443e+00
+3.364e+00
+4.285e+00
+5.207e+00
+6.128e+00
+7.049e+00
+7.970e+00
+8.891e+00

X

Y

Z

(a) (b)

Fig. 7.14. Piping connector. (a) Von Mises stress. (b) Axial stress (σz).

7.6 Model reduction for axial symmetry 235

The equations derived for plane stress in Chapter 5 apply, the only modification that is required
consists of replacing the material stiffness matrix. For an isotropic material, the plane-strain material
stiffness matrix reads (compare with the plane-stress matrix (5.7))

[D] =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0

0 0
1− 2ν

2

 (7.22)

7.6 Model reduction for axial symmetry

The last model reduction approach to be discussed in this chapter, is the case of torsionless axial
symmetry (Figure 7.15). The main assumption is that all planes passing through the y axis are
symmetry planes. (The y axis will be referred to as the axis of symmetry.) Everything is assumed
to have this symmetry: the geometry, the material, the loading and support conditions. Therefore,
points in any particular cross-section will move only in the radial and axial direction, and will not
leave the plane of the cross-section (the circumferential displacement is identically zero). Further-
more, points on circles in planes orthogonal to the axis of symmetry, with centers on the axis of

symmetry, experience the same radial and axial displacements. See Box 19

Fig. 7.15. Axially symmetric geometry. The dark shape is the generating section, which is revolved by 360o

around the axis of symmetry to generate the solid. Note that the geometry may be as shown or it may have a
hole along the axis of symmetry (like a pipe), a through-hole or partial hole depending on where the section
extends all the way to the axis of symmetry.

Let us consider one particular cross-section, for instance as indicated in Figure 7.15. Since the
displacements in the plane of the cross-section are symmetric with respect to the axis of symmetry,
we will consider only the part to one side of the axis of symmetry (filled in Figure 7.15).

As indicated in Figure 7.16, the circles in planes orthogonal to the axis of symmetry are by
assumption transformed by the deformation again into circles in planes orthogonal to the axis of
symmetry. Therefore, right angles between the plane of the cross-section and the tangent to the
circle where it intersects the cross-section will remain right angles, and the shear strains are γzx = 0,
and γzy = 0. For an isotropic material, we may conclude that τzx = 0, and τzy = 0.

The circumferential stress is an important part of the balance of an axially symmetric part.
It can be expressed in terms of the displacements in the plane of the generating cross-section as
follows: By inspection of Figure 7.16, displacement of the circle in the y direction does not change
its circumference, while displacement radially means that the circle of radius x will experience strain

εz =
2π(x+ ux)− 2πx

2πx
=
ux
x
.

236 FEM for Thermal and Stress Analysis

Fig. 7.16. Axially symmetric geometry: geometry of circles in planes orthogonal to the axis of symmetry.
The generating section is indicated as a filled shape.

The strain-displacement operator for this model may therefore be written as

B =

∂/∂x 0

0 ∂/∂y
1/x 0
∂/∂y ∂/∂x

 . (7.23)

The stress divergence operator (the transpose of (7.23)) gives the reduced form for the equations of
static equilibrium (7.8)

∂σx
∂x

+
∂τxy
∂y

+
σz
x

+ bx = 0

∂τxy
∂x

+
∂σy
∂y

+ by = 0

where the presence of σz should be noted: recall that the equation of motion in the radial direction
holds for a wedge-shaped element, hence the contribution of the circumferential (hoop) stress to the
radial direction must be included.

The constitutive equation is obtained from the full three-dimensional relationship by extracting
appropriate rows and columns

σx
σy
σz
τxy

 = [D]

εx
εy
εz
γxy

 , (7.24)

where the material stiffness matrix reads

[D] =
E

(1 + ν)(1− 2ν)

1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0
(1 + ν)(1− 2ν)

2(1 + ν)

(7.25)

When a single part is not supported in any way, in the axially symmetric model it has one rigid
body mode, translation in the axial direction. Consider the piece of a steel cylindrical shaft with a

Abaqus
- CAE file

filleted shoulder in Figure 7.17. The part is under self-equilibrated tensile loads, 20 ksi applied to
the top circular cross-section of radius 5/6 in, and an appropriately reduced distributed loading of
(5/6)2 × 20 ksi is applied on the bottom circular cross-section of radius 1 in.

When the solution is obtained without applying any displacement boundary conditions, the
displacement in the direction along the axis of symmetry is huge, and depends on the mesh used.
For instance, with the mesh in the linked model database, the displacement is on the order of 17,000
inches. The reason is the (nearly) singular stiffness matrix and the following effect of numerical
round off: the simulation is actually run off of a text file that describes the model, the “.inp” file
that the Job Manager writes out. Thus we find that distributed loading defined by these lines:

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/shaft-axisymm.cae

7.7 Free vibration (frequency) analysis 237

0.83

1.

1.

R0.15

H

H

0.83

1.

1.

R0.15

H

H

X

Y

Z

Z

T R

X

Y

Z

(a) (b)

Fig. 7.17. Shaft with cross-section transition. (a) Sketch. Units: inches. Note that the top radius is 5/6 in: the
dimension shows rounding. (b) Loading by tension tractions, the loading is assumed to be in self-equilibrium.

** Name: tension bottom Type: Surface traction

*Dsload
bottom, TRVEC, 13888.9, 0., -1., 0.

** Name: tension top Type: Surface traction

*Dsload
top, TRVEC, 20000., 0., 1., 0.

where TRVEC, 13888.9 refers to the magnitude of the traction applied on the bottom face and
TRVEC, 20000. refers to the magnitude of the traction applied on the top face. Using these numbers,
the traction at the bottom is actually only approximately able to balance the traction applied at
the top. The total force applied at the top is (in lbf)

math.pi*(5./6.)**2*20000

i.e. 43633.231, which is to be compared to the total force applied on the bottom face

math.pi*(1.0)**2*13888.9

i.e. 43633.266. We can see that the two forces only agree to six decimal places, so a force on the
order of 10−2 lbf is the imbalance. However tiny this is compared to the applied forces, given the
near singularity of the stiffness matrix it is still able to produce a huge displacement.

Never rely on the applied loads to be perfectly in balance. Always stabilize the structure
to catch any imbalance that can be introduced by the errors of computer arithmetic.

The problem is easily fixed by applying a point constraint in the axial direction. The associated
reaction will turn out to be on the order of 10−2 lbf, which is not zero (as it ideally should be for
that point constraint to be admissible), but since the applied forces are several orders of magnitude
bigger than the reaction, this inaccuracy is acceptable.

7.7 Free vibration (frequency) analysis

In this section we will incorporate dynamics in the form of undamped harmonic vibration. The
dynamic balance equation is modified from the static balance by the addition of the inertial force

238 FEM for Thermal and Stress Analysis

density

[B]
T

[σ] +
[
b
]

= ρ [ü] . (7.26)

Here ρ is the mass density (mass per unit volume), and [ü] is the vector of the acceleration.
During free vibration all external loads are assumed to be zero, so the body load

[
b
]

= [0],
there are no non-zero applied tractions on the boundary, all prescribed displacement components
are also assumed to be zero (this is referred to as homogeneous essential boundary conditions), and
temperature changes are not considered either.

The displacements are assumed to be harmonic functions of time

[u] = [ũ] cos(ωt) (7.27)

so that [ü] = −ω2 [ũ]. Here ω is the frequency of the harmonic motion, and ũ is the time-independent
vector of displacement amplitudes. Then the dynamic balance equation (7.26) simplifies to

[B]
T

[σ] = −ω2ρ [ũ] . (7.28)

For finite elements in three dimensions, the weighted residual equation for the free-vibration

dynamics follows from the dynamic equations of motion (for details: See Box 29): For each free
degree of freedom (j, r), i.e. for 1 ≤ (j, r) ≤ Nf , where j is a node number and r = x, y, z there will
be one equilibrium (force balance) equation

−ω2
Nf∑

(i,r)=1

∫
V

NjρNi dV [ũi]r +

Nf∑
(i,s)=1

∫
V

[
[Bj]

T [D][Bi]
]
rs

dV [ũi]s = 0 , (7.29)

where the homogeneous essential boundary conditions imply for the fixed degrees of freedom

[ui]s = 0 node i on Su,s and s = x or y or z . (7.30)

These equations represent harmonic balance equations for the mass of the structure lumped to the
nodes and the elastic restoring forces lumped into springs that connect the nodes. The first term
represents the harmonic inertial forces, the second term represents the elastic restoring forces.

The above is written in terms of components. The matrix notation allows us to write the tidy
expression

−ω2[M][Ũ] + [K][Ũ] = [0] , (7.31)

where [M] and [K] are square Nf ×Nf matrices. The column matrix [Ũ] collects the free degrees of

freedom for the entire structure. The solution is sought as the pair ωk and [Ũ] = [φk], where ωk is
the k−th circular frequency of free vibration (also called natural frequency), and [φk] is the k−th
eigenmode (also called normal mode, or free vibration shape). Equation (7.31) is the generalized
eigenvalue problem .

7.7.1 Modal analysis of a circular clamped plate

As our first example, we consider the vibration of a moderately thick circular plate as shown in Fig-
ure 7.18. The cylindrical surface is fully clamped (all displacements zero). The material is isotropic.
The analytical solution has been analytically worked out in dependence on the number of “nodes”
(locations of approximately zero displacement) radially and circumferentially [2]. Therefore, this is
a very good example with which to test a finite element solver (a so-called benchmark).

Abaqus
- CAE file

The finite element solution adopts the quadratic tetrahedron C3D10 (the quadratic T10). The
natural frequencies obtained for a relatively coarse mesh are illustrated in Figure 7.19. Evidently,
the element T10 produces estimates of the frequencies which are of good engineering accuracy.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/drum_vibration.cae

7.8 Principle of equivalent loads (Saint-Venant’s principle) 239

Fig. 7.18. Clamped circular plate (drum).

Step: modal analysis
Mode 1: Value = 10803. Freq = 16.542 (cycles/time)
Primary Var: U, U3

X Y

Z

Step: modal analysis
Mode 2: Value = 49410. Freq = 35.377 (cycles/time)
Primary Var: U, U3

X Y

Z

Step: modal analysis
Mode 3: Value = 51714. Freq = 36.193 (cycles/time)
Primary Var: U, U3

X Y

Z

Step: modal analysis
Mode 4: Value = 1.46266E+05 Freq = 60.868 (cycles/time)
Primary Var: U, U3

X Y

Z

Fig. 7.19. Mode shapes of thick clamped plate. The analytical solution for the natural frequencies yields
for these modes ω1 = 15.7511Hz, ω2 = ω3 = 32.7659Hz, ω4 = 53.757Hz

The graph of Figure 7.20 may serve as a crude guide to the relative accuracy of the two tetrahedral
elements, the linear T4 and the quadratic T10. The four natural frequencies are computed for finer
and finer meshes (the analytical results are indicated with horizontal red lines). The quadratic
element solutions approach the reference values quickly. The linear tetrahedral element solutions
approach the reference values very slowly. (Slow convergence is bad: a large number of elements, and
hence large expense, are needed for acceptable accuracy.)

Sometimes the linear tetrahedron will be as bad as in this example, but it could also
be much worse. Insights of this nature are critical to an effective FE analyst. Picking
the wrong element for the job can thoroughly spoil our day.

This example is also available in a tutorial form. Please follow the link in the margin.
Abaqus
- CAE file
- tutorial7.8 Principle of equivalent loads (Saint-Venant’s principle)

Shear traction components are often generated by frictional contact between interacting bodies.
However, contact problems are well outside the scope of this textbook, they are nonlinear and
involve inequality constraints. The other situation in which we might wish to apply shear tractions
is when we formulate simplified models in which the effect of the omitted part of a structure is
introduced as a resultant (force or torque) into the model.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/drum_vibration_tut.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/drum-tutorial.pdf

240 FEM for Thermal and Stress Analysis

Fig. 7.20. Comparison of the first four natural frequencies of the drum computed with the two tetrahedral
elements, the T4 (dashed line) and the T10 (solid line). The analytical solution for the natural frequencies,
ω1 = 15.7511Hz, ω2 = ω3 = 32.7659Hz, ω4 = 53.757Hz, is indicated with horizontal lines.

As an example, we will consider a shaft of circular cross-section, with two through-holes. The
focus of our interest is the local stress concentration around the holes when the shaft is subjected
to a known torque. As we do not wish to model the actual transmission of the torque into the shaft,
the geometry of the shaft is reduced to just the small neighborhood of the holes, and the torque
generated at the end points is applied as prescribed shear tractions in the end cross-sections of the
short stump.

Fig. 7.21. Example of boundary conditions: shaft loaded by torque.

The way in which we distribute the shear tractions is only an approximation of the stress dis-
tribution that would exist in the complete part. Based on experimental observations accompanied
by analyses of a few particular cases, the so-called Saint-Venant’s principle [9, 1], may be in-
voked: If a set of self-equilibrated tractions is applied on a limited subset of the boundary, its effect
will be negligible beyond a certain range. By necessity, this principle is somewhat vague, and its
applicability needs to be assessed case-by-case. Figure 7.22 illustrates the meaning: consider a beam
of solid section, to which a traction t of a nonzero resultant is applied. If the traction is perturbed
by a self-equilibrated load t̂, the stresses will change significantly only in a region extending in all
directions approximately by the characteristic dimension of the beam d.

Fig. 7.22. Illustration of Saint-Venant’s principle

7.9 Supports applied to nodes 241

Coming back to the shaft: relying on the Saint-Venant’s principle, we apply the resultant torque
by any convenient distribution of shear tractions. Again, this is a pure-traction problem, so essential
boundary conditions to prevent rigid body motion should be added to make the solution unique.
In this case, for instance a plane of anti-symmetry exists, or point supports could be added at
convenient locations (for instance on the axis of the shaft).

7.9 Supports applied to nodes

Oftentimes the modeling abstraction of a structure does not lead to sufficient number of constraints
on displacement, and the structure will have one or more rigid-body displacement options. In order
to suppress the rigid body displacements we could apply constraints on displacements at the nodes.

The displacement constraints needs to be applied in some coordinate system, which will assume
will be always described by Cartesian triple of vectors. Unless the restraints are defined in the global
Cartesian coordinate system, we must always say in which coordinate system the support conditions
are defined.

1. If we wish to force a node k to move on a surface , we need to establish a coordinate system
with two vectors tangent to the surface at the node k. The third vector is then normal to the
surface, and the desired constraint is then expressed as un = 0. Here un is the displacement
components normal to the surface.

2. If we wish to force a node k to move on along a curve , we need to establish a coordinate
system with one vector tangent to the curve at the node k, let us say we call that vector t. The
remaining two basis vectors of the coordinate system are normal to the curve, we could call them
n and m. The desired constraint is then expressed as un = um = 0. Here un and um are the
displacement components normal to the curve.

3. If we wish to force a node k to be immovable , we can express the constraint in any Cartesian
basis at the node: e1, e2, and e3. The desired constraint is then expressed as u1 = u2 = u3 = 0.
Here u1, u2, and u3 are the displacement components in the basis.

Provided the constraints are expressed in the global Cartesian coordinate system, we don’t need
to introduce any ad hoc coordinate systems. In the global Cartesian coordinate system we have for
instance these constraints:

• Apply ux = uz = 0 at node k: force the node to move only in the direction of the y-coordinate
(along the coordinate curve).

• Apply uy = 0 at node k: force the node to move only in a plane parallel to x, z.
• Apply ux = uy = uz = 0 at node k: the node becomes immovable.

Furthermore, note that we are here concerned with deformable bodies. For the purpose of the
application of the restraints against rigid body displacements we will consider all bodies to be rigid.
However, we will have to make allowance for the possibility of the supported body deforming under
the loads. Therefore, the applied constraints must not prevent the deformation from occurring. As
a whole, the system of applied restraints must allow for unhampered deformation of the analyzed
structure.

Always be mindful of the inadmissibility of single-point constraint should the associated
reaction be nonzero.

7.9.1 Metal strip: example of free-floating structure

The metal strip with hemispherical dimples shown in Figure 7.23 is subjected to self-equilibrated
tensile load in the x-direction. Note that there is no plane of symmetry in this problem. The goal is
to suppress rigid body motion by applying node restraints. A fully free three-dimensional rigid body

242 FEM for Thermal and Stress Analysis

Fig. 7.23. Strip with dimples under tensile loads.

has six rigid body modes (six DOFs). To prevent the body from moving, six force reactions need to
be generated, which means we need to apply six point constraints.

There is no unique solution. There are several possibilities. Here is one: call for Figure 7.24(A).
We will force the nodes a and b to move along the curve in the y direction only. Introducing four
constraints in this way, two DOFs are still left. We will suppress those by applying the restraint at
the node e by setting the y and z displacements at node e to zero: this node can now only move on
a coordinate curve parallel to the x direction.

Here is another possibility. We can enforce a restraint at the nodes a, b, and d to move on a
plane parallel to the x, y plane. Consequently we suppress the z displacements at these three nodes.
Three DOFs are therefore left. We can suppress those by constraining the b and d nodes to move
on a plane with the normal in the y-direction. One more restraint is needed, to prevent sliding in
the direction of the x- axis. Forcing node e not to be movable in the x-direction completes the set
of sufficient restraints. See Figure 7.24(B).

(A) (B)

Fig. 7.24. Strip with dimples under tensile loads. Two possible configurations of supports at the nodes

Note that in Figure 7.24(B) we should not include the node c or e in the constraint to move only
on a single plane parallel to x, y in addition to the three nodes a, b, and d: there is no guarantee
that all of these nodes should stay in a single plane after the deformation occurs. If we added all of
these nodes to the constraint, we couldn’t guarantee the reactions to be all zero, and that would be
against our rules.

Until we have mastered applying constraints at the nodes to free-floating bodies it is a good idea
to check that the reactions will indeed be all zero. For this we need to write down conditions of
equilibrium of the free-floating body: the sum of forces and the sum of torques must both vanish.

We will consider again the metal strip with hemispherical dimples from Figure 7.23. This time
the supports will be applied as shown in Figure 7.25. The goal is to check that all the supports are
admissible, i.e. check that the corresponding reactions are all guaranteed to be zero.

Since the assumption is that the applied tensile load on the two faces orthogonal to the x direction
is self-equilibrated, we can totally discount the applied load from the consideration of equilibrium
and focus simply on the reactions. The reactions that correspond to the applied constraints have now
been added to our sketch in Figure 7.26. The sum of the reactions in the three coordinate directions
is

7.9 Supports applied to nodes 243

Fig. 7.25. Strip with dimples under tensile loads. Restraints applied at nodes.

Rd,x +Rc,x +Rf,x = 0

Rd,y = 0

Rd,z +Rc,z = 0

Similarly, the torques of the reactions about the coordinate direction vectors, for simplicity all figured
with respect to node d as that eliminates from the equations the largest number of reactions, are

−Rc,zW = 0

−Rf,xH = 0

Rc,xW = 0

It is a simple matter to verify that this system of six equations leads to the solution Rd,x = Rc,x =
Rf,x = Rd,y = Rd,z = Rc,z = 0. Hence, all the reactions are guaranteed to be zero: the applied
constraints are admissible.

Fig. 7.26. Strip with dimples under tensile loads. Reactions.

Valuable insight can be gained by writing out the above relationships in terms of the matrix
equation:

1 0 0 1 0 1
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 −W 0
0 0 0 0 0 −H
0 0 0 W 0 0

Rd,x
Rd,y
Rd,z
Rc,x
Rc,z
Rf,x

 =

0
0
0
0
0
0

 (7.32)

The coefficient matrix on the left is clearly non-singular, it is easy to see how we could get this
matrix in upper-triangular form with non-zero numbers on the diagonal by swapping rows six and
five and five and four, and therefore the only solution for a zero right-hand side is the homogeneous
one (all unknowns zero). If the coefficient matrix was singular, the solution could consist of some
non-zero reactions, and we would have to conclude that the support conditions were inadmissible.

Furthermore, if the coefficient matrix was non-square (rectangular), it might be possible for the
solution of the equilibrium equations to include some nonzero reactions. For instance, let us say
there are more reactions then there are equations (the matrix is wider than it is tall). Then the

244 FEM for Thermal and Stress Analysis

equations are insufficient to determine the solution uniquely, and the support conditions may be
inadmissible since some of the reactions may be non-zero. On the other hand, if there are fewer
reactions than there are equations of equilibrium, the matrix is singular (there are more rows than
there are columns), and we cannot guarantee the stability of the supported body: we need to add
an appropriate number of additional supports.

7.10 Advanced three-dimensional elements

In professional finite element analysis work one straightaway perceives the need for using tools
well-suited to the purpose. It is difficult to be efficient when the tools are flawed. Considering
stress analysis of three-dimensional solids with hexahedral elements, the flaws of plain-vanilla finite
elements are inescapable: the isoparametric hexahedron is too stiff in bending, much too susceptible
to deterioration of performance in distorted configurations, especially when used with high aspect
ratio (such as for plates or shells), and finally, using isoparametric hexahedra for analyses with little
compressibility, such as for elastomeric structures or when plasticity of metals is of concern, is a
frustrating exercise as the element “locks” (there is much too little of the correct deformation).

To design a hexahedral element capable of good performance under all these requirements is not a
trivial proposition. Abaqus implements at least two decent candidates, the element with incompatible
modes and the mean-strain element. The standard isoparametric element is too stiff because it reacts
with too much resistance to some strains. These two approaches attempt to improve the response
by either

• enhancing the representation of the strains so that the strains are correct, or
• making the troublesome strains invisible to the element.

In the first approach, additional possible deformation patterns are added to the element as internal
degrees of freedom: If we make it possible for the element to represent bending deformation by
incorporating the possibility of curving, it will not need to produce shear strains to deform. However,
this will be in addition to the usual straight-edge mode of deforming. Since each element now has
its own way of curving that is not shared with its neighbors, the resulting displacement pattern in
the mesh is incompatible (the elements don’t fit together perfectly after deformation). The element
in Abaqus is called C3D8I, where the “I” stands for incompatible.

In the second approach, instead of the 2 × 2 × 2 Gauss quadrature, which is the logical choice
for the standard element, an alternative, reduced, integration scheme is used. For instance, if only
a single integration point was used, the element would be blind to its distortion in the form of a
bending pattern (see Figure 7.8). Unavoidably, not seeing this distortion means that “too much
resisting force” is replaced with “no resisting force at all”. Consequently the needed resistance
must be added in the form of stabilization. Since when the element is blind to distortion strains,
the unresisted deformations visually resemble the shape of an hourglass, the element is labeled
“susceptible to hourglassing”. The stabilization should make it impossible for the element to deform
by hourglassing without offering some resistance. There are several possibilities how to prevent
hourglassing, of which perhaps the “enhanced” assumed strain stabilization is the most successful.
The resulting element is called C3D8RH (with enhanced hourglass control).

The name of the element (C3D8RH) does not reflect the hourglass control. When
interpreting results obtained with an hourglass-controlled element, check how it is
stabilized: some forms are better than others. Choosing the right one may be tricky.
The manuals have a lot more detail, but experience is essential.

In addition, the tetrahedral and hexahedral elements in Abaqus can also be formulated by in-
dependently approximating displacements and hydrostatic pressure. This can be effective in dealing
with deformations with limited compressibility. The element is then employed in the so-called hybrid
formulation. The hybrid formulation is indicated with an “H” appended to the element name. For
instance, C3D8IH is the hybrid formulation of the incompatible-mode hexahedron C3D8I.

7.11 Analyzing shell structures with hexahedra and tetrahedra 245

7.11 Analyzing shell structures with hexahedra and tetrahedra

The cylindrical shell roof of Figure 7.27 was chosen as here both membrane and bending stresses
are of importance. The model was originally solved by Scordelis and co-workers in 1964 and it has
been used since frequently for assessment of finite element performance (i.e. as a benchmark).

The shell is relatively thin (radius to thickness ratio of 100), it is supported by circular rigid
diaphragms along the curved edges, loaded by distributed body load (self weight), and the target
quantity is the deflection of the free straight edge at point A in the direction of the gravity vector
g. Because of the two planes of symmetry, only a quarter of the shell is modeled.

Abaqus
- CAE file

Fig. 7.27. Scordelis-Lo cylindrical shell. Quarter of the shell is modeled.

We use three finite elements, each with three progressively finer meshes. Each mesh has a single
element through the thickness, but n× n elements along the supported arc and the free edge of the
shell. Figure 7.28 shows two such meshes, for the hexahedral shapes on the right and the tetrahedral
element on the left.

U, U1

−7.960e−02
−7.297e−02
−6.633e−02
−5.970e−02
−5.307e−02
−4.643e−02
−3.980e−02
−3.317e−02
−2.653e−02
−1.990e−02
−1.327e−02
−6.633e−03
+0.000e+00

X

Y

Z

U, U1

−3.047e−01
−2.755e−01
−2.463e−01
−2.172e−01
−1.880e−01
−1.588e−01
−1.297e−01
−1.005e−01
−7.134e−02
−4.217e−02
−1.301e−02
+1.616e−02
+4.532e−02

X

Y

Z

Fig. 7.28. Scordelis-Lo cylindrical shell. Magnified deflected shape shown for the T10 tetrahedron on the
left, and H20 hexahedron on the right.

The best performer is the hexahedron H20 with the so-called reduced integration (Gauss rule
with 2× 2× 2 points), i.e. the Abaqus C3D20R. It delivers exceptional accuracy even with a mesh
of two-by-two elements. The fully-integrated version of the H20 element, with the 3 × 3 × 3 Gauss
rule, is much stiffer (C3D20). With the coarse meshes (n = 2, 5) we get only a fraction of the correct
deflection. The element H20 with full integration eventually converges, but clearly here we have an
example of getting more for doing less: for the fully-integrated element we need to evaluate the finite
element expressions at 27 points, while with the reduced-integrated element we only need 8. So we
get much better performance for one third of the effort.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/scordelis_lo.cae

246 FEM for Thermal and Stress Analysis

The tetrahedral element is even stiffer (less accurate) than the fully-integrated H20, and improves
slowly. The fault lies with the inability of this element to handle very large aspect ratios (the element
is short in the thickness direction but elongated along the surface of the shell). In addition, the
elements are also curved. That also goes down poorly.

Best to avoid using tetrahedral T10 elements for shell-like structures.

Number of elements per edge
2 4 6 8 10

N
o
rm

.
d
efl
ec
ti
o
n

0

0.2

0.4

0.6

0.8

1

C3D20R

C3D20

C3D10

Fig. 7.29. Scordelis-Lo cylindrical shell. Comparison of the deflection at point A for three different element
types. Convergence with the respect to the number of elements along the edges of the shell.

7.12 Harmonic Forced Vibration Analysis

In Harmonic Vibration Analysis (HVA) — a.k.a. forced harmonic vibration, or Steady-State Dy-
namics (SSD) — we assume that there are possibly three sources of loading, distributed body load,
distributed traction load on the surface, or loading by moving supports. The weighted residual
equation for this case is written as

Nf∑
(i,r)=1

∫
V

NjρNi dV [üi]r +

Nf∑
(i,s)=1

C(j,r),(i,s)[u̇i]s +

Nf∑
(i,s)=1

∫
V

[
[Bj]

T [D][Bi]
]
rs

dV [ui]s

+

N∑
(i,r)=Nf+1

∫
V

NjρNi dV [üi]r +

N∑
(i,s)=Nf+1

C(j,r),(i,s)[u̇i]s

+

N∑
(i,s)=Nf+1

∫
V

[
[Bj]

T [D][Bi]
]
rs

dV [ui]s

−
∫
V

Nj [b]r dV −
∫
St,r

Njtr dS = 0

(7.33)

where we still keep the general time dependence. Notice that we have also added the possibility of
a damping (velocity-proportional or a viscous) force. The above weighted residual equation results
in the matrix expression, which is a system of ordinary differential equations,

[M][Ü] + [C][U̇] + [K][U] = [L] , (7.34)

7.12 Harmonic Forced Vibration Analysis 247

where [M] is the mass matrix, [Ü] is the vector of accelerations (second derivatives of the degrees
of freedom with respect to time), [C] is the damping matrix, [U̇] is the vector of velocities (first
derivatives of the degrees of freedom with respect to time), [K] is the stiffness matrix, [U] is the
vector of displacement degrees of freedom, and [L] is the vector of the time-dependent loadings of
all kinds.

Now we introduce the harmonic time dependence. We do this with a complex exponential in
order to account for the possibility of the loading and the response occurring at different phases of
the cycle. So we assume the vector of loads is harmonic, i.e. L = exp(iωt)L̃, where ω is the frequency

of forcing, and L̃ is a time-independent vector that describes the distribution of the load over the
structure, and analogously the response is assumed as U = exp(iωt)Ũ . Differentiating and factoring
out the time dependence exp(iωt) leads to

−ω2MŨ + iωCŨ +KŨ = L̃ , (7.35)

or (
−ω2M + iωC +K

)
Ũ = L̃ . (7.36)

The matrix −ω2M + iωC +K is the dynamic stiffness (frequency response function matrix), and

the time-independent vector Ũ is a complex quantity which encodes both the amplitude and the
phase shift of the components of displacement of the structure under the harmonic loads.

The damping matrix C(j,r)(i,s) is often modeled with the so-called Rayleigh stiffness- and mass-
proportional damping. Then we take

C(j,r)(i,s) = αRM(j,r)(i,s) + βRK(j,r)(i,s) , (7.37)

i.e. the damping matrix is taken as a linear combination of the mass matrix and the stiffness matrix.
The coefficients of the linear combination can be determined by matching the damping ratio ζ at
one or two selected frequencies. For instance, if we wish to apply a given damping ratio ζ at a
single frequency ω0, we may assume that the two mechanisms contribute equally and solve for the
coefficients from

1

2
ζ = αR/ω0 and

1

2
ζ = βRω0 . (7.38)

On the other hand, if we wish to apply a given amount of damping, with damping ratios ζ1 and ζ2
at two separate frequencies ω1 and ω2, we need to solve the system of coupled equations

ζ1 = αR/ω1 + βRω1 , ζ2 = αR/ω2 + βRω2 , (7.39)

for the combination of the damping coefficients αR, βR.

7.12.1 Response of a thin plate

In this section we will consider a comprehensive example that will consider vibration of a square
simply-supported plate under transverse dynamic loads. The test is recommended by the National
Agency for Finite Element Methods and Standards (U.K.): Test 13 from NAFEMS “Selected Bench-
marks for Forced Vibration,” R0016, March 1993.

Abaqus
- CAE file
- tutorial

The steel plate has dimensions of 10×10 m with the thickness of 0.05 m. The domain is discretized
with 20-node hexahedral solid elements, 8×8 elements in the plane of the plate and a single element
through the thickness . The simple support condition is approximated by distributed rollers on the
boundary to enforce zero transverse displacement (but allowing in-plane displacements). Because
only the out of plane displacements are prevented, the structure has three rigid body modes in the
plane of the plate. The non-zero transverse modes of vibration are illustrated in Figure 7.30. The
nonzero benchmark frequencies are 2.377 (fundamental), 5.961, 5.961, 9.483, 12.133, 12.133, 15.468,

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/SquarePlate-HVA-tutorial.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/SquarePlate-HVA-tutorial.pdf

248 FEM for Thermal and Stress Analysis

Step: Step−frequency
Mode 4: Value = 221.26 Freq = 2.3674 (cycles/time)
Primary Var: U, Magnitude

X
Y

Z

Step: Step−frequency
Mode 6: Value = 1392.2 Freq = 5.9384 (cycles/time)
Primary Var: U, Magnitude

X
Y

Z

Step: Step−frequency
Mode 9: Value = 5611.2 Freq = 11.922 (cycles/time)
Primary Var: U, Magnitude

X
Y

Z

(a) (b) (c)

Fig. 7.30. Thin simply-supported plate. Mode shapes: (a) Fundamental frequency at 2.367 (2.377) Hz,
(b) second natural frequency at 5.938 (5.961) Hz, (c) sixth natural frequency at 11.922 (12.133) Hz. The
reference values are shown in parentheses.

and 15.468 [Hz]. The finite element model is sufficiently accurate to deliver natural frequencies within
a fraction of a percent, with the maximum error for the eight frequencies just over 2%.

The harmonic forced vibration is studied for uniform transverse load on the top surface of the
plate F = 100 sin(ωt) N/m2, in the range of 0 to 15 Hz. By varying the frequency of excitation ω
we can sweep through the frequencies with equation (7.36). If we focus on a single quantity, as for
instance in this example where we are interested in the transverse displacement of the center point
of the plate, we get a curve that expresses how the quantity changes with frequency. Figure 7.31(a,b)
shows the real and imaginary parts of the complex frequency response function Hu(ω). As expected,
the real component goes through zero at the peak response of the plate (the resonance), while the
imaginary part peaks at the resonance. Figure 7.31(c) demonstrates the large peak in the modulus
of the transfer function at the fundamental frequency which is due to the resonance of the plate
when the forcing passes through the fundamental frequency. The reference NAFEMS solution for the
peak displacement is 45.42 mm, which is almost equal to the thickness of the plate. The relatively
small peak around 12 Hz is due to the sixth mode (Figure 7.30(c)). Finally, Figure 7.31(d) shows
the phase of the complex frequency response function Hu(ω).

Real part of the FRF

Frequency
0. 5. 10. 15.

D
is

pl
ac

em
en

t

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

U:U3 Complex: Real PI: PLATE−1 N: 77

Imaginary part of the FRF

Frequency
0. 5. 10. 15.

D
is

pl
ac

em
en

t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

U:U3 Complex: Imaginary PI: PLATE−1 N: 77_1

(a) (b)
Magnitude of FRF

Frequency
0. 5. 10. 15.

D
is

pl
ac

em
en

t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

U:U3 Complex: Magnitude PI: PLATE−1 N: 77

Phase angle

Frequency
0. 5. 10. 15.

P
ha

se
 a

ng
le

−150.00

−100.00

−50.00

0.00

50.00

100.00

150.00

U:U3 Complex: Phase Angle PI: PLATE−1 N: 77

(c) (d)

Fig. 7.31. Thin simply-supported plate. (a) Real part of the frequency response function of the transverse
displacement of the center of the plate <Hu(ω). (b) Imaginary part of the frequency response function of
the transverse displacement of the center of the plate =Hu(ω). (c) Magnitude (modulus) of the frequency
response function of the transverse displacement of the center of the plate |Hu(ω)|. (d) Phase angle of the
frequency response function of the transverse displacement of the center of the plate.

7.13 Analysis of a composite plate 249

Resonance phenomena are especially significant in stress analysis. Mechanical resonance is the
tendency of a mechanical system to respond with increased flexibility when the frequency of the
forcing matches the system’s natural frequency of vibration. This may cause violent vibrations and
hence strong stress oscillations. In extreme cases this may result in catastrophic failure in improperly
constructed structures such as bridges, trains, and aircraft. However, even when individual peaks
of the stress do not lead to immediate failure, large-amplitude stress cycles may cause fatigue of
the material, which over the course of the life of the structure causes damage. Figure 7.32 shows
the amplitude of the frequency response function of the tensile stress at the bottom surface of the
plate |Hσx(ω)|. As the displacement in Figure 7.31, this curve also has a peak at the first natural
frequency of the structure. Clearly, compared to the static value of the stress (for ω = 0) of around
1.12 MPa, the resonant value of the stress of over 30 MPa is a very significant increase.

Magnitude of the max princ stress

Frequency
0. 5. 10. 15.

S
tr

es
s

0.

5.

10.

15.

20.

25.

30.

[x1.E6]

S:Max Principal Complex: Magnitude (Not averaged) PI: PLATE−1 N: 77_1

Fig. 7.32. Thin simply-supported plate. Frequency response function of the maximum of the stress compo-
nent σx at the center of the plate |Hσx(ω)|.

7.13 Analysis of a composite plate

In this example we will investigate a cross-ply laminated plate. It consists of three homogeneous
layers (lamina), where each layer consists of a matrix reinforced with parallel fibers. The material
stiffness matrix corresponds to a homogenization of the matrix + fibers system in the form of an

orthotropic elasticity. For an in-depth discussion of non-isotropic material models: See Box 18 .
The geometry is shown in Figure 7.33, and the dimensions are a = 200mm, b = 600mm, t =

20mm. The plate is composed of three homogeneous layers of equal thickness, which are considered
perfectly bonded together. The plate was assumed with simple-support boundary conditions and
uniform transverse load. The solution for the deflection and the three-dimensional stresses was
derived analytically (Table 2 [11]).

Fig. 7.33. Cross-ply laminated plate of three layers.

The material of each constituent layer is linearly elastic, and all three layers consist of the same
material, they differ only in the orientation of the local material axes x, y, z (Cartesian coordinate
system with basis vectors ex, ey, ez). The entries of the material stiffness matrix (or the material
compliance matrix) are to be understood as being expressed in the local (material) coordinate system

250 FEM for Thermal and Stress Analysis

attached to the material point in the form of the rotation matrix (7.40). where we have defined the
transformation matrix

[Rm] =

ex · ex, ey · ex, ez · ex
ex · ey, ey · ey, ez · ey
ex · ez, ey · ez, ez · ez

 , (7.40)

composed of the components of the vectors ex, ey, ez on the basis vectors ex, ey, ez in the columns of
the material orientation matrix. This matrix is recognized as an orthogonal matrix (rotation matrix),
whose inverse is its transpose

[Rm]
−1

= [Rm]
T
.

The material of all three layers is of the same orthotropic type in the material coordinate system,
and it is described using the so-called “engineering constants”: E1, E2 , and E3 are Young’s moduli
corresponding to the tensile (compressive) loading in the x, y, and z directions, respectively; ν23 is
Poisson’s ratio that characterizes normal deformation in the z-direction when the load is applied
in the y-direction, ν13 is Poisson’s ratio that characterizes normal deformation in the z-direction
when the load is applied in the x-direction, and ν12 is Poisson’s ratio that characterizes normal
deformation in the y-direction when the load is applied in the x-direction; and G23 , G13 , and G12

are shear moduli corresponding to the shear load applied in the y − z, x − z, and x − y planes,
respectively. Poisson’s ratios and Young’s moduli are related by the reciprocal relations as

νijEj = νjiEi, i, j = 1, 2, 3, i 6= j . (7.41)

In the present case, each layer is homogeneous, and the material orientation matrix is defined
by the angle used to derive the local coordinate axes from the global coordinate system by rotation
about the global z- axis. For the three layers considered here, the angles are 0o/90o/0o.

7.13.1 Strain-displacement matrix for anisotropic materials

The entries of the material stiffness matrix are expressed on the local Cartesian basis of material
orientation directions. The elementwise stiffness matrix links nodal displacements to nodal forces
and they are typically expressed in the global Cartesian coordinate system. Hence, we see that there
is a need to transform between the local material directions and the global Cartesian basis. Drawing
on the example of the element stiffness matrix (7.17), the element’s restoring force may be expressed
as

F e = KeU e =

∫
Ve

BeTDBe dV U e , (7.42)

While the displacement components inU e and the force components in F e are in the global Cartesian
basis, the material stiffness matrix is expressed on the basis of the local material directions. Evidently,
the linear algebra operations between the material matrix and displacements/forces must incorporate
the transformation from one basis to the other. One possibility is to have transformation built into
the strain-displacement matrix, which then takes displacement in the global Cartesian basis and
produces strains in the local material coordinate system. This can be accomplished by writing

[ε](x) = Bx[u](x) = B(x)
(

[Rm]T [u](x)
)

=
(
B(x)[Rm]T

)
[u](x) = B(x,x)[u](x) (7.43)

where we use the superscript (x) or (x) to indicate in which coordinate system the components
are expressed. The strain-displacement operator B(x,x) = B(x)[Rm]T incorporates the geometric
transformation [Rm]T of the displacement vector components from the global basis into the local
material directions basis. The global-to-local strain-displacement matrix for node k is therefore
defined as

B
(x,x)
k = B(x,x) (Nk(x)) = B(x) (Nk(x)) [Rm]T = B

(x)
k [Rm]T (7.44)

7.13 Analysis of a composite plate 251

The matrix B
(x)
k requires gradients of the basis functions with respect to the material Cartesian

directions. To obtain the gradients of the basis functions from (3.57) the matrix of node coordinates
is simply transformed to the Cartesian basis of material directions as

[x] = [x][Rm] (7.45)

so that the Jacobian matrix is computed in the local material coordinates[
J
]

= [x]
T
[
grad(ξ,η,ζ)N

]
, (7.46)

and[
grad(x)N

]
=
[
grad(ξ,η,ζ)N

] [
J
]−1

. (7.47)

7.13.2 Cross-ply plate results

The plate is studied using the so-called stacked solid continuum modeling. This means that each
Abaqus
- CAE file
- tutorial

layer is modeled with continuum (hexahedral) elements, possibly with multiple elements through
the thickness, and the individual layers are bonded together through tie constraints.

The material constants of the orthotropic material on the local material coordinates system are
taken as E1 = 172350MPa, E2 = E3 = 6894MPa, G12 = G13 = 3447MPa, G23 = 1378.8MPa,
ν23 = ν13 = ν12 = 0.25.

For an isotropic material the (only?) reason we may wish to use different coordinate systems in
which to express the stresses and strains has to do with the geometry of the structure. For instance
if the structure is of a cylindrical shape or has an axis of symmetry, a natural choice would be a
cylindrical coordinate system in which to express the results of the simulation.

For materials with fewer symmetries, such as transversely isotropic or orthotropic, there are
usually two coordinate systems in which to express stresses and strains. The first coordinate sys-
tem again has to do with the geometry of the structure. The default would be a global Cartesian
coordinate system. The second coordinate system would be the local material coordinates. In this
coordinate system, the response of the material is as easy to understand as possible (put another
way: in any other coordinate system it is much harder to relate strains and stresses).

Figure 7.34 shows isosurface rendering of the two normal stresses σx, and σy, in the global
coordinate system. The maxima occur in the first and third layer for σx (bending in the short
dimension), and in the middle layer (bending in the long direction, concentrated near the supported
faces of the plate).

Z
X

Y

(Avg: 75%)
S, S11 (GLOBAL CSYS)

−6.485e−01
−4.632e−01
−2.780e−01
−9.275e−02
+9.250e−02
+2.777e−01
+4.630e−01
+6.482e−01

XY
Z

Z
X

Y

(Avg: 75%)
S, S22 (GLOBAL CSYS)

−2.679e−01
−1.910e−01
−1.142e−01
−3.729e−02
+3.957e−02
+1.164e−01
+1.933e−01
+2.702e−01

XY
Z

(a) (b)

Fig. 7.34. Cross-ply laminated plate. Deformed shape with color-coded isosurfaces (a) of σx, (b) of σy.

http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/cae/Z_laminate_u_ss_10.cae
http://hogwarts.ucsd.edu/~pkrysl/femwabaquspython-book-2018/tut/Z_laminate_u_ss_10-tutorial.pdf

252 FEM for Thermal and Stress Analysis

Stress (and strain) data from laminated plates are often visualized with the help of graphs
through the thickness. These are helpful to highlight features of stress that are invisible on the
surface. Figure 7.35 shows the graphs of the components of stress in the global Cartesian coordinate
system along two paths through the thickness of the plate: σx along the path through the center of
the plate, and σy at the location of the maximum of that stress component. Note that even though
the lines of the graphs seem to imply continuity of stress, the stress in fact changes discontinuously
(jumps) between layers.

Normalized distance along path
0.00 0.20 0.40 0.60 0.80 1.00

S
tr

es
s

−0.40

0.00

0.40

S, S11 (Not averaged): Norm Dist. along ’Center’ w/t Intersections

Normalized distance along path
0.00 0.20 0.40 0.60 0.80 1.00

S
tr

es
s

−0.30

−0.20

−0.10

0.00

0.10

0.20

0.30

S, S22 (ASSEMBLY_Layer 1−1_ORI−1) (Not averaged): Norm Dist. along ’S22Max’ w/t Intersections

(a) (b)

Fig. 7.35. Cross-ply laminated plate. Graphs of (a) of σx (at the center of the plate), (b) of σy (at the
location of the maximum).

Figure 7.36 shows the shear stress σxz (in global coordinates). In order to visualize the variation
of the shear stress at the interior of the plate, display groups have been applied to separately display
the filled contours on the second and third layer. Since the second layer is soft in shear parallel to
the fibers (global y direction), the shear deformation is mostly concentrated in that layer, and this
fact can be used to interpret the deformation along the simply-supported edge of the plate shown
in Figure 7.36.

(Avg: 75%)
S, S13 (GLOBAL CSYS)

−5.367e−02
−4.473e−02
−3.578e−02
−2.684e−02
−1.789e−02
−8.946e−03
−5.588e−09
+8.946e−03
+1.789e−02
+2.684e−02
+3.578e−02
+4.473e−02
+5.367e−02

XY

Z

(Avg: 75%)
S, S13 (GLOBAL CSYS)

−5.367e−02
−4.473e−02
−3.578e−02
−2.684e−02
−1.789e−02
−8.946e−03
−5.588e−09
+8.946e−03
+1.789e−02
+2.684e−02
+3.578e−02
+4.473e−02
+5.367e−02

XY

Z

(a) (b)

Fig. 7.36. Cross-ply laminated plate. Deformed shape with color-coded σxz. (a) Filled contour on layer 2.
(b) Filled contour on layer 3.

7.14 Background, explanations, details 253

7.14 Background, explanations, details

Box 29. Three-dimensional elastodynamics model

The weighted residual (WR) formulation is derived using the following steps:

1. Introduce the weighted residual equations for the balance partial differential equation and the
force boundary condition.

2. Satisfy the displacement (essential) conditions by design of the trial functions: that will force
the test functions to vanish along parts of the boundary.

3. Shift one derivative from the trial function to the test function. This will incorporate the natural
boundary conditions in the balance residual equation (and eliminate the force boundary condition
residual from further consideration).

The result is the WR in the form of a balance equation for each free degree of freedom (j, r),
where r = x, y, z is the component that the node j

Nf∑
(i,s)=1

∫
V

NjρNi dV [üi]s +

Nf∑
(i,s)=1

C(j,r),(i,s)[u̇i]s +

Nf∑
(i,s)=1

∫
V

[
[Bj]

T [D][Bi]
]
rs

dV [ui]s

+

N∑
(i,r)=Nf+1

∫
V

NjρNi dV [üi]r +

N∑
(i,s)=Nf+1

C(j,r),(i,s)[u̇i]s

+

N∑
(i,s)=Nf+1

∫
V

[
[Bj]

T [D][Bi]
]
rs

dV [ui]s

−
∫
V

Nj [b]r dV −
∫
St,r

Njtr dS = 0

(7.48)

The essential boundary conditions specified the fixed degrees of freedom (and the corresponding
velocities and accelerations)

[ui]s = [ui]s node i on Su,s for s = x, y, z . (7.49)

that hold for all times. In addition, the initial conditions hold for all nodes iat the initial time t = 0

[ui(t = 0)]s = [u0i]s [u̇i(t = 0)]s = [u̇0i]s for s = x, y, z . (7.50)

Inertial term: Mass matrix

Introducing the trick

Nf∑
(i,s)=1

∫
V

NjρNi dV [üi]s =

Nf∑
(i,s)=1

∫
V

NjρNi dV δrs [üi]s (7.51)

(7.52)

using the Kronecker delta symbol (as a representative of an identity matrix) two terms emerge:
firstly, the inertial force

Fa,(j,r) =

Nf∑
(i,s)=1

M(j,r)(i,s)

[
üi
]
s
, (7.53)

produced by the free accelerations
[
üi
]
s

which are coupled together by the consistent mass
matrix

254 FEM for Thermal and Stress Analysis

M(j,r)(i,s) =

∫
V

Nj(x)ρNi(x) dV δrs , (7.54)

where (j, r) means degree of freedom number corresponding to component r at node j (which is a
free degree of freedom). Note well that M(j,r)(i,s) is a two-dimensional array, addressed by the row
index (j, r) and the column index (i, s).

Secondly, there is the inertial load produced by the acceleration of the supported nodes

Fa,(j,r) =

N∑
(i,r)=Nf+1

M (j,r)(i,s)

[
üi
]
s
, (7.55)

where the matrix elements M (j,r)(i,s) are calculated exactly as those of (7.54), but (i, s) corresponds
to component s at node i, which is fixed.

Body loads and traction loads

The next two terms represent external loads. The body load vector component (j, s) corresponding
to free component s at node j is

Fb,(j,r) =

∫
V

Nj [b]r dV . (7.56)

The surface traction load vector component (j, r) corresponding to free component r at node j
is

Ft,(j,r) =

∫
St,i

Njtr dS . (7.57)

Note well that Fb,(j,r) and Ft,(j,r) are components of a one-dimensional array (column vector),
addressed by the row index (j, r).

Resisting forces: Stiffness matrix

Two contributions result: the first is the (elastic) resisting force produced by the deformed material.

Fe,(j,r) =

Nf∑
(i,s)=1

K(j,r)(i,s)

[
ui
]
s
. (7.58)

The matrix generating the resisting force is the stiffness matrix

K(j,r)(i,s) =

[∫
V

[Bj]
TD[Bi] dV

]
rs

, (7.59)

where (j, r) [and (i, s)] means degree of freedom number corresponding to component r at node j
[and to component s at node i]; both are free degrees of freedom.

The second is the nonzero-displacement load due to the deformation induced by fixed essential
boundary conditions. (Remark: In structural analysis, this kind of load is frequently associated with
the loading condition called the support settlement.)

Fe,(j,r) =

N∑
(i,s)=Nf+1

K(j,r)(i,s)

[
ui
]
s
. (7.60)

The elements K(j,r)(i,s) are computed exactly as in (7.59), but (i, s) corresponds to component m
at node k, which is fixed.

7.14 Background, explanations, details 255

Damping forces

Terms 2 and 5 in equation (7.48) corresponds to the damping force generated by the damping
coupling between individual degrees of freedom. Firstly, the damping force

Fv,(j,r) =

Nf∑
(i,s)=1

C(j,r)(i,s)

[
u̇i(t)

]
s
, (7.61)

The first term corresponds to the damping force on the degree of freedom (j, r) by the velocity of
another free dof (i, s) coupled through the damping matrix . The damping matrix may be totally
arbitrary, or it may be taken in the form of the proportional (Rayleigh) damping. Then we take

C(j,r)(i,s) = αRM(j,r)(i,s) + βRK(j,r)(i,s) , (7.62)

i.e. the damping matrix is taken as a linear combination of the mass matrix and the stiffness matrix.
The coefficients of the linear combination can be determined by matching the damping ratio ζ at
one or two selected frequencies. For instance, if we wish to apply a given damping ratio ζ at a
single frequency ω0, we may assume that the two mechanisms contribute equally and solve for the
coefficients from

1

2
ζ = αR/ω0 and

1

2
ζ = βRω0 . (7.63)

On the other hand, if we wish to apply a given amount of damping, with damping ratios ζ1 and ζ2
at two separate frequencies ω1 and ω2, we need to solve the system of coupled equations

ζ1 = αR/ω1 + βRω1 , ζ2 = αR/ω2 + βRω2 , (7.64)

for the damping combination coefficients αR, βR.
The equations (7.48) could be directly integrated using an arbitrary ODE integrator, or, more

suitably, with a specialized mechanical integrator such as the Newmark average-acceleration inte-
grator. Other approaches, such as integration of the harmonic modal equations are often used.

End Box 29

Box 30. Mass matrix of the four-node tetrahedron T4

We compute here the mass matrix of the tetrahedron T4 element. Assume uniform mass density.

Node x y z
1 1.4727 0.9193 -0.7713
2 1.4727 1.2000 0
3 1.4727 0.4543 0.0530
4 3.0000 0.5063 0.0290

Numerical quadrature will be used, both one-point and four-point rules (c.f. Table 7.1). The volume
integral in the expression

M(j,r)(i,s) =

∫
V

Nj(x)ρNi(x) dV δrs ,

will be approximated as∫
V

Nj(x)ρNi(x) dV ≈
∑
q

Nj(ξq)ρNi(ξq)Wq det
[
J(ξq)

]

256 FEM for Thermal and Stress Analysis

The basis functions for the tetrahedron are given in (7.13). Therefore, the (constant) gradients of the
basis functions with respect to the parametric coordinates are obtained (analogously to the triangle
T3; viz (3.58)) as

gradNpar = array([[-1, -1, -1],
[1, 0, 0],
[0, 1, 0],
[0, 1, 0]])

The array of the vertex locations given as

x = array([[1.4727, 0.9193, -0.7713],
[1.4727, 1.2000, 0],
[1.4727, 0.4543, 0.0530],
[3.0000, 0.5063, 0.0290]])

the Jacobian matrix follows from (3.60), which is readily transcribed into Python code as J =

dot(x.T, gradNpar):

array([[0. , 0. , 1.5273],
[0.2807, -0.465 , -0.413],
[0.7713, 0.8243, 0.8003]])

The Jacobian is a constant, 0.90116, (i.e. independent of the integration point), computed as detJ
= linalg.det(J).

The one-point rule evaluates the basis functions of the centroid of the tetrahedron. Therefore all
the basis functions assume the value of 1/4 at the quadrature point. For instance we get∫

V

N1(x)ρN1(x) dV ≈ N1(ξk)ρN1(ξk)W1 det [J(ξ1)] = (1/4)ρ(1/4)(1/6)0.9012 = 0.0094ρ

But a more descriptive expression will be obtained by keeping W1 det [J(ξ1)] = det [J(ξ1)] /6 = Vtet
instead of numbers, where Vtet is the volume of the tetrahedron element, so that the above may be
put as∫

V

N1(x)ρN1(x) dV ≈ 1

16
Vtetρ =

1

16
mtet

where mtet is the mass of the tetrahedron. Since all basis functions have the same value of the
quadrature point, the same expression is obtained for the one-point quadrature rule for all basis
functions. The δim represents a 3× 3 identity matrix, and the mass matrix therefore results as

M =
1

16
mtet

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

Note that there are four “1”’s in each row, which means that for the four nodes accelerating in either
of the three directions with the same acceleration a (i.e. the element accelerates as a rigid body) the
total inertial force is a mtet, as expected.

Now we will apply the four-point quadrature rule from Table 7.1. For instance we have

7.14 Background, explanations, details 257∫
V

N2(x)ρN3(x) dV ≈
∑
q

N2(ξq)ρN3(ξq)Wq det
[
J(ξq)

]
≈ ρWq det

[
J(ξq)

]∑
q

N2(ξq)N3(ξq)

because ρWq det
[
J(ξq)

]
is constant. Substituting the definitions of the basis functions, N2 = ξ and

N3 = η, yields∑
q

N2(ξq)N3(ξq) = aa+ aa+ ba+ ab = 2a(a+ b) = 1/5

and hence∫
V

N2(x)ρN3(x) dV ≈ 1

20
Vtetρ =

1

20
mtet

Therefore, the mass matrix will link the nodes 2 and 3 by the 3× 3 matrix

1

20
mtet

1 0 0
0 1 0
0 0 1

Similarly∫

V

N3(x)ρN3(x) dV ≈
∑
q

N3(ξq)ρN3(ξq)Wq det
[
J(ξq)

]
≈ ρWq det

[
J(ξq)

]∑
q

N3(ξq)N3(ξq)

and∑
q

N3(ξq)N3(ξq) = aa+ aa+ aa+ bb = 2/5

and hence∫
V

N3(x)ρN3(x) dV ≈ 1

10
Vtetρ =

1

10
mtet

M =
1

20
mtet

2 0 0
0 2 0
0 0 2

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 2 0 0
0 2 0
0 0 2

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 2 0 0
0 2 0
0 0 2

 1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 2 0 0
0 2 0
0 0 2

Again, to check the mass matrix we can consider the element accelerating as a rigid body in any one
of the three directions in the Cartesian coordinates. Since for any selected direction, for each node
the sum of the row of the mass matrix is mtet/4, the total mass obtained by adding the contributions
from all four nodes is mtet, as expected.

Both of the above mass matrices are the so-called consistent mass matrices, but only the second
is integrated exactly. The first matrix is integrated inaccurately. As we have seen for the prestressed
wire model, various tricks can be undertaken with integration rules for mass matrices to improve
the accuracy of the computed frequencies, so we can’t necessarily conclude that integrating the mass
matrix inaccurately will produce a less accurate estimate of the natural frequencies (and vice versa).

258 FEM for Thermal and Stress Analysis

End Box 30

Box 31. Body load on a T4 tetrahedron

Here we compute the nodal loads of the tetrahedron T4 element due to a uniform body load
b. Numerical quadrature with a one-point rule will be adequate for this task since it can exactly
integrate linear functions over the domain of the tetrahedron. The volume integral

Fb,(j,r) =

∫
V

Nj(x)[b]r dV

may be simplified for the uniform body load to read

Fb,(j,r) = [b]r

∫
V

Nj(x) dV .

The integral over the volume of the element may be evaluated in the coordinates of the parametric
domain of the standard shape∫

V

Nj(x) dV =

∫
V[ξ,η,ζ]

Nj(ξ) det [J(ξ)] dξdηdζ

The Jacobian of the T4 element is related to its volume Vtet as det [J(ξ)] = 6Vtet. The one-point
numerical quadrature therefore results in∫

V[ξ,η,ζ]

Nj(ξ) det [J(ξ)] dξdηdζ = Nj(ξ1)W1 det [J(ξ1)] = (1/4)(1/6)6Vtet =
Vtet

4

and therefore the uniform body load contributes the force

Fb,(j,r) =
[b]rVtet

4

to each of the four nodes of the element. In other words, the total force [b]rVtet acting on the entire
element in the direction i is split equally among its four nodes.

End Box 31

Box 32. Nodal loads for traction applied to a T3 triangle

We compute here the nodal loads for the triangle T3 surface element generated by uniform
traction load t. The surface integral

Ft,(j,r) =

∫
St,r

Nj(x)[t]r dS =

∫
Stri

Nj(x)tr dS ,

where Stri is the triangle KLM , may be simplified for uniform traction load to read

Ft,(j,r) = tr

∫
Stri

Nj(x) dS

7.14 Background, explanations, details 259

Fig. 7.37. Triangular element with uniform traction load

The task therefore reduces to the integration of basis functions over the surface of the triangle, which
may be evaluated in the coordinates of the parametric domain of the standard triangle∫

Stri

Nj(x) dS =

∫
S[ξ,η]

Nj(ξ) det [J(ξ)] dξdη

The Jacobian for the triangle is obtained as the cross product of the two tangent vectors

∂x(ξ, η)

∂ξ
, and

∂x(ξ, η)

∂η
,

and because the basis functions are linear in ξ, η the tangent vectors are constant (the same at all
points of the triangle). It is also shown above that the Jacobian of the surface is equal to twice the
area of the triangle. Hence we get∫

S[ξ,η]

Nj(ξ) det [J(ξ)] dξdη = det [J(ξ)]

∫
S[ξ,η]

Nj(ξ) dξdη = 2Stri

∫
S[ξ,η]

Nj(ξ) dξdη

Numerical quadrature with a one-point rule will be adequate, as Nj is linear in its arguments∫
S[ξ,η]

Nj(ξ) dξdη ≈ Nj(ξ1)W1 = (1/3)(1/2) = 1/6

Thus we conclude that the uniform traction load contributes the force component

Ft,(j,r) = tr

∫
Stri

Nj(x) dS = tr × 2Stri × (1/6) =
trStri

3

to each of the three nodes j of the element. In words, the total force trStri acting on the entire
element in the direction i is split equally among its three nodes.

End Box 32

Box 33. Imposed (thermal) strains

Often the material from which a structure is built up reacts to the environment by deformation.
The material experiences the environment in possibly different ways or different measures in different
locations, and stresses are produced.

To get started, think about a very small piece of material that is exposed to the environment
so that we can assume that the resultant relative deformation is homogeneous and no stress is
produced. For the sake of this argument, let us consider one particular environmental effect: thermal
expansion . However, similar effects may be produced by shrinkage, swelling, piezoelectric effects,
and so on.

260 FEM for Thermal and Stress Analysis

When the small sample of material is at a reference temperature it is unstressed, and we de-
fine its displacements and the associated strains to be zero in this state: the reference state. Then
the temperature is increased by ∆T , and the material responds by displacement, and because by
assumption the deformation is homogeneous, the entire sample experiences uniform strains. Based
on experimental evidence, the following model is adopted for orthotropic materials to describe the
strains in coordinates aligned with the material directions

[θε] =

εx
εy
εz
γxy
γxz
γyz

 = ∆T

αx
αy
αz
0
0
0

 . (7.65)

Evidently, the thermal expansion is assumed not to cause any shear strains. The factors αx, αy, αz
are the so-called coefficients of thermal expansion ; different in different directions, in general.

In addition to the imposed strain εΘ, the sample is also exposed to stresses on its boundary,
again such that they result in uniform strain. The total strains that the sample experiences consist
of the imposed strains to which the mechanical strains are added. Since the mechanical strains are
available from the stresses through the constitutive equation, we write

ε = εtotal = θε+D−1σ , (7.66)

Therefore, we have a modification of the constitutive equation

σ = D
(
ε− θε

)
. (7.67)

The total strain is related to the displacement via the strain-displacement relation (5.97), and thus
we may write

σ = D
(
Bu− θε

)
.

As expected, the residual equation form that enters the discretization process needs to be aug-
mented with respect to (5.120) to become∫

V

η · ρü dV −
∫
V

η · b dV −
∑

i=x,y,z

∫
St,i

(η)i ti dS (7.68)

+

∫
V

(Bη) ·D
(
Bu− θε

)
dV = 0 (7.69)

ui = ui and (η)i = 0 on Su,i for i = x, y, z

Clearly, there will be one more term to discretize

−
∫
V

(Bη) ·D θε dV , (7.70)

yielding the thermal strain load

FΘ,(j,r) =

[∫
V

BT (Nj(x))D θε dV

]
r

. (7.71)

End Box 33

8

Interpretation of FEA Results

In this chapter we will look at the issue of interpretation of the results. Not the actual calculation of
the results, we assume the results have been computed using the methods described previously. The
matter at hand is rather what to do with the results, how to understand what they’re telling us. By
now we all understand that the results are always “wrong”, meaning they are always in error. The
critical questions are: knowing they are in error, how do we process these results, and how do we
use them?

8.1 Singularities

Stresses are often of primary interest when designing structures. However, there are some inherent
limitations to what is computable and how.

For example, some features in structures when analyzed with the elasticity model result in stresses
that are infinite at some points. Obviously, there is little merit in attempts aimed at computing the
stress at such points. Even away from these points, the stress is often very inaccurate unless special
models are employed. Therefore, it behooves us to understand which features lead to infinite stresses
so that we can formulate solution strategies appropriately.

Fig. 8.1. Notch and the idealized geometry of an infinite wedge

Some geometric features resemble notches, scratches, cracks, or put more generally, concave
corners with a sharp root. Such geometries lead to states of stress which can be analyzed with
two dimensional models (the displacements are functions of two variables). The idealization of such
geometries is the wedge as a locus of points where two bounding surfaces meet at an angle. Figure 8.1
shows a geometry with a notch. Away from the locations where the notch root runs out into the
side surfaces, the state of stress may be analyzed using the idealization shown on the left, the
wedge [1]. The material surrounding the edge of the root extends to infinity in all directions, but
the solution is of interest only in the immediate vicinity of the root edge. The analytical solution
possesses a singularity in the stress components for angles ϕ > 180◦ for symmetric and for ϕ > 260◦

for anti-symmetric loadings of the form

262 FEM for Thermal and Stress Analysis

σ ∼ rα , (8.1)

where r is the radial distance from the edge, and α ≤ 0 measures the strength of the singularity.
Figure 8.2 provides a sketch of the dependence of the exponent α on the angle ϕ. For symmetric
loads, even a very slight notch will lead to singular stresses, and the strongest singularity occurs for
ϕ = 360◦ (infinitely sharp crack). Similarly, anti-symmetric loading will produce the same strength
of singularity for a crack configuration (ϕ = 360◦, α = −1/2). In the same figure on the right, the
graph shows that the stronger the singularity, the wider the general area around the wedge root
where the stresses are high (they are infinite at the edge r = 0 for all strengths).

Fig. 8.2. On the left: Strength of the singularity in the stress. Symmetric (lower, solid, curve) and anti-
symmetric (upper, dashed, curve) loading. On the right: Variation of the stress in the radial direction as it
depends on the strength of the singularity. The stronger the singularity (i.e. the larger |α|), the larger the
volume of material that experiences high stress values

There are also other sources of singularities in the elasticity model. Singular stresses accom-
pany edges along multi-material interfaces, as shown in Figure 8.3, or in Figure 8.5. Singular
stresses are also generated at sudden transitions from fixed displacement to prescribed traction
(discontinuity in boundary conditions), see Figure 8.4 .

Fig. 8.3. Singularity at a multi-material interface: butt joint and scarf joint

Fig. 8.4. Singularities due to sudden change in displacement boundary conditions. Corner between a clamped
edge and the free surface. Location where the roller support ceases to apply.

8.2 Interpretation of stresses 263

We also pointed out in Section 6.8 (and in detail: See Box 24) that concentrated loads at
points or along curves generate infinite stresses. As discussed in detail there, the energy in the model
is infinite in the limit. Therefore, this kind of singularity is “even worse” than the singular stresses
near the tip of a wedge. Also, point supports and supports along curves leads to infinite stresses with
similar characteristics as concentrated loads (unless the associated reactions are identically zero).

The most complex singularities to analyze are the true 3-D singularities at corners. Examples
include (call for Figure 8.5) the intersections of wedge fronts (crack fronts) with free surfaces (marked
1), corners of multi-material wedges (2), corners on multi-material interfaces (3), or corners in
homogeneous geometries (4,6), conical points (marked 5), or corners in wedges (on crack fronts)
(marked 7).

Fig. 8.5. 3-D singular points

8.2 Interpretation of stresses

In stress analysis the stress distribution is linked to the strains. The strains are defined using the
spatial derivatives of the displacements. The displacements are continuous within each element
(because the basis functions are continuous), and their derivatives are also continuous within each
element (because the derivatives of the basis functions are continuous). For instance, across an
element the strains may be constant (T4 tetrahedra), or vary linearly (T10 tetrahedra). At the
interfaces between the elements the displacements are continuous (because along the finite element
interfaces the basis functions guarantee continuity), but the strains are in general discontinuous.

It is important to realize that, as a consequence of the strains being discontinuous across inter-
element boundaries, the finite element solution for the stresses will be discontinuous across element
interfaces. That is unphysical since we know that the traction vector (5.79) changes continuously in
dependence on the normal to the surface on which it acts and the stress. Observe Figure 8.6: One
material is on the bottom, another material is on the top. The point A is on the interface between
the two materials. We can separate the two materials along this interface, and write the traction
vector on the side of the bottom material as

t(A−) = Pn(A−)σ(A−)

and the traction vector on the side of the top material

t(A+) = Pn(A+)σ(A+) .

Since the two normals are related as n(A−) = −n(A+), and since by principle of action and reaction
we have t(A−) = −t(A+), we must have

t(A−) = Pn(A−)σ(A−) = −t(A+) = −Pn(A+)σ(A+)

264 FEM for Thermal and Stress Analysis

and therefore because

−Pn(A+) = P−n(A+) = Pn(A−)

we can conclude

σ(A−) = σ(A+) .

In words, the stress vector is continuous across the material interface. Unfortunately this holds for
the mathematical model of elasticity, the finite element quantities will behave differently!

Fig. 8.6. Continuity of stress across a multi-material interface.

In what follows, unless we say otherwise, when we talk about displacements, strains, and stresses
we mean the quantities computed by the finite element model. Here is what we know about the finite
element stress: The stress is related to the strain through the constitutive equation. The constitutive
equation is invoked only at the quadrature points. Therefore, the stress is consistent with the strains
(and with the displacements from which the strains are derived) only at the quadrature points. In
the present model of elasticity, it may seem attractive to use the constitutive equation at any point
within the element to compute the stresses. However, it needs to be realized that such stresses are
an interpretation of the solution, not the solution itself. In other commonly used models in stress
analysis, for instance in plasticity, computing the stresses from the displacements at other points
than the quadrature points would be ill defined (and ill advised).

As an example, consider the calculation of the stresses in the cantilevered bracket in Figures 8.7–
8.8. The finite element model is based on the incompatible hexahedron C3D8I with 2×2×2 Gaussian
quadrature.

Principal stress vectors

As the base case consider Figure 8.7: the stresses consistent with the finite elements solution are dis-
played at the 2×2×2 quadrature points as the principal stress vectors that are visual representations
of the principal stresses and directions of the principal stresses. The directions of the vectors are the
directions of the principal stresses, the lengths of the vectors are the magnitudes of the principal
stresses. The arrows also include the information on whether the principal stress is compressive or
tensile: when the arrows emanate from the integration point, the stress is tensile; otherwise, when
the arrows converge onto the integration point, the principal stresses compressive. Each vector is
also colored to represent the magnitude of the principal stress. This is the honest representation of
our knowledge of stress in the finite element model.

Element stress without averaging

Figure 8.8(a) presents the stresses element-by-element. In some elements the stresses are shown with
some variation within the element, in others the reported stresses are uniform within the element.
In the present case, for the incompatible hexahedra C3D8I, the stresses have something resembling
a linear variation across the element.

8.2 Interpretation of stresses 265

X
Y

Z

X X
Y

Z

(a) (b) (c)

Fig. 8.7. Interpretations of the calculated stresses. Principal stress vectors at integration points. (a) All
integration points in all elements. (b) All integration points in two elements. (c) Close-up of (b).

X
Y

Z

X
Y

Z

(a) (b)

Fig. 8.8. Interpretations of the calculated stresses. Von Mises stress color-coded with a contour plot. (a)
Element stresses without averaging. (b) Element stresses averaged at the nodes.

Averaged (nodal) stress

Stress recovery (or “averaging”) is a procedure in which values of the stress at the nodes are com-
puted from the values of the stress in the elements around the node. Various principles are used to
arrive at the nodal stress, for instance simple average may be used, or a more sophisticated inverse-
distance-weighted average, or the highly successful Superconvergent Patch Recovery (SPR) [12]. In
Figure 8.8(b) we show the interpretation of the stress which is the result of the Abaqus average re-
covery: The magnitude of the stress at a node is computed by extrapolating from the magnitude of
the stress at the quadrature points nearby. The nodal stress magnitudes are then interpolated using
the element basis functions and smooth coloring is applied. The usefulness of such a smooth visual
representation of the stress distribution for the evaluation of the results is evident. Nevertheless
such a continuous stress field is an interpretation of the finite element results (often performed in a
so-called postprocessing step). It should be realized that extrapolating the stress may be fraught with
significant errors: the stresses are typically smoothed in these postprocessing procedures and spikes
in stress may get wiped out. On the other hand, the recovered stress may be an improvement of the
stress representation, if for no other reason than because it is continuous across element interfaces.
It is not usually clear which of these two has occurred in the problem at hand, and therefore extra
caution is always in order.

266 FEM for Thermal and Stress Analysis

Convergence in stress

Often one can use the plots of element stress without the nodal averaging for quick visual assessment
of the convergence of the stress. When it is no longer possible to detect discontinuous change in color
coding between two adjacent finite elements, we can interpret that as evidence of the stress being
of quality acceptable to make judgments about accuracy. For instance, consider Figure 8.9 where
we compare the von Mises stress plots for six progressively finer meshes. The blocky nature of
the element stress plot recedes as we apply more elements. It is interesting that even though the
deflection is clearly very accurate even for the coarsest mesh ad (a) (refer to Figure 7.29), it takes a
lot more refinement to render the stresses in acceptable quality.

S, Mises

+1.040e+04
+3.494e+04
+5.948e+04
+8.403e+04
+1.086e+05
+1.331e+05
+1.577e+05
+1.822e+05
+2.067e+05
+2.313e+05
+2.558e+05
+2.804e+05
+3.049e+05

X

Y

Z

S, Mises

+2.156e+03
+2.994e+04
+5.773e+04
+8.551e+04
+1.133e+05
+1.411e+05
+1.689e+05
+1.967e+05
+2.244e+05
+2.522e+05
+2.800e+05
+3.078e+05
+3.356e+05

X

Y

Z

(a) (b)

S, Mises

+7.825e+02
+3.025e+04
+5.972e+04
+8.919e+04
+1.187e+05
+1.481e+05
+1.776e+05
+2.071e+05
+2.365e+05
+2.660e+05
+2.955e+05
+3.250e+05
+3.544e+05

X

Y

Z

S, Mises

+3.920e+02
+3.057e+04
+6.074e+04
+9.092e+04
+1.211e+05
+1.513e+05
+1.814e+05
+2.116e+05
+2.418e+05
+2.720e+05
+3.022e+05
+3.323e+05
+3.625e+05

X

Y

Z

(c) (d)

S, Mises

+3.357e+02
+3.068e+04
+6.103e+04
+9.138e+04
+1.217e+05
+1.521e+05
+1.824e+05
+2.128e+05
+2.431e+05
+2.735e+05
+3.038e+05
+3.342e+05
+3.645e+05

X

Y

Z

S, Mises

+3.222e+02
+3.070e+04
+6.107e+04
+9.145e+04
+1.218e+05
+1.522e+05
+1.826e+05
+2.129e+05
+2.433e+05
+2.737e+05
+3.041e+05
+3.345e+05
+3.648e+05

X

Y

Z

(e) (f)

Fig. 8.9. Scordelis-Lo cylindrical shell. Magnified deflected shape shown, with color-coded von Mises stress.
Stress displayed without nodal averaging. H20 hexahedron: (a) 3 elements/side, maximum 3.049e5, (b) 5
elements/side, maximum 3.356e5, (c) 10 elements/side, maximum 3.544e5, (d) 20 elements/side, maximum
3.625e5, (e) 40 elements/side, maximum 3.645e5, (f) 80 elements/side, maximum 3.648e5.

8.4 Errors, validation, and verification 267

8.3 Stress concentrations

The finite element formulations in this book may be applied to the solution of the so-called stress
concentration problems. These are produced by stress raisers, which are features that cause local or
global increases in the stress, but which do not lead to infinite stresses. The book [6] is an extremely
useful resource; a mode of operation where the solution of a finite element model is cross-checked
with this book, or vice versa, is to be generally recommended.

The presence of stress raisers has a significant effect on the fatigue strength of structures [6]. To
be aware of stress raisers is highly advisable for all modelers, since stress concentrations where the
stress changes rapidly are generally locations of high error in the finite element solution: compare
with Section 6.4.1. Therefore, an appropriately constructed mesh will reflect the presence of stress
raisers by suitable refinement (reduction in mesh size) around the stress concentrations. Figure 8.10
presents examples of stress raisers: the small-radius regions near the elliptical hole, the vicinity of
the stiffened hole, through-hole in a shaft, and the mass-reduction holes in a flywheel, the groove
underneath the snap-on ring, the shoulder fillet, and the fillets on the T-head suspension, the rounded
portion of the stress relief groove, the cylindrical surfaces of the holes in the clevis and lug joint, the
large-curvature portion of the curved hook, the surface of the depression in a plate, and the narrow
cross-section reduction in a shaft. These are just a few selected examples. The main lesson is to be
on the lookout for similar features in the geometries of analyzed structures.

8.4 Errors, validation, and verification

Modeling physical events (for instance, the deflection of an airplane wing when the aircraft is turn-
ing is a physical event) on the computer may be described as shown in Figure 8.11. In the first
step, a physical event is idealized into a mathematical model. The mathematical model has
rarely exact (analytical) solutions, which gives rise to the need for a discrete model (the Galerkin
finite element method in this book, but there are many others: finite difference and finite volume
methods, boundary element methods, and so on). The unknowns in the discrete model are solved
for using various numerical methods – solvers for systems of linear and nonlinear algebraic equa-
tions, eigenvalue solvers, integrators for systems of ordinary differential equations, ... – resulting
in the solution of the discrete model. The accuracy of the solution to the discrete model may be
then assessed with respect to the mathematical model with various methods of error estimation
(Richardson extrapolation, for instance). If the accuracy is not sufficient, a better discrete model
is produced by adaptation, else the solution is deemed acceptable for either one of two actions:
prediction or verification.

8.4.1 Verification and Prediction

There are two uses for the solution of the discrete model, depending on whether a reference (exact,
or very accurate) solution of the mathematical model is available or not. If it is available, we obtain
a verification of the way the discrete model is implemented in the computer: the ingredients
that go into the discrete model are correct, and the equations are solved right, therefore we observe
convergence towards (closeness to) the reference solution of the mathematical model. The verification
should be addressed thoroughly by the designers of the computational software, but users also tend to
perform verifications to gain confidence in the software. Physical events are typically very idealized to
produce mathematical models that can be solved very accurately or analytically. Such mathematical
models are called benchmarks.

On the contrary, if the reference solution of the mathematical model is not known, the solution
to the discrete model will make predictions of various quantities possible (deflections, natural
frequencies, strains or stresses, energy, and so on).

268 FEM for Thermal and Stress Analysis

Fig. 8.10. Stress raisers. Left to right, top to bottom: Elliptical hole, stiffened hole, through-hole in a
shaft, mass-reduction holes in a flywheel, snap-on ring groove, shoulder fillet, T-head suspension, stress
relief groove, clevis and lug joint, curved hook, depression in a plate, cross-section reduction in a shaft

8.4.2 Validation

Finally, if comparison of some quantities from the solution with observations of the correspond-
ing quantities in the physical event is possible, and provided the agreement is good, we call the
modeling pipeline validated for this particular physical event; otherwise, if an improvement to the
mathematical model may be made, for instance by including aspects of the physical event that have
been deliberately neglected before, we perform yet another adaptation and another pass through
the modeling pipeline. If there is a significant mismatch, we may decide that a completely different
mathematical model needs to be formulated, perhaps even requiring a new theory. In this way, we
get the chance to falsify a theory.

8.4.3 Errors

The contributions to the detected mismatch are associated with the arrows in the graph of Fig-
ure 8.11: there’s the modeling error that accompanies the idealization of the physical event into

8.4 Errors, validation, and verification 269

Fig. 8.11. Diagram of the modeling pipeline.

a mathematical model, the discretization error when converting the mathematical model into a
discrete model, the solution error produced by the numerical algorithms, and there may also be
an observation error due to inaccurate or erroneous measurements. Finally, an important source
of mismatch may also be data uncertainty, as all the input quantities will only be known with a
certain margin of error (material parameters, geometric dimensions, and so on).

Fig. 8.12. Classes of stress analysis problems based on the magnitude of the displacement, and the mag-
nitude of the strain. Examples: 1: concrete dam; 2: thin clamped plate under a transverse load; 3: steel
measuring tape; 4: penetration of a steel slab by a high-velocity tungsten projectile.

8.4.4 Using modeling to make predictions

Comparing the solution of the discrete model with experimental observations allows us to call the
solution validated with respect to the specific physical event. If we needed to observe the physical
event each time we ran a simulation so that it could be validated, there would not be many incentives

270 FEM for Thermal and Stress Analysis

for using the simulation in the first place. However, in practice we use validations for a series of specific
events to sample the “event space” to establish a range of validity. If a particular physical event E
resembles other events for which the validity of the model has been established, we assume that the
model will be likely validated also for E . As an example, consider the classification of the physical
events with respect to the magnitude of displacements and strains (Figure 8.12). If the physical
event is the deformation of a structure that works roughly as a steel measuring tape, we assume
that it is in the class of events for which models based on large displacements but small strains are
validated. Note that the two model classes, small and large displacement, overlap. That is because
there’s no sharp division of the physical events that can be modeled with either depending on the
required accuracy and the importance of capturing the effect of large displacements. For instance,
deflections of clamped plates under transverse loads depend to a certain degree on the tension that
develops in the structure when it deforms; if the contribution is negligible, small-displacement model
could be adequate, otherwise a large-deflection model may be required.

8.4.5 Using benchmarks

The value of benchmarks for the verification of numerical models is clear, but there is another
reason analysts should take advantage of benchmark problems: they need to build up a feel for the
relative accuracy and robustness of finite elements, and such data is readily accessible in convergence
studies performed on benchmark problems because of the availability of the reference solution. The
convergence graphs displayed in the previous sections of this chapter are readily available sources of
valuable insights.

Eventually, analysts develop intuition to help them assess the suitability of a particular dis-
cretization for a particular physical event. For example, performing a series of convergence analyses
for different values of the Poisson ratio will help us create a map of the performance of a particular
element as it depends on this parameter. Figure 8.13 shows such a map for the fully-integrated brick
element H8.

Fig. 8.13. The effect of the Poisson ratio on the accuracy of the fully-integrated brick element H8.

Figure 8.14 illustrates on the example of plate-like structures how their thickness would affect
the choice of the mathematical model as well as the choice of the discretization. The 3-D elasticity
theory on which the solid elements H20 and T10 are based is valid for all thickness to span ratios.
We see that for relatively thicker structures the solid elements might be an effective discretization,
while for really thin plates a specialized plate element (based either on the shear-agnostic Kirchhoff
theory for very thin plates, or based on the Mindlin theory that incorporates transverse shear for
moderately thick plates) would be more a better choice. Finite element analysts construct maps to
effective modeling strategies and techniques, such as the one given in Figure 8.14, by experience:
running benchmarks, reading manuals and technical papers, and so on.

8.5 Writing FEA reports

When writing FEA reports we can organize our thinking using the following questions:

Why did we do it? Describe the objectives, the scope, and the setting.

8.5 Writing FEA reports 271

Fig. 8.14. Schematic classification of stress and deflection analysis finite elements for plate-like structures.
Ranges for which the finite elements H20 and T10 could be effective.

What did we study? Describe the circumstances, the studied object(s), the environmental and
loading conditions.

What did we assume? Describe the simplifications and assumptions about the structure and its
loading conditions.

How did we do it? Describe the tools used, the models, the settings of the tools, and the limita-
tions of the models.

What did we find out? List and summarize the results.
What did we conclude? Formulate conclusions by interpreting the results.

Reports typically consist of the following constituent parts

1. Title page + Table of contents
2. Executive summary
3. Introduction
4. Material properties and allowables summary
5. Geometry, simplifications, coordinate systems
6. Boundary condition summary (supports, loads, environmental conditions)
7. Details (calculations, explanations, . . .)
8. References

The executive summary typically summarizes the major results and conclusions in the report so
that the reader may determine the substance of the material and decide whether to read the report in
detail. This section should clearly state whether or not the structure meets the design requirements,
and if it fails it should explain in non-technical language how. The executive summary must also
include any recommendations based on the analysis. This section usually includes visual overview
of the system being analyzed, along with figures or diagrams showing a summary of loading and
results. This is often the most read section of the report.

The FE analysis report is often the document that makes the study reproducible . In
other words, the report should allow someone else to perform the same study to verify
our own results. This aspect is very important indeed: if for no other reason, then to
meet our professional responsibilities.

An example of a report from a finite element analysis is provided in the next section. See Box 34
The section also includes a list of reporting dos and don’ts, an incomplete list, but useful nonethe-

less. See Box 35

272 FEM for Thermal and Stress Analysis

8.6 Background, explanations, details

Box 34. Strap analysis: Sample FEA report

The following pages show a sample report from an FE analysis. (The report pages are framed
for visual clarity.)

Investigation of the Tresca Stress in a Steel
Strap

Petr Krysl

February 18, 2017

Contents

1 Executive Summary 1

2 Introduction 3

3 Material properties 3

4 Geometry 3

5 Boundary conditions 4

6 Detailed calculations 4

7 Conclusions 9

1 Executive Summary

The objective was to calculate accurately the Tresca stress, as a measure of
stress intensity, in a steel strap under tensile loads. The part was modeled
using the plane-stress idealization. Figure 1 shows graphically the bound-
ary conditions (clamped edge at the left-hand side, edge with uniformly dis-
tributed pressure on the right-hand side), and the six points of interest where
the Tresca stress was to be computed.

1

Z

Y

X

X

Y

Z

Figure 1: The strap is clamped at the left and loaded with uniform tensile
traction on the right. The output locations for the Tresca stress are indicated
by dots and numerical labels.

The geometry was partitioned to introduce the points of interest explicitly
into the definition of the geometry. Five finite element meshes of quadrilat-
eral elements of uniform element size, taken as h = 1, 1/2, 1/4, 1/8, 1/16
[in], were generated. The problem was solved using the incompatible-mode
quadrilateral element type. The Tresca stress was obtained from the stress
displays with nodal averaging, and Richardson extrapolation was attempted
using the solution on the three finest meshes for each point of interest. Ex-
cept for point of interest 5, which is associated with a concave corner and
therefore the stress there is theoretically infinite, the extrapolation could be
performed and the stress converged with rates between 1.12 and 2.8. The
estimated true Tresca stress was presented in a table.

The results of the study allow us to conclude that

• The incompatible-mode quadrilateral from Abaqus performs well under
the studied conditions; and

• the Richardson extrapolation is a valuable technique to estimate the
true answers from the finite element computations.

2

2 Introduction

The goal of the present study is to illustrate calculation of accurate stress
results under nontrivial conditions. In the present case the geometry incor-
porates several stress raisers: the concave corners where the narrower part of
the strap transitions into the wide part, one with a fillet, and one with sharp
interior angle; further, where the wide part is clamped along the left-hand
side edge, the corners of that side are also locations of stress concentrations.

The procedure is to compute several solutions with uniform meshes of
different resolutions (i.e. built up of elements of different sizes), and then to
attempt extrapolation to the limit of the element size vanishing (h → 0).

The Abaqus/Standard, version 6.14.1, finite element program was adopted
in this study.

3 Material properties

The material was assumed to be steel, with Young’s modulus of 30 × 106 psi
and Poisson ratio of 0.3.

4 Geometry

The geometry of the strap is shown in Figure 2. Note that one corner is
left sharp with a 90o interior angle, and one corner is rounded with a fillet
feature.

Figure 3 illustrates the partitioning of the part into eight regions in order
to incorporate the points of interest into the geometry, and to make it possible
for the mesher to succeed in building quadrilateral meshes. The six points of
interest are indicated in the figure. Note that point 5 is located at the root
of the concave corner, and point 6 is located at the midpoint of the edge that
represents the fillet.

The strap is of uniform thickness of 0.25 in, which is a sufficiently small
thickness to allow for the plane-stress modeling to be used.

3

V

H

V

H

3.

12.

12.

1.5

R0.25

24.

6.

X

Y

Z

Figure 2: Sketch of the strap. The dimensions are in inches. The thickness
is uniform, equal to 0.25”.

5 Boundary conditions

The plane-stress model is adopted. As shown in Figure 1, the left-hand-side
edge of the wide portion of the strap is clamped and the narrow edge on the
right-hand side is loaded by uniform pressure 333.3333 [psi] to generate total
force of 500 [lbf] as applied to the strap. The applied supports are sufficient
to remove all rigid body modes.

6 Detailed calculations

The meshes were generated of uniform element size, with the element size
taken as h = 1, 1/2, 1/4, 1/8, 1/16 [in]. The advancing-front mesh generator
produced meshes of reasonable quality, meaning that no error messages were
generated. Table 1 shows the numbers of nodes and elements for the five
meshes used. Figure 1 demonstrates mesh 1 for element size h = 1in.

The element type adopted for all models was the incompatible-mode
quadrilateral, CPS4I.

The results are illustrated in Figure 4 for the coarsest mesh employed.
Note well that the coarsest mesh does not even register the singularity of the
sharp corner (point of interest 5).

Figure 5 shows the distribution of the Tresca stress obtained with the

4

6.

24.

R0.25

H

V 6.

24.

R0.25

H

V

X

Y

Z

x:−10.78, y:−3.85

6.

24.

R0.25

1.5

6.

6.

1.5

H

V

V

H

V

H
6.

24.

R0.25

1.5

6.

6.

1.5

H

V

V

H

V

H

X

Y

Z

x:�10.84, y:�0.03

Figure 3: The partitioning of the strap domain. The eight regions shown
above. The dimensions of the partitioning shown below. The six points of
interest are also shown relative to the partitioning of the domain.

NUMBER OF h = 1 h = 1/2 h = 1/4 h = 1/8 h = 1/16
ELEMENTS 267 996 3911 15607 63169
NODES 841 3062 11879 47110 190083

Table 1: Uniform meshes for the five element sizes, h = 1, 1/2, 1/4, 1/8, 1/16
[in].

5

(Avg: 75%)
S, Tresca

+9.978e+00
+5.982e+01
+1.097e+02
+1.595e+02
+2.093e+02
+2.592e+02
+3.090e+02
+3.589e+02
+4.087e+02
+4.586e+02
+5.084e+02
+5.583e+02
+6.081e+02

X

Y

Z

Figure 4: Tresca stress shown using the contour plot for mesh 1 (element size
h = 1[in]), on the deformed geometry (deformations magnified with a factor
of ≈ 11000).

finest mesh employed (for element size h = 1/16 [in]). The stress at the
sharp corner (point of interest 5) has at this point exceeded the stress at the
fillet (point of interest 6).

The computed values of the Tresca stress are summarized in Table 2. The
computed data is also summarized in Figure 6. For each point the computed
Tresca stress values are plotted on a linear-linear scale as a function of the
element size. Except for points of interest 2 and 6 the data is well behaved
for all five meshes; for the two exceptions the first two simulations yield a
different trend then the last three.

The true value of the Tresca stress was estimated with Richardson ex-
trapolation [1]. The results for the three finest meshes (mesh 3, 4, and 5)
were used to estimate the true solution, and also as a byproduct the con-
vergence rate. Table 3 presents the estimates of the true Tresca stress and
the convergence rate at the six points of interest. The convergence rate is
between 1.0 and 2.0 (with 1.0 the expected value; the value converges faster
at point 2, which may be related to the low value of stress at that location).
At point 5 the presence of a singularity makes extrapolation meaningless as
indicated by the negative convergence rate.

The slope of the approximate error (difference of successive solutions)
needs to be matched to the slope of the estimated true error on a log-log

6

(Avg: 100%)
S, Tresca

+0.000e+00
+4.167e+01
+8.333e+01
+1.250e+02
+1.667e+02
+2.083e+02
+2.500e+02
+2.917e+02
+3.333e+02
+3.750e+02
+4.167e+02
+4.583e+02
+5.000e+02
+1.241e+03

X

Y

Z

Figure 5: Tresca elementwise (not averaged) stress shown using the contour
plot for mesh 5 (element size h = 1/16 [in]), on the deformed geometry
(deformations magnified with a factor of ≈ 11000). The element edges are
not displayed for clarity.

Point h = 1 h = 1/2 h = 1/4 h = 1/8 h = 1/16
1 117.64 116.02 115.12 114.48 114.24
2 50.96 38.192 32.017 32.341 32.387
3 376.76 364.59 359.63 357.18 356.38
4 382.56 362.35 356.55 354.61 353.72
5 408.45 528.82 699.41 924.15 1240.5
6 539.4 685.79 672.19 920.24 999.8

Table 2: Computed values of the Tresca stress in psi, for the five uniform
meshes of element sizes, h = 1, 1/2, 1/4, 1/8, 1/16 [in], for which the solution
was obtained.

Point of interest Estimated Tresca stress [psi] Convergence rate β
1 114.09 1.43
2 32.40 2.80
3 356.00 1.62
4 352.97 1.12
5 148.09 -0.49
6 1037.40 1.64

Table 3: True values of the Tresca stress estimated with extrapolation, with
the convergence rate indicated

7

Element size [in]
0 0.2 0.4 0.6 0.8 1

T
re

sc
a

st
re

ss
 [p

si
]

114

114.5

115

115.5

116

116.5

117

117.5

118

Element size [in]
0 0.2 0.4 0.6 0.8 1

T
re

sc
a

st
re

ss
 [p

si
]

30

35

40

45

50

55

Point 1 Point 2

Element size [in]
0 0.2 0.4 0.6 0.8 1

T
re

sc
a

st
re

ss
 [p

si
]

355

360

365

370

375

380

Element size [in]
0 0.2 0.4 0.6 0.8 1

T
re

sc
a

st
re

ss
 [p

si
]

350

355

360

365

370

375

380

385

Point 3 Point 4

Element size [in]
0 0.2 0.4 0.6 0.8 1

T
re

sc
a

st
re

ss
 [p

si
]

400

600

800

1000

1200

1400

Element size [in]
0 0.2 0.4 0.6 0.8 1

T
re

sc
a

st
re

ss
 [p

si
]

500

600

700

800

900

1000

Point 5 Point 6

Figure 6: Computed values of the Tresca stress [psi] for the five element sizes,
h = 1, 1/2, 1/4, 1/8, 1/16 [in], for which the solution was obtained.

8

Point of interest Tresca stress [psi]
1 114.09
2 32.40
3 356.00
4 352.97
5 (*)
6 1037.40

Table 4: True values of the Tresca stress. (*): extrapolation at point of
interest 5 is not applicable, the true value is theoretically infinite.

plot. Figure 7 presents the approximate error (dashed line) computed from
the Tresca stresses for meshes 3,4,5, and the estimated true error (solid line)
of these three solutions. The convergence rates of these two kinds of error
curve are in visual agreement for all points of interest. This is a confirmation
of the suitability of the computed data for extrapolation.

7 Conclusions

The sequence of computed solutions could be used to extrapolate to obtain
estimates of the true values at all points of interest shown in Figure 1, with
the exception of point of interest 5 (the root of a concave corner), where
extrapolation is not applicable. The estimated true values of the Tresca
stress are listed in Table 4.

References

[1] P. Krysl, Finite Element Modeling with Abaqus and Python for Thermal
and Stress Analysis , San Diego, Pressure Cooker Press, 2017.

9

Element size [in]
10-2 10-1 100

E
rr

or
 o

f T
re

sc
a

st
re

ss
 [p

si
]

0.1

1

10

Element size [in]
10-2 10-1 100

E
rr

or
 o

f T
re

sc
a

st
re

ss
 [p

si
]

10-3

10-2

10-1

100

Point 1 Point 2

Element size [in]
10-2 10-1 100

E
rr

or
 o

f T
re

sc
a

st
re

ss
 [p

si
]

0.1

1

10

Element size [in]
10-2 10-1 100

E
rr

or
 o

f T
re

sc
a

st
re

ss
 [p

si
]

0.1

1

10

Point 3 Point 4

Element size [in]
10-2 10-1 100

E
rr

or
 o

f T
re

sc
a

st
re

ss
 [p

si
]

102

103

104

Element size [in]
10-2 10-1 100

E
rr

or
 o

f T
re

sc
a

st
re

ss
 [p

si
]

101

102

103

Point 5 Point 6

Figure 7: Approximate errors (dashed line) and estimated true errors (solid
line) of the Tresca stress [psi]. The negative convergence rate for point 5
corresponds to the blowup of the stress value due to the presence of the
singularity.

10

8.6 Background, explanations, details 283

End Box 34

Box 35. Dos and Don’ts of FEA reporting

Dos

Here is an incomplete list of things to remember concerning the content of the report:

1. Do write the report with the reproducibility of your work in mind: someone else should be able
to come along later and verify or reproduce your analysis from the information provided in the
report (report writers are not necessarily on hand later when they are needed: that’s why the
information should be in the report).

2. Do build the analysis report as you go, that way no important detail will be forgotten.
3. Do supply clear and convincing evidence for the correctness of the analysis.
4. Do describe main assumptions unambiguously, and justify all major idealizations.
5. Do provide units for input parameters and results.
6. Do describe the meshes used, any mesh controls and element size information, the element types

(with all relevant settings: for instance for the reduced-integration hexahedra we must state
the type of hourglassing stabilization, as that is not available from the element type, such as
C3D8R).

7. Do state the type of the solver used: for instance steady-state dynamics can be direct or modal.
This could make a difference.

The following is a list of reminders concerning the delivery of information: text, figures, tables, and
so on.

1. Do provide a caption to every figure and table.
2. Do use lettering of figures of sufficient size: a good guide is to make sure the lettering of the

figure elements (tick marks, labels, legends) when placed in the text is of roughly the same size
as the text itself.

3. Do label figure axes.
4. For multiple curves in graphs do include legends or tag curves in figures with arrows so that the

reader can distinguish between individual curves. Alternatively, use markers (or line styles) and
describe the curves using the markers (or line styles) in the caption. Refer to Figure 7.20 for an
example.

Don’ts

1. When only a single simulation was performed, don’t represent the results as having quantitative
meaning. Don’t imply that such results can be used for design checks and similar purposes. The
results from a single computation do not come with any estimate of the error. Without a guess
of the error, such results may be interpreted qualitatively at best. This is not to say that a
single simulation cannot produce an accurate result, it may or it may not. The problem is we
don’t know which of the two we have before us. A possible exception is a single simulation that
was performed for a set of circumstances that have been studied thoroughly before. Then we
may know something about the likelihood of the FE results being within a certain error of the
true solution. As an example, take an analysis of a strap with one bolt hole as configuration A
and two bolt holes as configuration B. If configuration A was studied and the error of the FE
solution was estimated, let us say with the most accurate FE solution being within 5% of the
true answer, then if the same type of FE model is used with a similar mesh we can guess with
some confidence that the FE answer will be produced with similar error for configuration B.

284 FEM for Thermal and Stress Analysis

2. When an adaptive simulation is performed, the results are obtained on a sequence of meshes
where no simple relationship exists between the element sizes employed at a particular location
from simulation to simulation. Therefore this data is not amenable to extrapolation. Do not
attempt to extrapolate from adaptive-simulation data.

3. When an adaptive simulation is performed, the errors are characterized with the so-called error
indicators. Error indicators are not error estimators: the error is not quantified, only relative
contributions to the error from the mesh are calculated to guide the construction of the next
mesh. Therefore, the final result of adaptive simulation does not come with an estimate of error,
and really must be treated as if only a single simulation was performed. Do not consider such

results to be firm quantitative answers. See Box 36
4. Don’t provide only nodal-average stress results. The elementwise (unaveraged) stresses should

be documented because they are an honest and deeply meaningful representation of the accuracy
of the model.

5. Do not limit the stress output illustrated in the report to only stress invariants (von Mises or
Tresca stress). In addition to these we often need to show which parts of the structure are in
compression or tension, which are loaded by bending or torsion. For this purpose we need to
provide plots of the stress components, in suitable coordinate systems. Other useful plots include
principal-stress plots which show not only the magnitude but also the direction of the principal
axes.

The following is a list of no-nos concerning the delivery of information: text, figures, tables, and
so on.

1. Don’t include in the report figures or tables that are never referenced in the text.
2. Don’t discuss in the report how to operate the software, which buttons to press, which dialogues

to fill in, and so on. Summarize the settings, perhaps with tables, but the document is not a
software tutorial.

End Box 35

Box 36. Strap Adaptive FEA

The problem of finding the Tresca stress in a metal strap was studied with an h-adaptive mesh

refinement in Abaqus. (For the report describing the extrapolation to the limit: See Box 34 .) The
solution documented in Table 8.1 are the results of the final mesh of a three-step adaptive process.
Compared to the estimated true values the adaptive procedure yielded numbers which vary between
very accurate to the barely okay (refer to the column that shows the relative error of the adaptive
solution). The problem is we do not know which numbers are good and which numbers are bad
without some effort to go to the limit of an infinitely refined mesh. Extrapolation allows us to do
that, but for extrapolation we need at least two, better three, successive solutions with progressively
refined meshes. The adaptive analysis produces a sequence of solution steps, but the meshes are not
related in a way that allows for extrapolation.

End Box 36

8.6 Background, explanations, details 285

Point of interest Estimated true stress
Adaptive simulation

stress

Relative error of the
adaptive solution

1 114.09 113.70 0.30%
2 32.40 40.84 21.66%
3 356.00 368.02 3.27%
4 352.97 367.47 3.95%
5 (*) 2284.33 NA
6 1037.40 1082.39 4.20%

Table 8.1. The Tresca stress in psi. Limit value prediction: (*) means extrapolation at point of interest 5
is not applicable, the true value is theoretically infinite. Comparison with the final result from an adaptive
simulation.

References

1. J.R. Barber. Elasticity. Solid Mechanics and Its Applications. Springer, 2009.
2. R. D. Blevins. Formulas for Natural Frequency and Mode Shape. Krieger publishing company, reprint

edition, 2001.
3. T. J. R. Hughes. The Finite Element Method - Linear Static and Dynamic Finite Element Analysis.

Dover Publications, Inc., 2000.
4. M. W. Hyer. Stress Analysis of Fiber-reinforced Composite Materials. WCB/McGraw-Hill, 1998.
5. John H. Lienhard IV and John H. Lienhard V. A Heat Transfer Textbook.

http://web.mit.edu/lienhard/www/ahtt.html, 2005.
6. W. D. Pilkey. Peterson’s Stress Concentration Factor. John Wiley & Sons, 2nd edition, 1997.
7. I.S. Sokolnikoff. Mathematical Theory of Elasticity. Robert E. Krieger publishing Company, 1983.
8. B. Szabó and I. Babuška. Introduction to Finite Element Analysis: Formulation, Verification and Vali-

dation. Wiley Series in Computational Mechanics. Wiley, 2011.
9. S. P. Timoshenko. History of Strength of Materials. Dover, 1983.

10. W. Young and R. Budynas. Roark’s Formulas for Stress and Strain. McGraw Hill professional, 2001.
11. Ashraf M. Zenkour. Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and

sandwich plates. Journal of Sandwich Structures and Materials, 9(3):213–238, 2007.
12. O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method: The Basis. Oxford [etc.] : Butterworth

Heinemann, 2000.

Index

.inp file, 236

adaptation, 267
adaptive
h−adaptive refinement method, 199
p−adaptive refinement method, 199

adaptive refinement, 199
anisotropic material, 175
anti-symmetry, 188, 189
approximate error, 202
aspect ratio, 210
assembly, 46
asymptotic range, 202
average element stress, 264
averaged nodal stress, 265
axial symmetry, 181, 235
axial symmetry, 235
axis of symmetry, 181, 235
axisymmetric, 181, 235

balance equation, 31
global, 25
local, 25

balance of angular momentum, 167
balance of linear momentum, 160
basis function, 17, 33, 38

gradient, 47, 72
parametric coordinate, 66
triangle T3, 39
triangle T6, 143

benchmark, 238, 267, 270
bi-unit square, 103
body load, 254
boundary

insulated, 32
boundary condition

convective film condition, 27
displacement, 183
essential, 26, 183
inadmissible, 187

natural, 27, 183
of the first kind, 26
of the second kind, 27
of the third kind, 27
surface heat transfer, 27
traction, 183

boundary conditions
essential

homogeneous, 238
boundary element method, 267
boundary layer, 27
Boussinesq, 187

Cauchy stress tensor, 162
change of coordinates in integrals, 105
characteristic equation, 165
chicken and egg problem, 155
circular frequency, 238
Clough, 81

Turner, Clough, Martin and Topp, 81
compact support, 38
compatible, 66
compliance matrix, 176
concentrated force, 187, 212
conductivity matrix, 26
connectivity, 41, 48
constitutive equation, 156, 175, 224, 260
constraint

single-point, 241
tie, 251

contact, 153, 239
contact problem, 155
control volume, 24
convective film condition, 27
convergence, 267
convergence rate, 200
convex hull, 227
Courant, 80
CST, 139

290 Index

damping, 246
proportional, 247, 255

damping force, 255
damping matrix, 247, 255
damping ratio, 247, 255
data uncertainty, 269
degree of freedom, 40

fixed, 48
free, 48
global, 49
local, 49

degree of freedom number, 254
degrees of freedom, 18
Dirichlet boundary condition, 26
discrete model, 267
displacement, 172

rigid body, 241
displacement boundary condition, 183
divergence, 11, 25

stress, 171
divergence theorem, 25, 170, 172, 184
DOF

degree of freedom, 48, 49
dynamic equilibrium, 172
dynamic stiffness, 247

edge seed, 204
eigenmode, 238
eigenvalue, 162
eigenvalue problem, 114, 165

generalized, 238
elastic coefficients, 175
elastodynamics, 159
elastostatics, 159
element

distortions, 210
element distortion, 209
element size, 196, 199
error

approximate, 202
discretization, 269
estimated true, 202
estimation, 267
modeling, 269
observation, 269
solution, 269
true, 202

essential boundary condition, 26
estimated true error, 202

factor
refinement, 203

fatigue, 249, 267
fiber-reinforced composite, 176

film coefficient, 22
finite element

advanced stress, 231
C3D10, 7, 228, 238
C3D20, 232
C3D20R, 11, 229, 230, 233, 245
C3D8, 229
C3D8I, 244
C3D8IH, 244
C3D8RH, 244
continuum, 208
CPE4, 231
CPS3, 142
CPS4, 231
CPS6, 134, 142, 148
CPS8, 233
CPS8R, 233
DC2D3, 20, 21, 56, 63, 69
DC3D4, 13, 18
DC3D8, 19
DCAX4, 21
DCAX6, 200
edge, 37
H8, 228
incompatible, 244
isoparametric, 46
L3, 146
node, 37
Q4, 103
Q8, 233
T10, 228
T4, 225
T6, 142

finite volume method, 267
flux boundary condition, 27
forced-convection, 27
Fourier model, 26
free vibration, 238
free vibration shape, 238
free-floating structure, 148
frequency response function, 247
fundamental frequency, 248

game
Whac-A-Mole, 35

Gauss quadrature rule, 118
Gauss rule, 122
Gauss theorem, 25
generalized eigenvalue problem, 238
global node number, 49
graded mesh, 199, 202, 203
gradient, 11, 26

basis function, 72

Index 291

hat function, 38
heat

conduction, 24
diffusion, 24

heat energy, 24
heat flux, 24
heat load

ambient-temperature, 75
Hessian, 215
hexahedron

quadratic Lagrangean, 231
homogeneous, 11
homogeneous material, 175
homogenization, 249
hoop stress, 236
hourglassing, 244
hybrid formulation, 244

inadmissible boundary condition, 187
incompatible, 244
indexing

zero-based, 51
inertial force, 172, 253
inertial load, 254
infinite half space, 187
inhomogeneous material, 175
initial conditions, 253
input file

.inp, 236
integration rule

Gauss, 122
tetrahedron, 226

interpolation, 196, 215
isoparametric element, 41, 46
isoparametric formulation, 39
isosurface, 63
isotropic material, 26, 177

Jacobian, 47
curve, 84, 186
determinant, 47
surface, 186
volume, 186

Jacobian matrix, 82
invertibility, 47

kinematically admissible displacement, 185
Kirchhoff theory, 270
Kronecker Delta, 18
Kronecker delta, 39, 143, 253

Lamé constant, 177, 224
Lamé constant λ, 177, 224
lamina, 249

laminated plate, 249
level curve, 63
linear elasticity, 175
linear momentum, 159
local degree of freedom, 49
local node number, 49
locking, 231

shear, 231
lumped, 212
lumping, 212

map, 40
of areas, 105

mass density, 170
mass matrix

consistent, 253, 257
material

compliance matrix, 175, 249
homogeneous, 175
inhomogeneous, 175
stiffness matrix, 175, 249

material curve, 172
material orientation matrix, 175, 250
material point, 172
material stiffness, 175
mathematical model, 267
matrix

orthogonal, 163, 250
rotation, 163, 250
surface heat transfer, 75

membrane, 179
mesh, 8
mesh generator, 208
mesh refinement factor, 203
mesh size, 196, 215
method
h−adaptive refinement, 199
p−adaptive refinement, 199
weighted residual, 33

Mindlin theory, 270
modal equations, 255
model

plane stress, 132
modeling pipeline, 267
motion, 172

natural interpolation, 40
natural boundary condition, 27
natural frequency, 238
Neumann boundary condition, 27
Newmark average-acceleration integrator, 255
Newton boundary condition, 27
Newton’s equation of motion, 159
nodal averaging, 148

292 Index

nodal strain-displacement matrix, 136
node number

global, 49
local, 49

nonlinear model, 25, 155
nonzero-displacement load, 254
normal mode, 238
normal strain, 172
normal stress, 162
notch, 261
numerical quadrature

Gauss, 122

observation, 268
ODE integrator, 255
order-of, 198, 216
orthogonal matrix, 163, 250
orthotropic elasticity, 249
orthotropic material, 26, 176
outer normal, 24

parametric coordinates, 39, 66
part seed, 204
particle, 159
physical event, 267
plane strain, 177, 233
plane stress, 179
plane stress model, 132
plate, 229, 231, 270

Kirchhoff theory, 270
Mindlin theory, 270

point support, 135, 187
Poisson ratio, 132
Poisson’s equation, 80
Poisson’s ratio ν, 177
prediction, 267
principal direction, 165
principal stress, 162, 264

convention, 166
principle of virtual work, 185

quadratic form, 175
quadrature rule

Gauss, 118, 122
quality measure

triangle, 198, 217

range of validity, 270
rank, 114

elementwise conductivity, 73
rate of convergence, 200, 202
rate of heat generation, 24
Rayleigh damping, 247, 255
reaction, 185

recovered nodal stress, 265
reduction

dimension, 31
reentrant corner, 202
reference point, 154
refinement factor, 202, 203
reflection, 188
residual, 33, 78

balance, 78
resisting force, 254
resonance, 248, 249
Richardson extrapolation, 202, 267
rigid body, 153
rigid body displacement, 241
rigid body rotation, 140
rigid-body translation, 139
rotation matrix, 163, 175, 250

Saint-Venant’s principle, 240
seed

edge, 204
part, 204

serendipity elements, 231
shape function, 17, 38
shape quality, 198, 209, 217
shear locking, 231
shear modulus, 177, 224
shear strain, 172, 174
shear stress, 162
shear tractions, 239
simplex element, 227
singular, 72, 114
singularity, 202

strength, 262
skew angle, 210
sparse, 38
sparse matrix, 116
specific heat, 25
square

bi-unit, 103
standard cube, 228
standard interval, 83, 103
standard tetrahedron, 225
standard triangle, 39, 142
stiffness coupling, 227
stiffness matrix, 254
strain, 161, 225

plane, 233
vector components, 174

strain displacement operator, 175
strain tensor, 174
strain-displacement matrix, 250

nodal, 136
strain-displacement operator, 174

Index 293

stress, 161
average element, 264
averaged, 265
concentration, 267
hoop, 236
interpretation, 263
maximum shear , 169
normal, 162
principal, 162, 165
principal stress vectors, 264
raiser, 267
recovered nodal, 265
shear, 162
singular, 261
von Mises, 266
von Mises equivalent , 169

stress analysis, 159
stress divergence, 171
stress raiser, 267
stress recovery, 265
stress-divergence operator, 172, 179, 224
stretch, 172, 174
support, 38

compact, 38
surface heat transfer, 27
surface heat transfer coefficient, 27

film coefficient, 22
surface heat transfer matrix, 75
surface traction load, 254
symmetric gradient, 132
symmetric gradient operator, 172, 174, 175, 223
symmetry, 188

tangent to material curve, 172
tangent vector, 84
taper, 210
Taylor series, 215
temperature gradient, 26
tensor, 162
tensor transformation, 164
tent function, 38
test function, 33, 36, 37, 183
tetrahedron, 8

linear, 225
quadratic, 228
standard, 225, 228

thermal conductivity, 26
thermal expansion, 156, 259

coefficient of, 156, 260
thermal strain, 156, 260
thermal strain load, 260
tie constraint, 251
traction, 159
traction boundary condition, 183
traction-free

surface, 183
transformation

of vector components, 163
tensor, 164

transformation matrix, 175, 250
transversely isotropic material, 176
Tresca, 169
trial function, 32, 36, 37, 78
triangle

linear, 46, 80
needlelike, 210
quadratic, 142
sliver-like, 210
standard, 142

triangulation, 37
true error, 193, 202

uniform mesh, 203

validation, 267
vector cross product, 164
vector-stress vector dot product operator, 134,

167, 184
verification, 267
virtual displacement, 185
virtual work, 185
viscous, 246
von Mises, 169
von Mises equivalent stress, 169

wedge, 261
weight function, 36
weighted residual equation

stress analysis, 185
weighted residual method, 32
weighted residual statement, 36, 78
WRM, 32

Young’s modulus, 132
Young’s modulus E, 177

zero-based indexing, 51

	1 Introduction
	1.1 Goals and Approach
	1.2 Coverage
	1.3 Organization of the book
	1.4 Software
	1.4.1 Abaqus software
	1.4.2 Cloud computing
	1.4.3 Local Python environment
	1.4.4 Running Python in Abaqus
	1.4.5 Standing assumptions for Python code

	1.5 Units
	1.6 Abbreviations

	2 Getting acquainted with the FEM
	2.1 High-level explanation of the principles of FEM
	2.2 Thermally driven micro-actuator
	2.3 The heat transfer problem
	2.4 Concrete column
	2.4.1 Boundary value problem solved
	2.4.2 What are finite elements?

	2.5 Hexahedral elements
	2.6 Using symmetry
	2.7 More symmetry: axisymmetric model
	2.8 Even more symmetry: 2-D model in the cross-section
	2.9 Modeling with film condition
	2.10 Background, explanations, details

	3 FEA for 2-D Heat conduction with Triangles
	3.1 Model in two coordinates
	3.2 The discrete model: Method of Weighted Residuals
	3.3 Weighted residual method for the heat conduction problem
	3.4 Test and trial functions and finite elements
	3.5 The standard triangle
	3.6 Interpolation over the x,y triangle
	3.7 Elementwise calculations
	3.8 Derivatives of the basis functions; Jacobian
	3.9 Jacobian matrix for the triangle
	3.10 Bookkeeping
	3.11 Concrete-column example continued
	3.11.1 Element 1
	Elementwise conductivity matrix
	Elementwise heat load

	3.11.2 Element 2
	Elementwise conductivity matrix
	Elementwise heat load

	3.11.3 Element 3
	Elementwise conductivity matrix
	Elementwise heat load

	3.11.4 Assembled equations

	3.12 Concrete-column example: nonzero boundary temperature
	3.12.1 Element 1
	3.12.2 Element 2
	3.12.3 Element 3
	3.12.4 Assembled equations
	3.12.5 Natural boundary conditions

	3.13 Layered wall example
	3.14 Prescribed heat flux on the boundary
	3.14.1 The L2 element
	3.14.2 Using the L2 element
	3.14.3 Layered wall: Heat flux boundary condition
	3.14.4 Layered wall: Heat flux boundary conditions only

	3.15 Concrete column with film boundary condition
	3.16 Background, explanations, details
	3.17 Code listings

	4 FEA for 2-D Heat conduction with Quadrilaterals
	4.1 Quadrilateral element
	4.2 Example: using Gaussian quadrature for a rectangle
	4.3 Concrete column example again
	4.3.1 Conductivity matrix
	4.3.2 Heat load vector and solution
	4.3.3 Postprocessing

	4.4 Effects of element distortion
	4.5 Effects of the choice of the numerical quadrature rule
	4.6 Example finite element program
	4.7 Background, explanations, details
	4.8 Code listings

	5 FEA for 2-D Stress Analysis
	5.1 Bracket plane-stress model
	5.2 Bookkeeping for plane stress FE models
	5.3 Weighted residual equation for plane stress
	5.4 Elementwise quantities for the three-node triangle
	5.4.1 Strains from displacements
	5.4.2 Stiffness matrix
	5.4.3 Singularity

	5.5 Quadratic triangle T6
	5.5.1 Basis function gradients and strains

	5.6 Quadratic curve element L3
	5.6.1 Distributed traction on the boundary

	5.7 Case study: applying boundary conditions
	5.7.1 Free-floating structure
	5.7.2 Point supports
	5.7.3 Reduction using symmetry
	5.7.4 Graded mesh

	5.8 Boundary conditions of the ``Contact'' type
	5.8.1 Prescribed displacement of the circumference of the hole A
	5.8.2 Rigid-body constraint applied to the hole A
	5.8.3 Modeling the contact of the hole A with the pin
	5.8.4 Summary

	5.9 Thermal loading
	5.9.1 Thermal loads example
	5.9.2 Thermal strains in a bimetallic assembly

	5.10 Background, explanations, details
	5.11 Code listings

	6 How to deal with errors
	6.1 Where is this applicable?
	6.2 Simple examples
	6.2.1 Uniformly heated wall

	6.3 Interpolation errors
	6.3.1 Interpolation error of temperature
	6.3.2 Interpolation error of temperature gradient

	6.4 Estimation of True Solution
	6.4.1 The uses of the element-size control

	6.5 Richardson extrapolation
	6.6 Graded meshes
	6.6.1 Thin aluminium slab: estimation of maximum tensile stress

	6.7 Meshes and Mesh generation
	6.7.1 Mesh generation
	6.7.2 Element distortions
	6.7.3 Interior mesh and Boundary mesh

	6.8 Lumping: How the FEM works
	6.9 Background, explanations, details
	6.10 Code listings

	7 Further Developments of FEA for General Stress Analysis
	7.1 Stress analysis in three dimensions
	7.2 Weighted residual equation for three dimensions
	7.3 Tetrahedra
	7.3.1 Tetrahedron T4
	7.3.2 Simplex elements
	7.3.3 Tetrahedron T10

	7.4 Hexahedra
	7.4.1 Eight-node hexahedron (H8)
	7.4.2 Thin simply-supported square plate with uniform distributed load
	7.4.3 Shear locking
	7.4.4 Quadratic element H20
	7.4.5 Quadratic element Q8

	7.5 Model reduction for plane strain
	7.6 Model reduction for axial symmetry
	7.7 Free vibration (frequency) analysis
	7.7.1 Modal analysis of a circular clamped plate

	7.8 Principle of equivalent loads (Saint-Venant's principle)
	7.9 Supports applied to nodes
	7.9.1 Metal strip: example of free-floating structure

	7.10 Advanced three-dimensional elements
	7.11 Analyzing shell structures with hexahedra and tetrahedra
	7.12 Harmonic Forced Vibration Analysis
	7.12.1 Response of a thin plate

	7.13 Analysis of a composite plate
	7.13.1 Strain-displacement matrix for anisotropic materials
	7.13.2 Cross-ply plate results

	7.14 Background, explanations, details

	8 Interpretation of FEA Results
	8.1 Singularities
	8.2 Interpretation of stresses
	8.3 Stress concentrations
	8.4 Errors, validation, and verification
	8.4.1 Verification and Prediction
	8.4.2 Validation
	8.4.3 Errors
	8.4.4 Using modeling to make predictions
	8.4.5 Using benchmarks

	8.5 Writing FEA reports
	8.6 Background, explanations, details

	References
	Index

