Petr Krysl
pkrysl@ucsd.edu

A Pragmatic Introduction to the
 Finite Element Method for Thermal and Stress Analysis

With the Matlab toolbox SOFEA

December 05, 2005

Pressure Cooker Press
San Diego

Copyright (c) 2005 Petr Krysl.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the Appendix A entitled "GNU Free Documentation License".

Contents

Part I Introducing the Galerkin method
1 Model of a Taut Wire 3
1.1 Deriving the PDE model 3
1.2 Balance equation 3
1.3 Boundary conditions 4
1.4 Boundary conditions (in space) 5
1.5 Initial conditions 5
1.6 Anything else? 6
2 The method of Mr. Galerkin 7
2.1 Residual of the balance equation 7
2.2 Integral test of the residual 8
2.3 Test function 8
2.4 Trial function 9
2.5 Manipulation of the residuals 10
2.6 Stiffness and mass matrix 12
2.7 Piecewise linear basis functions 13
2.8 Numerical quadrature 15
2.9 Putting it together: system of ODE's 18
3 Introducing the Matlab code 19
3.1 Statics 19
3.2 Statics: uniform load 19
3.3 Free vibration 22
3.4 Integration of transient motion 24
3.4.1 Using built-in Matlab solver 25
3.4.2 Using the Trapezoidal integrator 25
4 The boundary conditions for the model of a taut wire 29
4.1 Essential and natural boundary conditions at separate end-points 30
4.2 Essential boundary conditions only 30
4.3 Natural boundary conditions only 31
4.4 Overspecified boundary conditions 32
Part II Thermal analysis
5 Model of Heat Diffusion 37
5.1 Balance equation 37
5.2 Constitutive equation 39
5.3 Boundary conditions 40
5.4 Initial condition 42
5.5 Summary of the PDE model of heat conduction 43
6 Galerkin method for the model of heat conduction 45
6.1 Weighted residual formulation 45
6.2 Reducing the model dimension 46
6.3 Test and trial functions: basis functions on triangulations 48
6.4 Basis functions on the standard triangle 50
6.5 Discretizing the weighted residual equation 52
6.6 Derivatives of the basis functions; Jacobian 55
6.7 Numerical integration 58
6.8 Conductivity matrix 60
6.9 Surface heat transfer matrix and load 63
7 Steady-state heat diffusion solutions 69
7.1 Steady-state diffusion equation 69
7.2 Thick-walled tube 69
7.3 Orthotropic insert 72
7.4 The T4 NAFEMS Benchmark 74
8 Transient heat diffusion solutions 79
8.1 Discretization in time for transient heat diffusion 79
8.2 Transient diffusion: The T3 NAFEMS Benchmark 81
8.3 Transient cooling in a shrink-fitting application 84
9 Expanding the library of element types 87
9.1 Quadratic triangle T6 87
9.2 Quadratic 1-D element L3 89
9.3 Point element P1 89
9.4 Measuring (integrating) over domains 90
9.5 Tetrahedron T4 93
9.6 On the simplex elements 95
9.7 Quadrilateral Q4 95
9.8 Hexahedron H8 95
10 Convergence and error control 97
10.1 First look at errors 97
10.2 Richardson extrapolation 98
10.3 The T4 NAFEMS Benchmark revisited 98
10.4 Shrink fitting revisited 98
Part III Stress analysis
11 Model of elastodynamics 103
11.1 Balance of linear momentum 103
11.2 Stress 105
11.3 Local equilibrium 109
11.3.1Change of linear momentum 109
11.3.2Stress divergence 109
11.3.3All together now 112
11.4 Strains and displacements 113
11.5 Constitutive equation 115
11.6 Initial conditions 117
11.7 Boundary conditions 117
11.7.1A few examples of the modeling of the boundary conditions 117
11.7.2Formal definition of boundary conditions 119
11.8 Comparing the Thermal and Deformation models 120
12 Galerkin formulation for elastodynamics 121
12.1 Manipulation of the residuals 121
12.1.1The first two steps 121
12.1.2Step 3: Preliminaries 122
12.1.3Step 3: The glorious conclusion 123
12.2 Method of weighted residuals as the Principle of Virtual Work 124
12.3 Discretizing 124
12.3.1The trial function 124
12.3.2The test function 126
12.3.3Producing the requisite equations 127
12.4 The discrete equations: system of ODE's 128
12.4.1 Inertial term: Mass matrix 128
12.4.2Body loads and traction loads 129
12.4.3Resisting forces: Stiffness matrix 130
12.4.4Summary of the elastodynamics ODE's 130
12.5 Constitutive equations of linearly elastic materials 131
12.5.1 Orthotropic material 131
12.5.2 Transversely isotropic material. 132
12.5.3 Isotropic material. 132
12.6 Strain-displacement matrix 133
12.6.1 Transformation of basis 134
12.7 Stiffness matrix 136
13 First examples and further developments 139
13.1 Modal analysis with the tetrahedron T4: the drum 139
13.2 Modal analysis with the tetrahedron T4: the composite rod 142
13.3 Tetrahedron T10 144
13.4 Modal analysis with the tetrahedron T10 144
A Appendix: GNU Free Documentation License 145
References 151
Index 153

Introducing the Galerkin method

Model of a Taut Wire

This chapter will formulate a relatively simple model of a taut string. In the next chapter, we will seek approximate solutions to this model that are obtained with the Galerkin method.

1.1 Deriving the PDE model

Figure 1.1 illustrates an idealization of a taught wire. The wire is under prestressing force, P, assumed to be uniform along the length of the wire. The left hand end is immovably fixed, while the right hand side end is held in a fixture which can slide perpendicularly to the axis of the wire. A transverse force F_{L} is applied at the movable end. In addition, there may be some distributed force q acting along the length (but we shall ignore gravity). The transverse displacement is a function of both the axial coordinate x and the time $t, w=w(x, t)$. The transverse displacement is assumed to be very small compared to the length of the wire.

Fig. 1.1. Schematic of taut wire

1.2 Balance equation

Taking a section of length Δx of the wire (see Figure 1.2, collecting all the forces, and equating them to the inertial force (Newton's law), leads to a balance equation for
the taut wire

$$
\begin{equation*}
P \frac{\partial^{2} w}{\partial x^{2}}+q=\mu \ddot{w} \tag{1.1}
\end{equation*}
$$

where $\ddot{w}=\frac{\partial^{2} w}{\partial t^{2}}$ is the acceleration.

Fig. 1.2. The forces acting on a segment of the taut wire

1.3 Boundary conditions

The function w that describes the transverse deflection takes two arguments, x, and t. It is defined on a rectangle shown in Figure 1.3: $0 \leq x \leq L$, and $0 \leq t \leq \bar{t}$. It needs to be determined to satisfy the balance equation (1.1), but that would not completely nail the answer down. We also know something about the solution, namely at the boundaries of the domain rectangle.

How many pieces of information do we need to know? A reasonable answer is, 'Enough to make the solution unique.' To find the deflection w is going to involve integration, because the balance equation refers to space and time derivatives of w. Using the definitions

$$
\begin{aligned}
& v=\frac{\partial w}{\partial t} \\
& \theta=\frac{\partial w}{\partial x}
\end{aligned}
$$

we may rewrite all the balance equation that involves the second derivatives of the function w as a system of first order differential equations

$$
\begin{aligned}
\frac{\partial \theta}{\partial t} & =\frac{\partial v}{\partial x} \\
P \frac{\partial \theta}{\partial x}+q-\mu \frac{\partial v}{\partial t} & =0
\end{aligned}
$$

For each derivative $\frac{\partial v}{\partial x}, \frac{\partial \theta}{\partial x}$, one boundary condition (integration constant) will be needed. Similarly, for each of the time derivatives $\frac{\partial v}{\partial t}$, and $\frac{\partial \theta}{\partial t}$ one boundary condition along the time axis will be required.

Fig. 1.3. The domain of the deflection function w

1.4 Boundary conditions (in space)

The conditions on w along the edges of the domain rectangle parallel to the time axis are known (for historical reasons) as the boundary conditions. (Perhaps also because they are applied along the physical boundaries of the structure.)

It needs to be realized that the domain of the wire, that is the interval $0 \leq x \leq L$, has only one boundary, namely the two endpoints. Since these two points are disjoint, the boundary of the interval consists of two disjoint sets. As discussed in more detail in Chapter 4, we are really prescribing a single boundary condition. Since it happens to be applied at two disjoint points, we talk loosely of boundary conditions, even the though we should be saying boundary condition specifications.

For the sake of definiteness and this example, at the left-hand side end of the wire we are prescribing in general nonzero displacement,

$$
\begin{equation*}
w(0, t)=\bar{w}_{0} \cdot a n d \tag{1.2}
\end{equation*}
$$

As we shall find out, there is a good reason why this kind of condition is commonly called the essential boundary condition.

At the other end the boundary condition is of a different nature. It is also a bit more interesting, as we have to derive it. Again, we take a short section of the wire of length Δx (see Figure 1.4). This time there are terms that are multiplied by Δx, but there are also others which are not. Only the latter survive when we make Δx go to zero.

$$
\begin{equation*}
-P \frac{\partial w}{\partial x}(L, t)+F_{L}(t)=0 \tag{1.3}
\end{equation*}
$$

This boundary condition is simply the balance of forces at the end of the wire. Boundary conditions of this kind are called natural boundary conditions, and we'll find out presently why.

1.5 Initial conditions

Along the edges of the domain rectangle that are parallel to the space axis we also apply two conditions. However, as we all are aware, the time direction is special.

Fig. 1.4. The forces acting on a right hand side segment of the taut wire

Therefore, it will probably come to us naturally to expect to know something about the deflection at one point in time, typically at $t=0$. Because this is the initial point along the time axis, these conditions are known as the initial conditions (and we need two of them):

$$
\begin{equation*}
w(x, 0)=\bar{W}(x), \quad \frac{\partial w}{\partial t}(x, 0)=\bar{V}(x) \tag{1.4}
\end{equation*}
$$

where $\bar{W}(x)$ (the initial deflection) and $\bar{V}(x)$ (the initial velocity) are known functions.

1.6 Anything else?

The balance equation (1.1), the boundary conditions (1.2) and (1.3), and the initial conditions (1.4) are all we need to fully define what model it is we are trying to find solutions to. It is an initial boundary value problem, and as such it is quite typical of the models with which structural engineers have to deal. In what follows, we shall find out how to formulate an algorithm, the so-called Galerkin finite element method, which will supply an approximate solution to this problem.

The method of Mr. Galerkin

We will have to come to grips with the impossibility of satisfying the governing equation exactly with an approximate method. There's going to be an error in the balance equation (which we shall call a residual; another appropriate label might be imbalance). Similarly, the natural (force) boundary condition may not be satisfied exactly, and there is going to be a residual there too. ${ }^{1}$

2.1 Residual of the balance equation

The balance equation (1.1) may be written in the residual form as

$$
\begin{equation*}
P \frac{\partial^{2} w}{\partial x^{2}}+q-\mu \ddot{w}=r_{B}(x, t), \tag{2.1}
\end{equation*}
$$

by simply moving the inertial force on the other side of the equals sign. The residual r_{B} is identically zero if w is the exact solution. For an approximate solution, the residual r_{B} varies from point to point, and from time to time, and is in general nonzero.

Fig. 2.1. Residual that integrates to zero, but is not identically zero

Checking that the balance residual is identically zero at each point x and each time t does not provide us with anything we can use to talk about approximate solutions: the residual is either zero or it isn't, but how do we measure whether the approximate solution for which the residual is not zero is good?

[^0]
2.2 Integral test of the residual

One possible choice of a quality measure is to integrate the residual over the domain (length of the wire). We could think of the integral

$$
\begin{equation*}
\int_{0}^{L} r_{B}(x, t) \mathrm{d} x \tag{2.2}
\end{equation*}
$$

as a test: if the residual is identically zero, this integral will also come out zero. However, (2.2) may be zero even when the residual is not identically zero. In other words, if we wanted to prove that the residual corresponds to an exact solution, this would be an incomplete and flawed test. Consider Figure 2.1: the integral (2.2) is zero, but the residual itself may be very large (for instance, when $r_{B}=A \sin (2 \pi n x / L)$, with $n=1,2, \ldots$).

2.3 Test function

A remedy that addresses this blindness of (2.2) to the shape of the residual may be to use a "window" (test) function $\eta(x)$

$$
\begin{equation*}
\int_{0}^{L} \eta(x) r_{B}(x, t) \mathrm{d} x \tag{2.3}
\end{equation*}
$$

Note that $\eta(x)$ is an arbitrary function. In particular, it could be a function of the shape shown in Figure 2.2, which is certainly going to give a nonzero value for (2.3) (the hatched area at the bottom). Therefore, it correctly indicates that the residual does not correspond to the exact solution. Equation (2.3) is known as the weighted residual statement. Approximate approaches that start from the weighted residual statement are known as weighted residual methods.

Fig. 2.2. Nonzero a residual which is detected in the integral (2.3)

Equation (2.3) is a reliable way of testing the residual, but computationally it seems hardly less difficult than testing the residual at each point of the domain: equation (2.3) needs to be evaluated for an infinite number of functions η in order to make sure there are no bumps in the residual. The job will still take an infinite time.

Let us contemplate a tangible analogy of what we're trying to do in equation (2.3). Imagine our job is to hold an inflatable balloon in a box, so that it does not jut out anywhere. Use the fingers of one hand to press down on the balloon, so that the balloon is at the top of the box in the spot where it is being held by the finger. If we put down all five fingers, the situation is as shown on the left in Figure 2.3. Each of the fingers may be thought of as a single test function η that pushes down the residual in some spots.

Fig. 2.3. Stuffing a balloon into a box

Evidently, the balloon bulges out a little bit in between the fingers, and a lot everywhere else. However, we have the option of pressing down on the balloon with the fingers of our other hand, and if we enrol our friends and relatives, and the chance passersby, we will manage to do a better and better job of stuffing the balloon into the box and holding it so that it does not protrude very much. Indeed, with an infinite number of fingers, we can hold the balloon so that it does not protrude at all.

In this way, we may begin to see how an trial-and-test approximate method may be formulated. Selecting a finite number of suitable functions η_{j} (fingers), we may be able to keep the residual small (but in general nonzero). By applying larger numbers of test functions, we may hope to be able to reduce the error in the residual. Also, for each $\eta_{j}, j=1, \ldots, N$, we will make the integral (2.3) vanish

$$
\begin{equation*}
\int_{0}^{L} \eta_{j}(x) r_{B}(x, t) \mathrm{d} x=0 \tag{2.4}
\end{equation*}
$$

which provides us with the means of calculating N coefficients (numbers) from these N equations.

2.4 Trial function

The task of formulating the approximate solution consists really of describing the shape of the deflection w. This can be done in a variety of ways, but for reasons that we shall give later, a piecewise linear representation is a good choice. Figure 2.4 illustrates this concept by showing how the shape may be defined by the N coefficients w_{j}. The attentive reader will at this point fidget: the piecewise linear shape of the deflection
curve is not going to allow us to express the second order derivatives $\partial^{2} w / \partial x^{2}$. At the corners, the first derivatives will be discontinuous, and hence the second derivative will be a spike (so-called Dirac delta function). We can choose either to abandon the piecewise linear shape, and pass a smooth curve through the filled-circle points, or, we could change the rules of the game by getting rid of the second-order derivatives. As we shall presently see, the latter choice is commonly preferred.

In any case, the equations (2.4) may be used to calculate the values of $w_{j}, j=$ $1, \ldots, N$. The function that describes the shape of the approximate solution (with the N free parameters) is known as the trial function. It describes a possible (candidate, trial) shape of the approximate solution; which becomes the solution once the values of the free parameters are known.

Fig. 2.4. Piecewise linear trial function

2.5 Manipulation of the residuals

We will seek the approximate solution w to satisfy the balance equation in the residual form (2.4), and we'll incorporate the boundary conditions and residual form too. The displacement boundary condition (1.2) will be included in the form of the residual

$$
\begin{equation*}
r_{w}(t)=w(0, t)-\bar{w}_{0}(t) . \tag{2.5}
\end{equation*}
$$

and the natural boundary condition (1.3) will be included as the residual

$$
\begin{equation*}
r_{F}(t)=-P \frac{\partial w}{\partial x}(L, 0)+F_{L} \tag{2.6}
\end{equation*}
$$

Therefore, the approximate solution will be sought from the conditions

$$
\begin{align*}
\int_{0}^{L} \eta_{j}(x) r_{B}(x, t) \mathrm{d} x & =0 \\
\xi_{w} r_{w}(t) & =0 \tag{2.7}\\
\xi_{F} r_{F}(t) & =0
\end{align*}
$$

There are no conditions at this point on the trial function w other than smoothness that will guarantee the existence of the integrals in the first equation (2.7).

To reduce the complexity of (2.7), we may immediately realize that at the lefthand side end of the wire, we can quite simply design the trial function to make the
residual (2.5) identically zero. This will put another condition on w, and (2.7) may be cast as

$$
\begin{align*}
\int_{0}^{L} \eta_{j}(x) r_{B}(x, t) \mathrm{d} x & =0 \tag{2.8}\\
\xi_{F} r_{F}(t) & =0
\end{align*}
$$

where $w(0, t)=\bar{w}_{0}(t)$, and $w(x, t)$ sufficiently smooth in x.
In this way we managed to reduce the number of residuals, but we will do even better now. By applying integration by parts to the first equation in (2.8), we will be able to reduce the number of residuals further, and furthermore, we will be able to make it much easier to design a trial function by allowing for less smooth functions.

Substituting for the balance residual, we get three terms

$$
\begin{align*}
& \int_{0}^{L} \eta_{j}(x) r_{B}(x, t) \mathrm{d} x= \\
& \int_{0}^{L} \eta_{j}(x) P \frac{\partial^{2} w}{\partial x^{2}}(x) \mathrm{d} x+\int_{0}^{L} \eta_{j}(x) q(x) \mathrm{d} x-\int_{0}^{L} \eta_{j}(x) \mu(x) \ddot{w}(x, t) \mathrm{d} x \tag{2.9}
\end{align*}
$$

Integration per partes will not affect the second and third term on the right hand side, but for the first term we obtain

$$
\begin{equation*}
\int_{0}^{L} \eta_{j} P \frac{\partial^{2} w}{\partial x^{2}} \mathrm{~d} x=\left[\eta_{j} P \frac{\partial w}{\partial x}\right]_{0}^{L}-\int_{0}^{L} \frac{\partial \eta_{j}}{\partial x} P \frac{\partial w}{\partial x} \mathrm{~d} x \tag{2.10}
\end{equation*}
$$

The bracketed term is fraught with possibilities. Number one, we may recognize part of the bracket in equation (2.6). In fact, if we propose to satisfy $r_{F}=0$ at the right hand side end of the wire $(x=L)$ identically, we may simply replace $P \frac{\partial w}{\partial x}$ (which is known there) with F_{L}. That takes care of the force residual (2.6). Number two, at the left-hand side end of the wire the value of $P \frac{\partial w}{\partial x}$ is unknown, but we have the option of making η_{j} vanish at $x=0$. This will burden all the η_{j} 's with a condition, $\eta_{j}(x=0)=0$, but that is something we can afford.

We are in a position to summarize: We have been able to avoid the need to carry the displacement residual (2.5) [eliminated by design of the trial function] and the force residual (2.6) [incorporated into the balance residual- hence, "natural" boundary condition]. Therefore, we will try to find the approximate solution w to satisfy the balance equation in the residual form

$$
\begin{equation*}
\eta_{j}(L) F_{L}-\int_{0}^{L} \frac{\partial \eta_{j}}{\partial x} P \frac{\partial w}{\partial x} \mathrm{~d} x+\int_{0}^{L} \eta_{j} q \mathrm{~d} x-\int_{0}^{L} \eta_{j} \mu \ddot{w} \mathrm{~d} x=0, \quad j=1, \ldots, N \tag{2.11}
\end{equation*}
$$

where

$$
\begin{align*}
& \eta_{j}(x=0)=0, \quad \eta_{j} \in C^{0}, \quad j=1, \ldots, N \\
& w(x=0, t)=\bar{w}_{0}(t), \quad w \in C^{0} \\
& w(x, t=0) \approx \bar{W}(x), \quad \frac{\partial w}{\partial t}(x, t=0) \approx \bar{V}(x) \tag{2.12}
\end{align*}
$$

We write for the trial function $w \in C^{0}$ and similarly for the test functions. This literally means that the functions are continuous, which is a substitute here for a more
precise mathematical statement, but which nevertheless ensures that the integrals in (2.11) exist.

The initial conditions need to be suitably approximated, in general we will not be able to satisfy them exactly (which is why we write \approx). Typically, interpolation is used.

2.6 Stiffness and mass matrix

It is time to come back to the choice of the test and trial functions. As advertised in Section 2.4, we have been able to change the requirements on the test and trial function: Their derivatives are now balanced- only the first-order derivatives are needed for both. Therefore, the piecewise linear interpolation function of Figure 2.4 is now an possibility. However, we can still forge ahead while keeping our options open.

Let us make the assumption that the time is fixed $t=\bar{t}$ (\bar{t} some given number). To describe the trial function, we will resort to a common technique in interpolation which is to write the interpolant as a linear combination of basis functions. Therefore, let us assume that the trial function is written as

$$
\begin{equation*}
w(x, \bar{t})=\sum_{i=1}^{N} N_{i}(x) w_{i}(\bar{t}) \tag{2.13}
\end{equation*}
$$

where by $w_{i}(\bar{t})$ we simply mean that the coefficients of the linear combination w_{i} are actually functions of time, evaluated at the particular time \bar{t}. Substituting into (2.12), we obtain

$$
\begin{align*}
& \eta_{j}(L) F_{L}-\int_{0}^{L} \frac{\partial \eta_{j}}{\partial x} P \sum_{i=1}^{N} \frac{\partial N_{i}}{\partial x} w_{i}(\bar{t}) \mathrm{d} x+ \tag{2.14}\\
& \quad \int_{0}^{L} \eta_{j} q \mathrm{~d} x-\int_{0}^{L} \eta_{j} \mu \sum_{i=1}^{N} N_{i} \ddot{w}_{i}(\bar{t}) \mathrm{d} x=0, \quad j=1, \ldots, N
\end{align*}
$$

which may be simplified to

$$
\begin{align*}
& \eta_{j}(L) F_{L}-\sum_{i=1}^{N}\left(\int_{0}^{L} \frac{\partial \eta_{j}}{\partial x} P \frac{\partial N_{i}}{\partial x} \mathrm{~d} x\right) w_{i}(\bar{t})+ \tag{2.15}\\
& \quad \int_{0}^{L} \eta_{j} q \mathrm{~d} x-\sum_{i=1}^{N}\left(\int_{0}^{L} \eta_{j} \mu N_{i} \mathrm{~d} x\right) \ddot{w}_{i}(\bar{t})=0, \quad j=1, \ldots, N
\end{align*}
$$

With the definitions

$$
\begin{equation*}
K_{j i}=\int_{0}^{L} \frac{\partial \eta_{j}}{\partial x} P \frac{\partial N_{i}}{\partial x} \mathrm{~d} x \tag{2.16}
\end{equation*}
$$

where $K_{j i}$ is usually referred to as the stiffness matrix, and

$$
\begin{equation*}
M_{j i}=\int_{0}^{L} \eta_{j} \mu N_{i} \mathrm{~d} x \tag{2.17}
\end{equation*}
$$

where $M_{j i}$ is the (consistent) mass matrix, we may write (2.15) as

$$
\begin{equation*}
\eta_{j}(L) F_{L}-\sum_{i=1}^{N} K_{j i} w_{i}(\bar{t})+\int_{0}^{L} \eta_{j} q \mathrm{~d} x-\sum_{i=1}^{N} M_{j i} \ddot{w}_{i}(\bar{t})=0, \quad j=1, \ldots, N, \tag{2.18}
\end{equation*}
$$

The matrix equation (2.29) is a system of coupled ordinary differential equations (evaluated at time \bar{t}), where the coupling is effected by the matrices $K_{j i}$ and $M_{j i}$. The linear algebra is going to be much more efficient if the two matrices are symmetric and sparse.

The first property will follow if we take as the test functions η_{j} the basis functions themselves, $\eta_{j} \equiv N_{i}$. The second property may be achieved if the basis functions N_{i} are nonzero only on a small subset of the interval $0 \leq x \leq L$.

2.7 Piecewise linear basis functions

Lets us get back to the piecewise linear approximation we advertised for the trial function in Section 2.4. The broken line cannot be represented as a linear combination of linear functions that are all defined on the whole interval $0 \leq x \leq L$ (only two such functions are linearly independent, and these functions cannot represent the corners in the broken line). Therefore, we have to describe the piecewise linear curve interval-by-interval.

A common technique in interpolation is to write the interpolant as a linear combination of basis functions. In one dimension, the piecewise linear basis function is called the hat functions. The six functions that are shown in Figure 2.5, all are examples of hat functions. For reasons that will be discussed later, we would want the hat functions as the constituent parts of a linear combination to be able to reproduce an arbitrary linear function over the whole interval. Because of the way in which we construct the hat functions in Figure 2.5, this property is automatically available.

Let us describe the construction of the piecewise linear basis functions. (In this book, the one-dimensional elements with two nodes at the end points are going to be referred to as L2.) First, the length of the wire is divided into disjoint subintervals. These subintervals are the finite elements for the one-dimensional problem. The end-points of the finite elements are called nodes. Together, the finite elements and the nodes are known as the finite element mesh: see Figure 2.6 (the element numbers are in the boxes; nodes are indicated by filled circles). Since all basis functions are constructed in the same way, we show the procedure for basis function N_{3} : as shown in the Figure 2.5, it is nonzero over two elements, 2 and 3; zero everywhere else. To be able to write it down over the two adjacent elements, we have to agree on the value of N_{3} at node 3 (i.e. $N_{3}\left(x_{3}\right)$), which is shared by elements 2 and 3. Choosing $N_{3}\left(x_{3}\right)=1$ has certain advantages, which will be introduced momentarily. Using the concept of Lagrange interpolation polynomials, we may write the function N_{3} within element 2 as

$$
N_{3}(x)=\frac{x-x_{2}}{x_{3}-x_{2}}, \quad x_{2} \leq x \leq x_{3}
$$

Fig. 2.5. Piecewise linear basis functions
and within element 3 as

$$
N_{3}(x)=\frac{x-x_{4}}{x_{3}-x_{4}}, \quad x_{3} \leq x \leq x_{4}
$$

All the other functions are expressed analogously. Putting them together in a linear combination for the trial function, we write

$$
w(x)=\sum_{i=1}^{N} N_{i}(x) w_{i}
$$

(for simplicity, we omit the time argument). Evaluating $w(x)$ at node k, we obtain

$$
w\left(x_{k}\right)=\sum_{i=1}^{N} N_{i}\left(x_{k}\right) w_{i}
$$

where the crucial expression is $N_{i}\left(x_{k}\right)$: by definition, the basis function N_{k} has value +1 at x_{k}, while all other functions $N_{i}, i \neq k$ are zero at x_{k}. This property is usually expressed mathematically as

$$
\begin{equation*}
N_{i}\left(x_{k}\right)=\delta_{i k}, \tag{2.19}
\end{equation*}
$$

where the symbol $\delta_{i k}$ is known as the Kronecker delta

$$
\delta_{i k}=\left\{\begin{array}{l}
1, \text { if } i=k \\
0, \text { otherwise }
\end{array}\right.
$$

Because of this property, the value of $w\left(x_{k}\right)$ is

$$
w\left(x_{k}\right)=\sum_{i=1}^{N} N_{i}\left(x_{k}\right) w_{i}=\sum_{i=1}^{N} \delta_{i k} w_{i}=w_{k}
$$

and the parameters w_{i} have the physical meaning of the value of the interpolated function at the node i. The w_{i} 's are usually called the degrees of freedom, since being the control parameters of the trial function, they determine the shape of the actual solution from all the possible shapes of the trial function. They are the objects that our numerical method solves for.

Fig. 2.6. The finite element mesh

2.8 Numerical quadrature

While in the preceding section we described how to compute the basis function N_{3} by visiting the adjacent finite elements on which the function was nonzero, the task in an actual finite element program is different. The algorithm there is designed to facilitate numerical evaluation of the integrals in the residual equations. The integrals are calculated element-by-element (the integrands are in general discontinuous from element to element). Therefore, instead of being interested in a single basis function at any point within the mesh, we will rather be striving to calculate the values (and their derivatives) of all the nonzero basis functions at a particular point (the quadrature point) within a single finite element; see Figure 2.7. In the element-centric view,

Fig. 2.7. Two different views on how to evaluate basis functions in the finite element mesh: top - compute a single basis function over the whole mesh; bottom - compute all nonzero basis functions over a single element.
we would evaluate the functions associated with the nodes at the endpoints of the element. Say for element connecting nodes i, and j, the functions N_{i} and N_{j} would be expressed as

$$
\begin{equation*}
N_{i}(x)=\frac{x-x_{j}}{x_{i}-x_{j}}, \quad N_{j}(x)=\frac{x-x_{i}}{x_{j}-x_{i}} \tag{2.20}
\end{equation*}
$$

It is common practice to develop numerical integration rules on standard intervals. Often that will be $-1 \leq \xi \leq+1$ (line elements in one dimension, quadrilaterals in two
dimensions, and bricks in three dimensions all use this interval definition in so-called tensor-product forms). For instance, Simpson's $1 / 3$ rule is given on this interval as

$$
\int_{-1}^{+1} f(\xi) \mathrm{d} \xi \approx \frac{1}{3} f(\xi=-1)+\frac{4}{3} f(\xi=0)+\frac{1}{3} f(\xi=+1)
$$

In general, a numerical quadrature rule would be written on the standard interval $-1 \leq \xi \leq+1$ as

$$
\begin{equation*}
\int_{-1}^{+1} f(\xi) \mathrm{d} \xi \approx \sum_{k=1}^{M} f\left(\xi_{k}\right) W_{k} \tag{2.21}
\end{equation*}
$$

where ξ_{k} are the locations of the integration points, and W_{k} are their weights. Integrating numerically arbitrary functions over arbitrary intervals is then made possible by a map from the standard interval $-1 \leq \xi \leq+1$ to the arbitrary interval $a \leq x \leq b$

$$
\begin{equation*}
x=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) \xi \tag{2.22}
\end{equation*}
$$

(the first part is the midpoint of the interval $a \leq x \leq b$, the second part is the departure from the midpoint to either side). Because this map is linear, the relationship between the differentials is constant,

$$
\mathrm{d} x=\frac{1}{2}(b-a) \mathrm{d} \xi
$$

where the factor $\frac{1}{2}(b-a)$ is called the Jacobian determinant. The Simpson's $1 / 3$ rule is for an arbitrary interval $a \leq x \leq b$ expressed as

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{1}{2}(b-a)\left[\frac{1}{3} f(\xi=-1)+\frac{4}{3} f(\xi=0)+\frac{1}{3} f(\xi=+1)\right]
$$

In general, if the map is

$$
\begin{equation*}
x=g(\xi) \tag{2.23}
\end{equation*}
$$

and the numerical quadrature over an arbitrary interval may be written as

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{k=1}^{M} f\left(\xi_{k}\right) \frac{\partial g}{\partial \xi}\left(\xi_{k}\right) W_{k} \tag{2.24}
\end{equation*}
$$

where $\frac{\partial g}{\partial \xi}\left(\xi_{k}\right)$ is the Jacobian determinant evaluated at the quadrature point ξ_{k}.
Lets us now look at the integrals in the mass matrix (2.17). The integral will be evaluated over each element individually, and these contributions will be summed together. Therefore, let us consider the integral (2.17)over a single element, connecting nodes i and j

$$
\int_{x_{i}}^{x_{j}} N_{j}(x) \mu(x) N_{i}(x) \mathrm{d} x .
$$

Notice that we are not getting the indexes mixed up: N_{j} and N_{i} are the only two basis functions which are nonzero over the interval $x_{i} \leq x \leq x_{j}$. Clearly, the function $f(x)$ in equation (2.24) is

$$
N_{j}(x) \mu(x) N_{i}(x)
$$

which means that we have to express the basis functions in terms of $\xi(\mu(x)$ is typically constant over an element). However, we have the map (2.22), which upon substitution into (2.20) yields

$$
\begin{equation*}
N_{i}(\xi)=\frac{\xi-1}{-2}, \quad N_{j}(\xi)=\frac{\xi+1}{+2} \tag{2.25}
\end{equation*}
$$

Basis functions expressed on the standard interval (2.25) are sometimes referred to as being expressed in the parametric coordinates. It is noteworthy that (2.25) are just the Lagrange interpolation polynomials on the standard interval. As we shall see later, writing down the basis functions over a standard shape - a square for general quadrilaterals, a cube for general brick elements, standards triangles or standard tetrahedra for general triangles or general tetrahedra, and so on- is not only convenient, but also highly advisable from the point of view of computer implementation: most of the code for different element shapes and types is then shared, and does not have to be repeated. However, it does mean that we have to express the derivative of the basis functions using a chain rule:

$$
\begin{equation*}
\frac{\partial N_{i}(\xi)}{\partial x}=\frac{\partial N_{i}(\xi)}{\partial \xi} \frac{\partial \xi}{\partial x} \tag{2.26}
\end{equation*}
$$

The partial derivative $\frac{\partial \xi}{\partial x}$ is readily available from (2.22), and may be identified as the inverse of the Jacobian. To state the integral of the term corresponding to the mass matrix

$$
\int_{x_{i}}^{x_{j}} N_{j}(x) \mu(x) N_{i}(x) \mathrm{d} x \approx \frac{1}{2}\left(x_{j}-x_{i}\right) \sum_{k=1}^{M} \frac{\partial N_{j}}{\partial x}\left(\xi_{k}\right) \frac{\partial N_{i}}{\partial x}\left(\xi_{k}\right) W_{k} .
$$

where (2.26) is used to evaluate the derivatives of the basis functions.
At a first sight, the integrals in the stiffness matrix (2.16), and in the mass matrix (2.17), the latter will seem to require a more accurate numerical quadrature rule: the stiffness matrix involves products of the derivatives of the basis functions, which for linear basis functions are constants; the mass matrix, on the other hand, requires products of the basis functions themselves, which are linear functions of x. Therefore, the stiffness matrix will result from integrals of constants, while the mass matrix is the result of integrals of quadratic functions. However, at times increased efficiency and even accuracy may be achieved if the mass matrix is not integrated exactly, in particular diagonal mass matrices are often used to achieve both benefits.

The numerical quadratures that are in common use with polynomial finite elements are the Gaussian rules. They are well described in a number of textbooks, see for instance Reference [CC2005], and we are going to introduce them later.

2.9 Putting it together: system of ODE's

Applying the piecewise linear basis functions derived in Section 2.7 to equation (2.29) is a straightforward. The unknown degrees of freedom are $w_{2}(t), w_{3}(t), \ldots, w_{N}(t)$; the function $w_{1}(t)$ is given by the boundary conditions: the condition $w(x=0, t)=\bar{w}_{0}(t)$ becomes, as a result of the Kronecker delta property, $w_{1}(t)=\bar{w}_{0}(t)$.

The stiffness and mass matrices will be symmetric, tri-diagonal, i.e.

$$
K_{j i}=\int_{0}^{L} \frac{\partial N_{j}}{\partial x} P \frac{\partial N_{i}}{\partial x} \mathrm{~d} x\left\{\begin{array}{l}
\neq 0, \text { if }|i-j| \leq 1 \tag{2.27}\\
=0, \text { otherwise }
\end{array}\right.
$$

and

$$
M_{j i}=\int_{0}^{L} N_{j} \mu N_{i} \mathrm{~d} x\left\{\begin{array}{l}
\neq 0, \text { if }|i-j| \leq 1 \tag{2.28}\\
=0, \text { otherwise }
\end{array}\right.
$$

Equation (2.15) is trivially modified to read

$$
\begin{equation*}
N_{j}(L) F_{L}-\sum_{i=1}^{N} K_{j i} w_{i}(t)+\int_{0}^{L} N_{j} q \mathrm{~d} x-\sum_{i=1}^{N} M_{j i} \ddot{w}_{i}(t)=0, \quad j=2, \ldots, N \tag{2.29}
\end{equation*}
$$

Note that j runs from 2 to N (as explained above), but i ranges over all nodes, i.e. also the first degree of freedom is included, even though it is determined from the boundary condition. In effect, nonzero displacement $w_{1}(t)$ generates an external force with the j th component

$$
-K_{j 1} w_{1}(t)-M_{j 1} \ddot{w}_{1}(t)
$$

The second order differential equations (2.29) may be integrated for instance by converting them to first order form and using an off-the-shelf Matlab integrator. However, because of their special form, there are excellent custom-tailored algorithms for this purpose: for example the Newmark explicit algorithm.

3

Introducing the Matlab code

In this chapter we will introduce a finite element library (or toolbox, if you prefer), SOFEA ${ }^{1}$. It will be used to produce finite element solutions using the results of the previous chapter for the Galerkin method. SOFEA implementation is in Matlab, and its design is based on the object oriented support in Matlab (release 14 and later). In particular, all the methods and algorithms are present in the library as classes, or methods defined for classes.

3.1 Statics

When the inertial forces may be neglected in the balance equation, we have the case of statics (static equilibrium). The Galerkin formulation simply drops the terms with the accelerations, and reads

$$
\begin{equation*}
N_{j}(L) F_{L}-\sum_{i=1}^{N} K_{j i} w_{i}+\int_{0}^{L} N_{j} q \mathrm{~d} x=0, \quad j=2, \ldots, N \tag{3.1}
\end{equation*}
$$

which may be arranged in matrix form as

$$
\begin{equation*}
\boldsymbol{K} \boldsymbol{d}=\boldsymbol{L} \tag{3.2}
\end{equation*}
$$

where \boldsymbol{K} is a square $(N-1) \times(N-1)$ matrix collecting $K_{j i}, i, j=2, \ldots, N$. The column matrix \boldsymbol{d} collects the degrees of freedom $d_{k}=w_{k+1}, k=1, \ldots, N-1$. The column matrix \boldsymbol{L} is the load vector, with components

$$
\begin{equation*}
L_{k}=N_{k+1}(L) F_{L}-K_{k+1,1} w_{1}+\int_{0}^{L} N_{k+1} q \mathrm{~d} x=0, \quad k=1, \ldots, N-1 \tag{3.3}
\end{equation*}
$$

3.2 Statics: uniform load

Furthermore, we assume the transverse load q is uniform, and the transverse force is absent, $F_{L}=0$. The Matlab script implementing the solution is taut_wire/w1. It starts with the definition of the variables.

[^1]```
0 0 0 1 ~ d i s p (' T a u t ~ w i r e : ~ e x a m p l e ~ 1 - - ~ s t a t i c s , ~ u n i f o r m ~ l o a d ') ;
0002 L=6;
0003 P=4;
0004 q =-0.1;
```

Next, the mesh is defined: an array of nodes is created, with node 1 at $x=0$ and so on. The function fenode is the constructor of the class fenode, and the attributes are being passed as fields of a struct, as pairs "name, value" (for instance, 'id', $\mathbf{j}$ ): this approach is uniformly adopted for all constructors. The array gcells collects finite elements of the type gcell_12. The attribute conn is the connectivity: the numbers of nodes that are connected by the element. The finite elements are referred to as geometric cells. The main reason is that the finite elements have rather limited responsibilities in SOFEA, namely calculation of the basis functions (and their derivatives), and drawing of the shape of the cell are essentially all that is required.

```
0005 n=2; % number of elements
0006 % Mesh
0007 x=0;
0008 fens=[];
0009 for j= 1:n+1
0010 fens=[fens fenode(struct ('id',j,'xyz',[x]));];
0011 x = x+(L/n);
0 0 1 2 \text { end}
0013 gcells = [];
0014 for j= 1:n
0015 gcells = [gcells gcell_l2(struct('id',j,'conn',[j j+1]))];
0 0 1 6 \text { end}
```

The operations on the mesh that reflect the particular problem that is being solved are encapsulated in the class descended from the finite element block, feblock. In particular, the prestressed wire stiffness and mass matrix, the effect of the distributed load, $q$, and the effect of the nonzero displacement at $x=0$, are computed by the methods of the class feblock_defor_taut_wire. Note that Simpson's $1 / 3$ rule is being used for the numerical quadrature. The finite element block consists of all the finite elements.

```
0017 % Finite element block
0 0 1 8 \text { feb = feblock_defor_taut_wire(struct ('mater',mater_defor,...}
0019 'gcells',gcells,\ldots
0020 'integration_rule',simpson_1_3_rule,...
0021 'P',P));
```

The quantities that are interpolated on the finite element mesh, such as the transverse displacement of the wire, $w$, or the geometry of the mesh, are represented in SOFEA as instances of the class field. The field geom records the geometry of the mesh. The constructor on line 0023 retrieves this information from the array of the nodes. The dimension of the field is 1 because each degree of freedom is just a single
displacement. On line 0025 we define the field of the transverse displacements, w. For convenience, it is defined by cloning the geom field, and then zeroing out all the degrees of freedom.

```
0022 % Geometry
0023 geom = field(struct ('name', ['geom'], 'dim', 1, 'fens',fens));
0024 % Define the displacement field
0025 w = 0*clone(geom,'W');
```

Next, the displacement (essential) boundary conditions are defined, and applied to the displacement field. The method set_ebc simply records which components of the degrees of freedom, at which node, are being prescribed (or released), and to which value are they being prescribed. The method apply_ebc is then used to transfer this information to the actual degrees of freedom. Finally, the method numbereqns numbers the degrees of freedom that are not being prescribed, effectively assigning each one a global equation number.

An important remark should be made here: Lines 0028, 0029, and 0030 illustrate a design feature of Matlab, where all arguments are passed by value. Therefore, no matter what we do with the arguments inside the functions, the values that were passed by the caller into those functions do not change at all. The functions work with copies, not the actual variables that the caller passed. If the caller wishes to change the variables, the method must return the changed value, and the caller must assign this value. Example: on line 0031 the method numbereqns will number the equations in a copy of the field $w$, and then will return the copy. Since we assign back to the field w , the computed numbering of the equations will be now available in w ; if we did not assign back to w, all the work done by the method numbereqns would be forgotten.

```
0026 % Apply EBC's
0027 fenids=[1]; prescribed=[1]; component=[1]; val=0;
0 0 2 8 ~ w ~ = ~ s e t _ e b c (w , ~ f e n i d s , ~ p r e s c r i b e d , ~ c o m p o n e n t , ~ v a l) ;
0 0 2 9 ~ w ~ = ~ a p p l y _ e b c ~ (w) ;
0 0 3 0 \% ~ N u m b e r ~ e q u a t i o n s
0 0 3 1 ~ w ~ = ~ n u m b e r e q n s ~ (w) ;
```

Next we create the global system of equations. The stiffness matrix is an object, K, which gets created in line 0033, and initialized to represent a dense neqns $\times$ neqns matrix. In line 0034, the stiffness matrices calculated for each finite element by the block feb are assembled into the global matrix K (class dense_sysmat). The number of equations is being retrieved from the displacement field (the globally equation numbers have been placed there above) using the get method. The get method is available for all SOFEA objects, and just typing w at the command line produces a list of all the properties that can be obtained from the object. A great way in which objects may be explored is the graphical user interface of the object browser, OBgui (part of SOFEA). Its operation is supported by the output of get (w) (notice that only
the object itself is passed as argument): using get in this way returns a cell array, with the name and the description of each attribute.

```
0 0 3 2 ~ \% ~ A s s e m b l e ~ t h e ~ s y s t e m ~ m a t r i x ~
0033 K = start (dense_sysmat, get(w, 'neqns'));
0034 K = assemble (K, stiffness(feb, geom, w));
```

The load $q$ is in this case represented by the body_load class. The global load object sysvec is assembled from element load vectors computed by the finite element block.

0035 \% Load
0036 bl = body_load(struct ('magn',inline(num2str(q))));
$0037 \mathrm{~F}=$ start (sysvec, get(w, 'neqns')) ;
0038 F = assemble (F, body_loads(feb, geom, w, bl));
Finally, the global stiffness object is asked to produce the actual stiffness array, and the global load object is asked to supply the actual load vector. The standard backslash Matlab operator than produces the solution, which is then stored in the proper places in the displacement field w. The method scatter_sysvec distributes the system vector (the solution of the system of linear equations) to the proper degrees of freedom, and we should note that again the result is assigned to w.

```
0039 % Solve
0040 w = scatter_sysvec(w, get(K,'mat')\get(F,'vec'));
```

A graphical representation is generated by plotting the linear coordinate (gathered from the geometry field geom) versus the linear interpolation of the approximate displacements (gathered from w). The analytical solution is also plotted (line 0043). It is noteworthy that the approximate solution interpolates the analytical solution.

```
0041 % Plot
0042 xs= (0:0.01:L);
0 0 4 3 ~ p l o t ~ (x s , ~ - q / P * x s . * (x s / 2 - L) , ' r - ' , ' l i n e w i d t h ' , ~ 3) ;
0 0 4 4 ~ h o l d ~ o n ~
0045 plot (gather (geom, (1:n+ 1),'values'), ...
0046 gather (w, (1:n+ 1),'values'),'bo-','linewidth', 3);
0 0 4 7 ~ f i g u r e ~ (g c f)
```


### 3.3 Free vibration

If we remove all external loads, and prescribe homogeneous (zero) displacements, the Galerkin formulation reads

$$
\begin{equation*}
-\sum_{i=2}^{N} K_{j i} w_{i}(t)-\sum_{i=2}^{N} M_{j i} \ddot{w}_{i}(t)=0, \quad j=2, \ldots, N \tag{3.4}
\end{equation*}
$$

which may be arranged in matrix form as

$$
\begin{equation*}
\boldsymbol{K} \boldsymbol{w}+\boldsymbol{M} \ddot{\boldsymbol{w}}=\mathbf{0} \tag{3.5}
\end{equation*}
$$



Fig. 3.1. The displacements of the taut wire
where $\boldsymbol{K}$ is a square $(N-1) \times(N-1)$ matrix collecting $K_{j i}, i, j=2, \ldots, N$, and analogously for the mass matrix. The column matrix $\boldsymbol{w}$ collects the degrees of freedom $w_{i}(t)$. Equations (3.5) represent the so-called free vibration response. The solution is sought in the form $\boldsymbol{w}(t)=\boldsymbol{\phi} \exp (\omega t)$, which leads to the generalized eigenvalue problem

$$
\begin{equation*}
\boldsymbol{K} \phi-\omega^{2} \boldsymbol{M} \boldsymbol{\phi}=\mathbf{0} \tag{3.6}
\end{equation*}
$$

where $\omega$ is the circular frequency, and $\phi$ is the eigenmode.
As an example, the present model will be used to calculate the first five natural frequencies of a simply-supported taut string of constant mass density. The Matlab script wvib ${ }^{2}$ obtains the solution for a series of progressively finer and finer meshes (from 8 elements to 1024 elements). The mass matrix is either computed from the formula (2.17) (this is the so-called consistent mass matrix ), or or it is diagonalized (lumped) by assigning each node half the mass of the adjacent finite elements

$$
\begin{equation*}
M_{j i}=\mu h \delta_{j i}, \tag{3.7}
\end{equation*}
$$

which results in the so-called lumped mass matrix.
The analytical formula for the natural frequency [Gra91]

$$
\omega^{2}=\frac{P}{\mu}\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2,3, \ldots
$$

produces reference values which are compared with the frequencies solved for from (3.6). The results are summarized in Figure 3.2. The progressive reduction of error due to the use of more and more elements is called convergence. It may be observed that the two mass matrix formulations leads to convergence from different sides: consistent mass matrix overestimates the natural frequencies, while the lumped mass matrix underestimates them. Concerning accuracy: clearly, for quite reasonable engineering tolerance of $5 \%$ error, it takes 32 elements for either formulation of the mass matrix to compute all five natural frequencies within the tolerance.

[^2]

Fig. 3.2. Convergence of the first five natural frequencies of vibration; left: consistent mass matrix, right: lumped mass matrix. Vertical axis: normalized error $\left(\omega_{h}-\omega\right) / \omega$.

### 3.4 Integration of transient motion

In addition to analytical approaches, the system of ordinary differential equations (2.29) may be integrated numerically. In this section, we will apply an off-the-shelf Matlab integrator.

The Matlab integrators work with a system of first order differential equations. Therefore, (2.29) will be first converted to this form. For convenience, equation (2.29) will be cast in matrix form

$$
\begin{equation*}
M \ddot{\boldsymbol{w}}+\boldsymbol{K} \boldsymbol{w}=\boldsymbol{F} \tag{3.8}
\end{equation*}
$$

The stiffness matrix entries are defined in (2.16). The mass matrix may be either of the consistent variety (2.17), or a special-purpose matrix such as the lumped mass (3.7). Note that $\boldsymbol{w}$ is the vector function of time-dependent deflections.

Defining $\boldsymbol{v}=\dot{\boldsymbol{w}}$, the first order system may be written as

$$
\left[\begin{array}{cc}
1 & 0  \tag{3.9}\\
\mathbf{0} & \boldsymbol{M}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{w}} \\
\dot{\boldsymbol{v}}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{v} \\
-\boldsymbol{K} \boldsymbol{w}+\boldsymbol{F}
\end{array}\right],
$$

which is in the "mass matrix" form

$$
\begin{equation*}
\widetilde{\boldsymbol{M}} \dot{\boldsymbol{y}}=\boldsymbol{f}(t, \boldsymbol{y}) \tag{3.10}
\end{equation*}
$$

In what follows we will consider a particular example of transient vibrations: unforced oscillation due to a particular set of initial conditions. In this example we consider initial zero deflection, and initial velocity which corresponds to a singular perturbation: a single node at the midspan is given a nonzero velocity. This is representative of a physical situation in which a stationary taut string is rapped sharply with a hammer. Waves propagate away from the midpoint, hit the fixed end-points, and complex interference pattern develops (see Figure 3.3).

### 3.4.1 Using built-in Matlab solver

The Matlab script wtransient1 ${ }^{3}$ computes the solution to the transient vibration problem using a built-in Matlab solver.

As expected, the initial conditions need to be supplied.

```
0024 w0 = gather_sysvec (w);
0025 v0 = w0; v0(round(n/2)) = 1;
0027 K = start (dense_sysmat, get(w, 'neqns'));
0028 K = assemble (K, stiffness(feb, geom, w));
0029 Kmat =get(K,'mat');
0 0 3 0 ~ \% ~ A s s e m b l e ~ t h e ~ c o n s i s t e n t ~ m a s s ~ m a t r i x ~
0031 M = start (dense_sysmat, get(w, 'neqns'));
0 0 3 2 ~ \% ~ A s s e m b l e ~ t h e ~ l u m p e d ~ m a s s ~ m a t r i x ~
0033 M = assemble(M, elemat(struct('eqnums',...
 (1:n-1),'mat', eye(n-1) * mu*L/n)));
 Mmat=get(M,'mat');
 Mattilda= [eye(get(w, 'neqns')),zeros(get(w, 'neqns'));...
 zeros(get(w, 'neqns')),Mmat];
```

Matlab provides a suite of several ODE solvers. ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine [BS89]. These solvers use a standard argument list.

0037

```
% Solve
function rhs =f(t,y)
 neq=length(y)/2;
 w=y(1:neq); v=y(neq+1:end);
 rhs= [v;-Kmat*w];
end
```

The invocation of the solver is unremarkable, except that we use odeset to supply the mass matrix, $\widetilde{\boldsymbol{M}}$. The output arguments collect an array of output times, and an array of calculated deflections at all internal nodes.

0043

```
[ts,ys]=ode23(@f,[0, 1500],[w0;v0],...
 odeset('Mass',Mattilda,'RelTol',1e-3));
```


### 3.4.2 Using the Trapezoidal integrator

The Runge-Kutta of the previous section seems to be doing an adequate job. However, integrating the first order system is sub-optimal for the taut string problem in the first place: The dimension of the ODE system is doubled. Secondly, the Runge-Kutta ode23 integrator is not actually doing very well.

[^3]

Fig. 3.3. Amplitude of the vertical deflection as a function of the coordinate $x$ and the time.

Energy conservation is a very important indicator of the quality of the numerical solution, since energy should be conserved in the exact solution to this particular problem. For the taut string problem, the total energy may be defined as

$$
T E=\frac{1}{2}(\dot{\boldsymbol{w}} \cdot \boldsymbol{M} \cdot \dot{\boldsymbol{w}}+\boldsymbol{w} \cdot \boldsymbol{K} \cdot \boldsymbol{w}) .
$$

It may be observed that the solution produced by the ode 23 integrator does not conserve this quantity (refer to Figure 3.4), and that provides motivation for the development of algorithms specialized to mechanical systems.

The algorithm we are going to develop next is a special form of the well-known Newmark integrator which is very popular and well-respected in the computational mechanics community for a number of reasons [Hug00]. The starting point is the first order system (3.10). Integrating in time

$$
\begin{equation*}
\int_{t_{0}}^{t} \widetilde{\boldsymbol{M}} \dot{\boldsymbol{y}} \mathrm{~d} \tau=\int_{t_{0}}^{t} \boldsymbol{f}(\tau, \boldsymbol{y}) \mathrm{d} \tau \tag{3.11}
\end{equation*}
$$

yields

$$
\begin{equation*}
\widetilde{\boldsymbol{M}}\left(\boldsymbol{y}_{t}-\boldsymbol{y}_{t_{0}}\right)=\int_{t_{0}}^{t} \boldsymbol{f}(\tau, \boldsymbol{y}) \mathrm{d} \tau \tag{3.12}
\end{equation*}
$$

The right hand side may be integrated in time using the trapezoidal rule, which leads to the algorithm

$$
\begin{equation*}
\widetilde{\boldsymbol{M}}\left(\boldsymbol{y}_{t}-\boldsymbol{y}_{t_{0}}\right)=\frac{t-t_{0}}{2}\left(\boldsymbol{f}\left(t, \boldsymbol{y}_{t}\right)+\boldsymbol{f}\left(t_{0}, \boldsymbol{y}_{t_{0}}\right)\right) . \tag{3.13}
\end{equation*}
$$

Instead of the first-order form, we may multiply through (3.13), obtaining a coupled system

$$
\begin{align*}
\boldsymbol{w}_{t} & =\boldsymbol{w}_{t_{0}}+\frac{t-t_{0}}{2}\left(\boldsymbol{v}_{t}+\boldsymbol{v}_{t_{0}}\right)  \tag{3.14}\\
\boldsymbol{M} \boldsymbol{v}_{t} & =\boldsymbol{M} \boldsymbol{v}_{t_{0}}-\frac{t-t_{0}}{2} \boldsymbol{K}\left(\boldsymbol{w}_{t}+\boldsymbol{w}_{t_{0}}\right)+\frac{t-t_{0}}{2}\left(\boldsymbol{F}_{t}+\boldsymbol{F}_{t_{0}}\right), \tag{3.15}
\end{align*}
$$

which may be marched forward by substituting the first equation into the second, solving for $\boldsymbol{v}_{t}$, and then updating $\boldsymbol{w}_{t}$ from the first equation. The integrator obtained in this way is a special case of the general Newmark integrator [Hug00]. The Newmark algorithm has two free parameters, and for the special choice $\gamma=1 / 2$ and $\beta=1 / 4$ (the so-called average acceleration method ) one obtains the trapezoidal integrator (3.14).

The Matlab script wtransient2 ${ }^{4}$ computes the solution to the transient vibration problem using a trapezoidal integrator (Newmark average-acceleration integrator). Note that the integrator algorithm is implemented as a nested function, which has access to variables defined in the defining environment, the stiffness matrix Kmat and the mass matrix Mmat.

```
0033 Mmat=get(M,'mat');
0 0 3 4 ~ \% ~ S o l v e
0035 function [ts,ys] = trapezoidal(nsteps,tspan,w0,v0)
0036 ts= zeros(nsteps, 1);
0037 nu =length(w0);
0038 ys = zeros(2*nu,nsteps);
0039 dt = (tspan(2)-tspan(1))/nsteps;
0040 t =tspan(1);
0041 for i=1:nsteps
0 0 4 2
0 0 4 3
0044
0045 w1=w0+dt/2*(v0+v1);
0046 w0=w1;v0=v1;
0047 t=t+dt;
0048 end
0049 ys=ys';
0050 end
0 0 5 1 ~ \% ~ N o w ~ c a l l ~ t h e ~ i n t e g r a t o r ~
0052 [ts,ys]=trapezoidal(3000,[0, 1500],w0,v0);
```

Figure 3.4 compares the computed total energy for the two integrators introduced in this section. Evidently, the nominally less accurate trapezoidal (Newmark average acceleration) integrator does a much better job than the Runge-Kutta ode23 integrator.

[^4]

Fig. 3.4. Total energy obtained with two different time integrators.

## The boundary conditions for the model of a taut wire

In this chapter we will explore the effect the boundary conditions have on the solution, both its existence and its computability with the Galerkin model.

We will consider only statics, so that the balance equation (1.1) drops the inertial term

$$
\begin{equation*}
P \frac{\partial^{2} w}{\partial x^{2}}+q=0 \tag{4.1}
\end{equation*}
$$

and furthermore we will assume that the transverse load $q$ is a constant. With a definition $k=-q / P$, the task is to integrate

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial x^{2}}=k=\text { constant } \tag{4.2}
\end{equation*}
$$

which is easily accomplished as

$$
\begin{equation*}
w(x)=k \frac{x^{2}}{2}+C x+D \tag{4.3}
\end{equation*}
$$

where $C$ and $D$ are integration constants to be determined from the boundary condition.

As already mentioned (Section 1.4), there is only one condition on the boundary (which for the problem of the wire consists of two disjoint sets, each consisting of a single point at the either end) that we can use to determine the solution. Since the balance equation is of second order, and the unknown is a single function, a single boundary condition is all that is needed (with caveats, however). A simple explanation for this need in one dimension is that a second order equation needs two integration constants; we will talk about this issue in higher dimensional domains when we deal with the heat conduction equation and also, in a lot more detail, in the part dedicated to the elasticity problem.

The boundary condition may be of two distinct types, either one of the two we introduced earlier: either prescribed deflection (essential boundary condition), or prescribed slope (derivative of the deflection, which is a natural boundary condition). Since we may prescribe only one boundary condition, but the boundary consists of two disjoint sets, we may in fact prescribe one or the other type at either of the two endpoints. It does matter which type of boundary condition is applied, and the details are discussed in this chapter.

### 4.1 Essential and natural boundary conditions at separate end-points

This selection of boundary condition specifications has been treated in the previous few chapters. The natural condition may be expressed in terms of end-point forces. At $x=L$ the relation is equation (1.3), and it may be derived in the same way at $x=0$ as

$$
\begin{equation*}
P \frac{\partial w}{\partial x}(0)+F_{0}=0 . \tag{4.4}
\end{equation*}
$$

The Galerkin algebraic equations for an essential boundary condition at $x=0$ and a natural boundary condition at $x=L$ is given by equation (2.29), with proper allowance made for vanishing accelerations, and when the points of application of these boundary conditions are switched, the changes are limited to the boundary term and the conditions for the test and trial functions only

$$
\begin{equation*}
N_{j}(0) F_{0}-\sum_{i=1}^{N} K_{j i} w_{i}+\int_{0}^{L} N_{j} q \mathrm{~d} x=0, \quad j=1, \ldots, N-1 \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
& N_{j}(x=L)=0, \quad N_{j} \in C^{0}, \quad j=1, \ldots, N-1  \tag{4.6}\\
& w_{N}=\bar{w}_{L} .
\end{align*}
$$

After the solution for the deflection has been obtained, the slope at the end with the essential boundary condition may be computed, yielding the associated reaction force. For instance, for the problem (4.5), (4.6), the analytical solution of (4.3), with the boundary conditions

$$
\frac{\partial w}{\partial x}(0)=-\frac{F_{0}}{P}=\bar{w}_{0}^{\prime}, \quad w(L)=\bar{w}_{L}
$$

is

$$
w(x)=\frac{k}{2}\left(x^{2}-L^{2}\right)+\bar{w}_{0}^{\prime}(x-L)+\bar{w}_{L} .
$$

This yields the reaction force $F_{L}=P\left(k L+\bar{w}_{0}^{\prime}\right)$.

### 4.2 Essential boundary conditions only

The boundary conditions are in this case the deflections given at both ends,

$$
w(0)=\bar{w}_{0}, \quad w(L)=\bar{w}_{L},
$$

which may be substituted into (4.3) for $x=0$ and $x=L$ to yield two equations for $C$ and $D$. Upon substitution, the slopes at the end points are available as

$$
\frac{\partial w}{\partial x}(0)=\frac{\bar{w}_{L}-\bar{w}_{0}}{L}-k \frac{L}{2}, \quad \frac{\partial w}{\partial x}(L)=\frac{\bar{w}_{L}-\bar{w}_{0}}{L}+k \frac{L}{2} .
$$

From the slopes, the forces $F_{0}$ and $F_{L}$ are available from (4.4) and (1.3). The physical meaning of these two forces is that of reactions at the supports.

The algebraic equation for this type of boundary conditions becomes

$$
\begin{equation*}
-\sum_{i=1}^{N} K_{j i} w_{i}+\int_{0}^{L} N_{j} q \mathrm{~d} x=0, \quad j=2, \ldots, N-1 \tag{4.7}
\end{equation*}
$$

where

$$
\begin{align*}
& N_{j}(x=0)=0, N_{j}(x=L)=0, \quad N_{j} \in C^{0}, \quad j=1, \ldots, N-1  \tag{4.8}\\
& w_{1}=\bar{w}_{0}, \quad w_{N}=\bar{w}_{L} .
\end{align*}
$$

Note that the degrees of freedom to be computed are only at the interior nodes.

### 4.3 Natural boundary conditions only

The boundary conditions are in this case the slopes given at both ends,

$$
\frac{\partial w}{\partial x}(0)=\bar{w}_{0}^{\prime}, \quad, \quad \frac{\partial w}{\partial x}(L)=\bar{w}_{L}^{\prime}
$$

Integrating (4.2) once yields for the slope

$$
\frac{\partial w}{\partial x}(x)=k x+C
$$

which may be used in conjunction with the boundary conditions to express the constant $C$ as either of the two expressions

$$
C=\bar{w}_{0}^{\prime}, \quad \text { or } \quad C=\bar{w}_{L}^{\prime}-k L
$$

But clearly, this is only possible if

$$
\bar{w}_{0}^{\prime}=\bar{w}_{L}^{\prime}-k L
$$

which may be interpreted as a condition under which a solution exists: if the two slopes are linked by the previous equation, solution exists; otherwise no solution exists, because the boundary conditions are contradictory.

If the solution exists, and the two slopes are not independent, the boundary conditions are really not going to be sufficient to determine two constants of integration, but only one. Correspondingly, the deflection of the wire is then

$$
w(x)=k \frac{x^{2}}{2}+\bar{w}_{0}^{\prime} x+D
$$

where the constant $D$ remains undetermined.
An initial boundary value problem with natural boundary conditions only is called pure-traction problem, or Neumann problem. We could see that the solution would
exist only under certain conditions. In this case, the condition is one of static equilibrium: the end-point forces must balance the transverse load. Provided equilibrium may be established, the solution still remains non-unique, as it is possible to translate the wire perpendicularly to its axis without affecting the equilibrium. In terms of the linear algebra of the solution this is manifested by a singular stiffness matrix. An obvious computational treatment is to force the displacement at one node to be some known a value, for instance zero. Adding this "superfluous boundary condition" makes the problem solvable uniquely. (We might wish to consider that one boundary condition specification was in fact missing because of the linear dependence between the slopes; so in this way we are really just filling a void.) Another possibility is to add an artificial spring at one node.

### 4.4 Overspecified boundary conditions

The boundary condition application consisted so far of one and only one condition specification at each of the two endpoints (i.e. at the boundary). In this section we will attempt to apply two boundary conditions at one end and none at the other. Since this will turn out to be too much prescribed information at one point, will call this the case of over-specified boundary conditions.

For instance, we could prescribe two pieces of information at $x=0$

$$
\begin{equation*}
w(0)=\bar{w}_{0}, \quad \frac{\partial w}{\partial x}(0)=\bar{w}_{0}^{\prime}, \tag{4.9}
\end{equation*}
$$

Integrating (4.2) once yields for the slope

$$
\frac{\partial w}{\partial x}(x)=k x+C
$$

which may be used in conjunction with the natural boundary condition to express the constant $C$ as

$$
C=\bar{w}_{0}^{\prime} .
$$

Integrating again yields

$$
w(x)=k \frac{x^{2}}{2}+\bar{w}_{0}^{\prime} x+w_{0}
$$

where all the constants are determined from the two boundary conditions at a single endpoint. Using this expression, we can calculate the deflection and slope at $x=L$. The interesting thing is that the slope is in general nonzero

$$
\frac{\partial w}{\partial x}(L)=k L+\bar{w}_{0}^{\prime} \neq 0
$$

which means that even though we did not assume this, there must be an applied force $F_{L}$ at the end where no boundary conditions have been specified. For the same reasons, it is not possible to prescribe either deflection or slope at $x=L$ while the
boundary condition (4.9) is in force. Any mismatch between the prescribed values and the calculated values would make the existence of the solution an impossibility (the solution must satisfy the balance equation and all boundary conditions).

But the preceding discussion was based on the analytical integration of the balance equation. Is this way of prescribing boundary conditions compatible with the Galerkin technique? For the moment, we will go back all the way to the weighted residual equation (2.11), but we will keep all the boundary terms (and drop the inertial terms - statics)

$$
\begin{equation*}
\eta_{j}(L) F_{L}-\eta_{j}(0) F_{0}-\int_{0}^{L} \frac{\partial \eta_{j}}{\partial x} P \frac{\partial w}{\partial x} \mathrm{~d} x+\int_{0}^{L} \eta_{j} q \mathrm{~d} x=0, \quad j=1, \ldots, N \tag{4.10}
\end{equation*}
$$

The functions $\eta_{j}$ and $w$ need to be just sufficiently smooth to make the integrals exist. But now we introduce the boundary condition (4.9). As discussed below equation $(2.10)$, the condition $w(x=0)=\bar{w}_{0}$ could be used to eliminate the associated reaction, $F_{0}$, by setting $\eta_{j}(0)$ for all $j$. The resulting weighted residual formulation is

$$
\begin{equation*}
\eta_{j}(L) F_{L}-\int_{0}^{L} \frac{\partial \eta_{j}}{\partial x} P \frac{\partial w}{\partial x} \mathrm{~d} x+\int_{0}^{L} \eta_{j} q \mathrm{~d} x=0, \quad j=1, \ldots, N . \tag{4.11}
\end{equation*}
$$

where we must place one condition on $w$

$$
\begin{equation*}
w(x=0)=\bar{w}_{0}, \quad w \in C^{0} \tag{4.12}
\end{equation*}
$$

However, we realize that the prescribed force $F_{0}$ now no longer affects the solution! Another difficulty is that $F_{L}$ is not known, and hence there is not enough equations to solve for $w_{i}, i=2, \ldots, N$ and $F_{L}$. What is needed is an additional equation that would link together $F_{0}$ and $F_{L}$. The equation of global equilibrium is such an equation

$$
F_{L}=F_{0}-q L,
$$

and may be added to the equations resulting from (4.11). The global equations are then of a blocked nature. The Matlab script woverspec ${ }^{1}$ generates a numerical solution for the definition of boundary conditions discussed above. The code snippet below illustrates the system matrix, A, in line 0034, which clearly displays how it is composed of distinct blocks

$$
\boldsymbol{A}=\left[\begin{array}{cc} 
& \\
\boldsymbol{K} & {\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & \cdots & 0
\end{array}\right]} & 1
\end{array}\right]
$$

[^5]```
0028 K = start (dense_sysmat, get(w, 'neqns'));
0029 K = assemble (K, stiffness(feb, geom, w));
0030 % and now the special terms due to the boundary conditions
0032 z = zeros(N-1, 1); zt=z';
0 0 3 3 ~ z ( e n d ) ~ = ~ 1 ; ~
0034 A = [get(K,'mat'),z;zt,1];
```

The right hand side of the system equations is correspondingly expanded by a single element at the bottom.

```
0036 fi = force_intensity(struct ('magn',inline(num2str(q))));
0037 F = start (sysvec, get(w, 'neqns'));
0 0 3 8 ~ F ~ = ~ a s s e m b l e ~ ( F , ~ b o d y ~ l o a d s ( f e b , ~ g e o m , ~ w , ~ f i ) ) ;
0039 F = assemble (F, nz_ebc_loads(feb, geom, w));
0040 % and now the special terms
0041 b=get(F,'vec');
0042 b = [b; -(F_0-q*L)];
```

Figure 4.1 illustrates the correct solution versus an incorrect solution obtained when the F_{L} term is simply dropped from (4.11): the denotation "natural" is then fully operational, since that means that the natural boundary condition $F_{L}=0$ is in effect. That can be verified visually as the slope at the right hand side is apparently approaching zero.

Fig. 4.1. The wire problem with overspecified boundary conditions.

Clearly, we can see that overspecification of boundary conditions does not fit the framework of the Galerkin method very well. Special treatment is required. However, there is worse news: the existence of the solution has to be demonstrated case-by-case, it does not follow automatically. The situation is much worse in higher dimensional problems.

Thermal analysis

5

Model of Heat Diffusion

In this chapter we will develop a finite element model for heat conduction problems. The excellent textbook by Lienhard and Lienhard [LL05] has all the details one might require to supplement the treatment that follows.

5.1 Balance equation

In this section, our goal is to derive the balance equation that governs heat conduction in solids as a partial differential expression. It will be converted to a residual form, which will then be treated with the Galerkin method.

To begin with we pick a control volume, and we keep track of the heat energy within that volume. The control volume may be the whole structure, part of the structure, or just a very small chunk of material surrounding a given point in space (Figure 5.1). The amount of heat energy in the control volume U is expressed in terms of volume density of heat energy, u

$$
\begin{equation*}
U=\int_{V} u \mathrm{~d} V \tag{5.1}
\end{equation*}
$$

As the means of change of the heat energy within the control volume we consider

Fig. 5.1. The domain for the heat conduction problem
outflow (inflow) of heat energy via the boundaries, and heat generation (or loss) within the volume. These quantities will be expressed in terms of rates. Therefore,
the amount of energy flowing out of the control volume through its bounding surface S per unit time is

$$
\begin{equation*}
\int_{S} \boldsymbol{n} \cdot \boldsymbol{q} \mathrm{~d} S \tag{5.2}
\end{equation*}
$$

where \boldsymbol{n} is the outer normal to the surface S, and \boldsymbol{q} is the heat flux (amount of heat flowing through a unit area per unit time). The amount of energy generated within the control volume per unit time is

$$
\begin{equation*}
\int_{V} Q \mathrm{~d} V \tag{5.3}
\end{equation*}
$$

where Q is the rate of heat generation per unit volume; for example, heat is released or consumed by various deformation and chemical processes (as work of viscous stresses, reaction product of curing concrete or polymer resins, and so on).

Collecting the terms, we can write for the change of the heat energy within the control volume the rate equation

$$
\begin{equation*}
\frac{\mathrm{d} U}{\mathrm{~d} t}=-\int_{S} \boldsymbol{n} \cdot \boldsymbol{q} \mathrm{~d} S+\int_{V} Q \mathrm{~d} V \tag{5.4}
\end{equation*}
$$

Finally, differentiating U with respect to time will be possible if we assume that $U=U(T)$, i.e. if U is a function of the absolute temperature T. Holding the control volume fixed in time, the time differentiation may be taken inside the integral over the volume

$$
\begin{equation*}
\frac{\mathrm{d} U}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} u \mathrm{~d} V=\int_{V} \frac{\mathrm{~d} u}{\mathrm{~d} t} \mathrm{~d} V \tag{5.5}
\end{equation*}
$$

and with the application of the chain rule, the relationship (5.5) is expressed as

$$
\begin{equation*}
\frac{\mathrm{d} U}{\mathrm{~d} t}=\int_{V} \frac{\mathrm{~d} u}{\mathrm{~d} t} \mathrm{~d} V=\int_{V} \frac{\mathrm{~d} u}{\mathrm{~d} T} \frac{\partial T}{\partial t} \mathrm{~d} V \tag{5.6}
\end{equation*}
$$

The quantity $c_{V}=\frac{\mathrm{d} u}{\mathrm{~d} T}$ is a characteristic property of a solid material (called specific heat at constant volume), and needs to be measured. It is typically dependent on temperature, but we will assume that it is a constant; otherwise it leads to nonlinear models.

Substituting, we write

$$
\begin{equation*}
\int_{V} c_{V} \frac{\partial T}{\partial t} \mathrm{~d} V=-\int_{S} \boldsymbol{n} \cdot \boldsymbol{q} \mathrm{~d} S+\int_{V} Q \mathrm{~d} V \tag{5.7}
\end{equation*}
$$

This equation consists of volume integrals and a surface integral. If all the integrals were volume integrals, over the same volume of course, we could proclaim that the integral statement (sometimes called a global balance equation) would hold provided the integrands satisfied a so-called local balance equation (recall that to get the local balance equation is our goal). For instance, from the integral statement

$$
\begin{equation*}
\int_{V} \alpha \frac{\partial M}{\partial t} \mathrm{~d} V=\int_{V} \mu \mathrm{~d} V \tag{5.8}
\end{equation*}
$$

where α, M, and μ are some functions, one could conclude that

$$
\begin{equation*}
\alpha \frac{\partial M}{\partial t}=\mu \tag{5.9}
\end{equation*}
$$

which is a local version of (5.8). An argument along these lines could for instance invoke the assumption that the volume V was arbitrary, and that it could be shrunk around a given point, which in the limit would allow the volume to be canceled on both sides of the equation.

To execute this program for equation (5.7), we have to convert the surface integral to a volume integral. We have the needed tool in the celebrated divergence theorem

$$
\begin{equation*}
\int_{V} \operatorname{div} \boldsymbol{q} \mathrm{~d} V=\int_{S} \boldsymbol{n} \cdot \boldsymbol{q} \mathrm{~d} S \tag{5.10}
\end{equation*}
$$

where the divergence of the flux vector is defined in Cartesian coordinates as

$$
\operatorname{div} \boldsymbol{q}=\frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}+\frac{\partial q_{z}}{\partial z}
$$

Consequently, equation (5.7) may be rewritten

$$
\begin{equation*}
\int_{V} c_{V} \frac{\partial T}{\partial t} \mathrm{~d} V=-\int_{V} \operatorname{div} \boldsymbol{q} \mathrm{~d} V+\int_{V} Q \mathrm{~d} V . \tag{5.11}
\end{equation*}
$$

and grouping the terms as

$$
\begin{equation*}
\int_{V}\left[c_{V} \frac{\partial T}{\partial t}+\operatorname{div} \boldsymbol{q}-Q\right] \mathrm{d} V=0 . \tag{5.12}
\end{equation*}
$$

we may conclude that the inside of the bracket has to vanish since the volume could be entirely arbitrary. Therefore, we arrive at the local balance equation

$$
\begin{equation*}
c_{V} \frac{\partial T}{\partial t}+\operatorname{div} \boldsymbol{q}-Q=0 \tag{5.13}
\end{equation*}
$$

5.2 Constitutive equation

Equation (5.13) contains too many variables: both temperature and heat flux. Since it is a scalar equation, the logical next step is to express the heat flux in terms of temperature. That is the contents of the Fourier model: heat flows opposite to the gradient of the temperature (downhill). In matrix form

$$
\begin{equation*}
\boldsymbol{q}=-\boldsymbol{\kappa}(\operatorname{grad} T)^{T} \tag{5.14}
\end{equation*}
$$

The matrix $\boldsymbol{\kappa}$ is the conductivity matrix of the material. The most common forms of $\boldsymbol{\kappa}$ are

$$
\begin{equation*}
\kappa=\kappa 1 \tag{5.15}
\end{equation*}
$$

for the so-called thermally isotropic material, and

$$
\boldsymbol{\kappa}=\left(\begin{array}{ccc}
\kappa_{x} & 0 & 0 \tag{5.16}\\
0 & \kappa_{y} & 0 \\
0 & 0 & \kappa_{z}
\end{array}\right)
$$

for materials that have three orthogonal directions of different thermal conductivities (orthotropic material); κ is the isotropic thermal conductivity coefficient, $\mathbf{1}$ is the identity matrix, and κ_{x}, κ_{y}, and κ_{z} are the orthotropic thermal conductivities. (Some materials have preferred directions in which heat would like to flow, for instance along the fibers in a composite. Visually, we can imagine a corrugated steel roof, with the channels running not directly downhill, but tilted away from the slope - the water would run preferentially in the channels, but generally downhill.)

The funny looking transpose of the temperature gradient follows from the definition: the gradient of the scalar is a row matrix

$$
\begin{equation*}
\operatorname{grad} T=\left(\frac{\partial T}{\partial x} \frac{\partial T}{\partial y} \frac{\partial T}{\partial z}\right) \tag{5.17}
\end{equation*}
$$

With the constitutive equation, the balance equation (5.13) is now purely in terms of the absolute temperature,

$$
\begin{equation*}
c_{V} \frac{\partial T}{\partial t}-\operatorname{div}\left[\boldsymbol{\kappa}(\operatorname{grad} T)^{T}\right]-Q=0 \tag{5.18}
\end{equation*}
$$

5.3 Boundary conditions

From now on, V is going to be the volume of the whole solid of interest. The most important fact about the boundary conditions is that we need to have a boundary condition at each point of the surface S. As we expect by now, the model is about temperature. Correspondingly, the boundary conditions are an expression of our knowledge of the temperature distribution in the solid.

The simplest boundary condition results if we know the surface temperature along one part of S at all times. This part of the surface will be called S_{1} (see Figure 5.2). Therefore,

$$
\begin{equation*}
T(\boldsymbol{x}, t)-\bar{T}(\boldsymbol{x}, t)=0, \quad \boldsymbol{x} \text { on } S_{1} . \tag{5.19}
\end{equation*}
$$

where by \boldsymbol{x} we mean the position vector. This type of condition is known as the primary, or essential, boundary condition.

The heat flux entering or leaving the solid may also be known (measured by a heat flux gauge). Generally, we do not know the heat flux along the surface, only the normal component, which is obtainable from the normal and the heat flux as
$q_{n}=\boldsymbol{n} \cdot \boldsymbol{q}$. Therefore, along the part of the surface S_{2} the normal component of the heat flux may be prescribed

$$
\begin{equation*}
\boldsymbol{n} \cdot \boldsymbol{q}-\bar{q}_{n}=0, \quad \text { on } \quad S_{2} . \tag{5.20}
\end{equation*}
$$

All quantities are given at a particular point on the boundary as functions of time, similarly to the first boundary condition. This type of condition is known as the natural (or flux) boundary condition.

In the last example of a boundary condition, we will mention the heat transfer driven by a temperature difference at surface. The normal component of the heat flux is given as

$$
\begin{equation*}
\boldsymbol{n} \cdot \boldsymbol{q}-h\left(T-T_{a}\right)=0, \quad \text { on } \quad S_{3} . \tag{5.21}
\end{equation*}
$$

where T_{a} is the known temperature of the surrounding medium (ambient temperatare), and h is the heat transfer coefficient.

Fig. 5.2. The subdivision of the surface for the purpose of the boundary condition application

On the sufficiency of boundary conditions.
As pointed out earlier in this section, one boundary condition is needed at each point on the boundary. The precise mathematical statement of the necessity of having one boundary condition in place is somewhat involved, but we can build on intuition fairly easily.

Would it be possible to specify one boundary condition at only a subset of the complete boundary, leaving the behavior of the solution along part of the boundary unspecified? As a thought experiment, we consider a square domain, shown in Figure 5.3, with no source of heat generation, and zero temperature prescribed on the S_{1} subset of the boundary. On the \widehat{S} part of the boundary we assume nothing is known about the temperature distribution. Is it possible that the temperature field is completely determined by these boundary conditions?

Fig. 5.3. The square domain with partially undefined boundary condition
If this was true, the variation of temperature along \widehat{S} wouldn't affect the solution in the domain. However, if zero temperature was prescribed all around the circumference of the square, the solution to this problem would be zero temperature everywhere. Consequently, also the normal component of the flux (in fact all components of the flux) would vanish everywhere. Evidently, if the temperature along \widehat{S} was nonzero, it would require transitioning to zero temperature on S_{1} (and elsewhere within the domain), hence the solution within the domain would depend on the temperature along \widehat{S}; alternatively, if there was nonzero heat flux along \widehat{S}, the temperature distribution within the square domain would be affected. This is illustrated in Figure 5.4: varying the heat flux along \widehat{S} (here shown for two different uniform distributions, positive and negative) changes the distribution of temperature. Therefore, we must conclude that prescribing one boundary condition along the entire boundary of the domain is a necessary condition to make the solution unique.

Is not a sufficient condition, however. In the so-called Neumann problem only flux is being prescribed along the entire boundary. This is equivalent to the puretraction problem of Section 4.3. The solution is not unique, because any temperature distribution of the form $T(x, y)+\widetilde{T}$, where $T(x, y)$ satisfies the balance equation and the natural boundary conditions, and \widetilde{T} is a constant, is also a solution (the constant term disappears with differentiation). Typically, the Neumann boundary conditions are supplemented with temperature being prescribed at one point to remove the constant \widetilde{T} from consideration.

5.4 Initial condition

The primary variable in our problem is the temperature, T, and it is present in the balance equation (5.18) with the first order time derivative. Therefore, we will need one initial condition,

$$
\begin{equation*}
T(\boldsymbol{x}, 0)=\bar{T}_{0}(\boldsymbol{x}) \text { in } V . \tag{5.22}
\end{equation*}
$$

The initial condition must be match with boundary conditions on S_{1} at time $t=0$:

$$
\begin{equation*}
\bar{T}_{0}(\boldsymbol{x})=\bar{T}(\boldsymbol{x}, 0), \quad \boldsymbol{x} \text { on } S_{1} . \tag{5.23}
\end{equation*}
$$

Fig. 5.4. The square with variable heat flux along part of its boundary

5.5 Summary of the PDE model of heat conduction

Figure 5.5 gives a diagrammatic overview of the terminology and the various equations of the model of heat conduction.

Fig. 5.5. Diagram of the heat conduction model

Galerkin method for the model of heat conduction

6.1 Weighted residual formulation

The balance equation (5.18) defines the balance residual as

$$
\begin{equation*}
r_{B}=c_{V} \frac{\partial T}{\partial t}-\operatorname{div}\left[\boldsymbol{\kappa}(\operatorname{grad} T)^{T}\right]-Q \tag{6.1}
\end{equation*}
$$

As explained in Chapter 2, the first step is to decide to satisfy the essential boundary condition by the restricting possible trial functions to only those that satisfy the essential boundary conditions a priori

$$
\begin{equation*}
T(\boldsymbol{x}, t)-\bar{T}(\boldsymbol{x}, t)=0, \quad \boldsymbol{x} \text { on } S_{1} . \tag{6.2}
\end{equation*}
$$

and to write the weighted residual equation for the local balance residual

$$
\begin{equation*}
\int_{V} \eta(\boldsymbol{x}) r_{B}(\boldsymbol{x}, t) \mathrm{d} V . \tag{6.3}
\end{equation*}
$$

The first and the third term are kept as they are, but the second term reminds us of a similar term in equation (2.3): the test function η multiplies an expression that contains the second derivatives of temperature (the div $\left[\boldsymbol{\kappa}(\operatorname{grad} T)^{T}\right]$ term), which was why Section 2.5 was needed. Balancing the order of differentiation by shifting one derivative from the temperature to the test function η will be beneficial here too: similarly to Section 2.5 , we will be able to satisfy the natural boundary conditions without having to include them as a residual (naturally!). As before, the price to pay is the need to place some restrictions on the test function.

Integration by parts was used in Section 2.5, and just a little bit more general tool will work here too. For the moment, it will be convenient to work with the expression

$$
-\eta \operatorname{div}\left[\boldsymbol{\kappa}(\operatorname{grad} T)^{T}\right]=\eta \operatorname{div} \boldsymbol{q}
$$

that is, with the flux variable replacing $\boldsymbol{\kappa}(\operatorname{grad} T)^{T}$.
The integration by parts in the case of a multidimensional integral is generalized in the divergence theorem (5.10). We may anticipate that $\eta \operatorname{div} \boldsymbol{q}$ is the result of the chain rule applied to the vector $\eta \boldsymbol{q}$. That is indeed the case

$$
\begin{equation*}
\operatorname{div}(\eta \boldsymbol{q})=\eta \operatorname{div} \boldsymbol{q}+(\operatorname{grad} \eta) \boldsymbol{q} \tag{6.4}
\end{equation*}
$$

which is easily verified in components.
Therefore, we may start working on the integral

$$
\int_{V} \eta \operatorname{div} \boldsymbol{q} \mathrm{~d} V
$$

where we substitute from (6.4)

$$
\begin{equation*}
\int_{V} \eta \operatorname{div} \boldsymbol{q} \mathrm{~d} V=\int_{V} \operatorname{div}(\eta \boldsymbol{q}) \mathrm{d} V-\int_{V}(\operatorname{grad} \eta) \boldsymbol{q} \mathrm{d} V \tag{6.5}
\end{equation*}
$$

The divergence theorem may be applied to the first integral on the right

$$
\begin{equation*}
\int_{V} \eta \operatorname{div} \boldsymbol{q} \mathrm{~d} V=\int_{S} \eta \boldsymbol{q} \cdot \boldsymbol{n} \mathrm{~d} S-\int_{V}(\operatorname{grad} \eta) \boldsymbol{q} \mathrm{d} V \tag{6.6}
\end{equation*}
$$

But $\boldsymbol{q} \cdot \boldsymbol{n}$ is known on parts of the boundary - see equations (5.20) and (5.21). Therefore, we may split the surface integral into one for each sub-surface,

$$
\begin{equation*}
\int_{V} \eta \operatorname{div} \boldsymbol{q} \mathrm{~d} V=\int_{S_{1}} \eta \boldsymbol{q} \cdot \boldsymbol{n} \mathrm{~d} S+\int_{S_{2}} \eta \bar{q}_{n} \mathrm{~d} S+\int_{S_{3}} \eta h\left(T-T_{a}\right) \mathrm{d} S-\int_{V}(\operatorname{grad} \eta) \boldsymbol{q} \mathrm{d} V \tag{6.7}
\end{equation*}
$$

We see that the situation is analogous to the one discussed below equation (2.10): The integral over the part of the surface S_{1} is troublesome, because $\boldsymbol{q} \cdot \boldsymbol{n}$ is unknown there. However, we have the option of making η vanish along S_{1}. In this way, we obtain

$$
\begin{equation*}
\int_{V} \eta \operatorname{div} \boldsymbol{q} \mathrm{~d} V=\int_{S_{2}} \eta \bar{q}_{n} \mathrm{~d} S+\int_{S_{3}} \eta h\left(T-T_{a}\right) \mathrm{d} S-\int_{V}(\operatorname{grad} \eta) \boldsymbol{q} \mathrm{d} V \tag{6.8}
\end{equation*}
$$

where $\eta(\boldsymbol{x})=0$ for $\boldsymbol{x} \in S_{1}$.
Expanding the weighted residual equation (6.3) yields

$$
\begin{align*}
& \int_{V} \eta r_{B} \mathrm{~d} V= \\
& \quad \int_{V} \eta c_{V} \frac{\partial T}{\partial t} \mathrm{~d} V+\int_{V}(\operatorname{grad} \eta) \boldsymbol{\kappa}(\operatorname{grad} T)^{T} \mathrm{~d} V-\int_{V} \eta Q \mathrm{~d} V \tag{6.9}\\
& \quad+\int_{S_{2}} \eta \bar{q}_{n} \mathrm{~d} S+\int_{S_{3}} \eta h\left(T-T_{a}\right) \mathrm{d} S=0, \quad \eta(\boldsymbol{x})=0 \text { for } \boldsymbol{x} \in S_{1}
\end{align*}
$$

6.2 Reducing the model dimension

In this Section we show how the original three-dimensional model can be reduced to just two active dimensions. For some structures we can make the observation that the temperature does not vary along one coordinate direction, say along the z direction.

Figure 6.1 shows a disk of thickness t. It is a slice of a structure of an unchanging crosssection which is very along in the z direction compared to the transverse dimensions (some authors call this "infinitely long", evidently with a bagfull of grains of salt). If the temperature distribution does not depend on the z direction, and if we can neglect what is happening near the end sections, the component of the temperature gradient along the z direction will be negligible, $\partial T / \partial z=0$. This does not necessarily mean

Fig. 6.1. Diagram of the heat conduction model
that the z component of the heat flux is also zero: the partial derivatives $\partial T / \partial x$, and $\partial T / \partial y$ multiply the first two columns in row three of (5.14) to yield

$$
q_{z}=\kappa_{z x} \partial T / \partial x+\kappa_{z y} \partial T / \partial y .
$$

However, for the two classes of materials (5.15) and (5.16) the two coefficients $\kappa_{z x}$ and $\kappa_{z y}$ are identically zero, which means that if the temperature gradient $\partial T / \partial z$ is zero, the heat flux in that direction also vanishes.

Going back to the Figure 6.1: the heat flux through the cross sections is zero, and the temperature through the thickness of the disk is uniform (i.e. the temperature does not vary with z). The surface of the three-dimensional solid consists of the two cross sections, and of the cylindrical surfaces, the inner and the outer. The two cylindrical surfaces may be associated with boundary condition of any type. The two cross sections are associated with the boundary condition of zero heat flux, $\bar{q}_{n}=0$ (type S_{2}, equation (5.20))

$$
\begin{equation*}
\boldsymbol{n} \cdot \boldsymbol{q}= \pm q_{z}=0, \quad \text { on the cross sections } . \tag{6.10}
\end{equation*}
$$

Since the temperature does not vary with z, the integrals (6.8) may be simplified by pre-integrating in the thickness direction. The volume integrals then result in integrals over the cross-sectional area, S_{c}, (see Figure 6.2); provided \bar{q}_{n} and h are independent of z, the surface integrals result in curve integrals over the contour of the cross-section, C_{c}.

$$
\begin{align*}
& t \int_{S_{c}} \eta c_{V} \frac{\partial T}{\partial t} \mathrm{~d} S+t \int_{S_{c}}(\operatorname{grad} \eta) \boldsymbol{\kappa}(\operatorname{grad} T)^{T} \mathrm{~d} S-t \int_{S_{c}} \eta Q \mathrm{~d} S \\
& +t \int_{C_{c, 2}} \eta \bar{q}_{n} \mathrm{~d} C+t \int_{C_{c, 3}} \eta h\left(T-T_{a}\right) \mathrm{d} C=0, \quad \eta(\boldsymbol{x})=0 \text { for } \boldsymbol{x} \in C_{c, 1} \tag{6.11}
\end{align*}
$$

Note that the thickness t will cancel, and consequently does not play a role at all. Nevertheless, equation (6.11) still applies to a fully three-dimensional body. Note that (6.11) does not refer to z, except in the term $\partial . / \partial z$. We know that the temperature does not depend on z, and concerning the gradient of η : we simply assume that η does not depend on $z: \eta=\eta(x, y)$. The last assumption completes the reduction of the problem to two dimensions: all the functions depend on x and y only.

Fig. 6.2. Diagram of the heat conduction model

6.3 Test and trial functions: basis functions on triangulations

It is time to talk about the test and trial function. They are both functions of x and y only, $\eta=\eta(x, y)$ and $T=T(x, y, t)$ (and for the trial function, time). The only difference between them is the value they assume on part of the boundary (part of the cross-section contour, for our two-dimensional disk) where the temperature is being prescribed, $C_{c, 1}$:

$$
T(\boldsymbol{x}, t)=\bar{T}(\boldsymbol{x}, t), \quad \eta(\boldsymbol{x})=0 \quad \boldsymbol{x} \text { on } C_{c, 1} .
$$

Let us consider first the test function. It needs to be defined as a function of x and y over arbitrarily shaped domains. The concept of piecewise linear functions defined over tilings of arbitrary domains into triangles is quite ancient (at least in terms of the development of computational mechanics $)^{1}$. The domain of the disk with a hole (shown in Figure 6.2) is approximated as a collection of triangles (in other words, it is tiled with triangles, or triangulated), see Figure 6.3. The mesh consisting of triangles is typically called triangulation, even though sometimes any mesh is called that. The vertices of the triangulation are called nodes (compare with Section 2.7), while the line segments connecting the nodes are called edges. Evidently, the triangles are the finite elements.

[^6]

Fig. 6.3. Mesh of the disk domain

Interpolation on the triangle mesh will be treated as a linear combination of "tents". Each individual tent is formed by grabbing one of the nodes (say J) and raising it out of the plane of the triangulation (traditionally to a unit height). The tent canvas is stretched over the edges that connect at the node J, and are clamped down by the ring of the edges that surround node J. The cartoon of one particular basis function tent is shown in Figure 6.4. For those who do not like tents, the term hat function may be preferable.

Fig. 6.4. Visual representation of one basis function on the mesh of the disk

All the triangles that are connected in the node J support the function N_{J}, which is another way of saying that the function N_{J} is nonzero in these triangles; evidently, it is defined to be zero everywhere else. (If you are inside the "tent", you are standing on the support of the function.)

It remains to write down the equations that define the function N_{J} at any point within its support. That means writing an expression for each triangle separately. As discussed in Section 2.8, the alternative viewpoint would rather express all the nonzero pieces of all the basis functions over a single triangle (element). Referring to Figure 6.4, there are only three such functions: the three basis functions associated with the nodes at the corners of the element; all the other basis functions in the mesh are identically zero over this element. Thus, we stand before the task of writing down the expressions for the three basis functions on a single triangle.

6.4 Basis functions on the standard triangle

Each of the three basis functions is zero along one edge of the triangle: again, refer to Figure 6.4. The task is accomplished most readily when the triangle is in a special position with respect to the coordinates: the standard triangle; see Figure 6.5. The basis functions associated with nodes (2) and (3) are simply

$$
\begin{equation*}
N_{2}(\xi, \eta)=\xi \tag{6.12}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{3}(\xi, \eta)=\eta . \tag{6.13}
\end{equation*}
$$

As is easily verified, N_{2} is zero along the edge (1)(3), and assumes value +1 at node (2); analogous properties hold for N_{3}. If N_{1} should be equal to +1 at the origin, it must be written as

$$
\begin{equation*}
N_{1}(\xi, \eta)=1-\xi-\eta . \tag{6.14}
\end{equation*}
$$

Clearly, N_{1} vanishes at the edge opposite node (1). Thus, we see that the three functions we just formulated satisfy the Kronecker delta property, equation (2.19). As in Section 2.7 this means the degree of freedom at each node of the triangle is the value of the interpolated function at the node.

Fig. 6.5. Standard triangle

In this way, we formulate interpolation over the standard triangle. One quantity that we can interpolate on the standard triangle are the Cartesian coordinates.

$$
\begin{equation*}
\boldsymbol{x}=\sum_{i=1}^{3} N_{i}(\xi, \eta) \boldsymbol{x}_{i} \tag{6.15}
\end{equation*}
$$

where the result of the interpolation is a point in the Cartesian coordinates

$$
\boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

and

$$
\boldsymbol{x}_{i}=\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right] \quad i=1,2,3,
$$

are the coordinates of the three points that are being interpolated. Equation (6.15) is a mapping from the pair ξ, η to the point x, y. Substituting for the basis functions, it may be written explicitly as

$$
\left[\begin{array}{l}
x \tag{6.16}\\
y
\end{array}\right]=\left[\begin{array}{l}
\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right) \\
\left(y_{2}-y_{1}\right)\left(y_{3}-y_{1}\right)
\end{array}\right]\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]+\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] .
$$

This matrix equation is accompanied by the picture in Figure 6.16. The two vectors, \boldsymbol{v} and \boldsymbol{w}, are the two columns of the square matrix in (6.16):

$$
\boldsymbol{v}=\left[\begin{array}{l}
\left(x_{2}-x_{1}\right) \\
\left(y_{2}-y_{1}\right)
\end{array}\right]
$$

and

$$
\boldsymbol{w}=\left[\begin{array}{l}
\left(x_{3}-x_{1}\right) \\
\left(y_{3}-y_{1}\right)
\end{array}\right] .
$$

If both ξ and η vary between zero and one, equation (6.16) adds the two vectors, $\xi \boldsymbol{v}$ and $\eta \boldsymbol{w}$ to the vector $\left[x_{1}, y_{1}\right]^{T}$, and the result then covers the entire parallelogram; on the other hand, if ξ and η are confined to the interior of the standard triangle, equation (6.16) covers the area of the hatched triangle. To summarize, equation (6.16) is a map from the standard triangle to a triangle in the Cartesian coordinates with corners in given locations.

Fig. 6.6. Interpolating Cartesian coordinates on the standard triangle

Inverting (6.16) to express ξ and η, which could then be substituted into (6.12) - (6.14) to produce basis functions in terms of x and y, looks appealing but should be resisted. The reason is that numerical quadrature is available on the standard triangle, but is much harder on general triangles. This will become especially clear with quadratic elements later in the book.

However, since equation (6.16) is a invertible map from the standard triangle to a triangle in the Cartesian coordinates (invertibility follows if the triangle does not have its corners in a single straight-line: why?), we do get an approach to evaluating basis functions on a general triangle. Given a point \bar{x}, \bar{y} in the Cartesian coordinates, and within the bounds of a triangle, we can use the inverse of the map (6.16) to
obtain point $\bar{\xi}, \bar{\eta}$ in the standard triangle (path 1 in Figure 6.7). Therefore, we may then evaluate $N_{i}(\bar{\xi}, \bar{\eta})$, which is the value $N_{i}(\bar{x}, \bar{y})$ (path 2 in Figure 6.7). That seems awkward, but normally we would want to evaluate the basis functions in order to perform numerical quadrature, that is at a particular point (quadrature point) within the triangle. In that case, $\bar{\xi}, \bar{\eta}$ would be known (and \bar{x}, \bar{y} would be unknown), and calculation of the function value is easy. Evaluation of the derivatives of the basis functions is a little bit more complex, and will be discussed later in the section on numerical quadrature.

Fig. 6.7. Using the map from the standard triangle to evaluate basis functions over a general triangle

We understand now that each node in the mesh is associated with a single basis function. In the following, whenever we will write

$$
N_{i}=N_{i}(x, y),
$$

it has to be understood that within each triangle in the mesh, $x=x(\xi, \eta), y=y(\xi, \eta)$, where ξ and η are coordinates on the standard triangle.

6.5 Discretizing the weighted residual equation

The trial function will be expressed using the basis functions as (compare with Section 2.7)

$$
T(x, y, t)=\sum_{i=1}^{N} N_{i}(x, y) T_{i}(t)
$$

where the sum ranges over all the basis functions (i.e. over all the nodes in the mesh). Included are also nodes on the boundary where the temperature is being prescribed, $C_{c, 1}{ }^{2}$. These nodes are on the other hand excluded from the set of possible test functions (which is expected to vanish along $C_{c, 1}$), so that we will choose

$$
\eta(x, y)=N_{i}(x, y), \quad i \text { excluded when node } i \in C_{c, 1}
$$

[^7]The nodes whose basis functions are not part of the linear combination for the test function are shown as empty circles in Figure 6.8.

To simplify, we shall adopt the following notation:

$$
\eta(x, y)=N_{j}(x, y), \quad \forall \text { free } j,
$$

where "free j " ranges over the nodes where the temperature is not being prescribed; and

$$
T(x, y, t)=\sum_{\text {all } i} N_{i}(x, y) T_{i}(t)
$$

where "all i " ranges over all the nodes, including those where the temperature is being prescribed.

As an aside, because the basis on the standard triangle satisfies the Kronecker delta property (2.19), the values of the degrees of freedom $T_{i}(t)$ at the nodes "prescribed i " (the nodes with the empty circles in Figure 6.8) are simply the values of the interpolated prescribed temperature at the nodes, $T_{i}(t)=\bar{T}\left(x_{i}, y_{i}, t\right)$.

Fig. 6.8. Interpolating Cartesian coordinates on the standard triangle

The finite element expansions for the trial and test functions are now substituted into the weighted residual integral (6.11), which upon the cancellation of the thickness t reads

$$
\begin{align*}
& \int_{S_{c}} \eta c_{V} \frac{\partial T}{\partial t} \mathrm{~d} S+\int_{S_{c}}(\operatorname{grad} \eta) \boldsymbol{\kappa}(\operatorname{grad} T)^{T} \mathrm{~d} S-\int_{S_{c}} \eta Q \mathrm{~d} S \tag{6.17}\\
& +t \int_{C_{c, 2}} \eta \bar{q}_{n} \mathrm{~d} C+\int_{C_{c, 3}} \eta h\left(T-T_{a}\right) \mathrm{d} C=0, \quad \eta(\boldsymbol{x})=0 \text { for } \boldsymbol{x} \in C_{c, 1}
\end{align*}
$$

For clarity, the substitution will be shown term-by-term (henceforth we will omit the arguments):

$$
\begin{equation*}
\int_{S_{c}} \eta c_{V} \frac{\partial T}{\partial t} \mathrm{~d} S=\int_{S_{c}} N_{j} c_{V} \sum_{\text {all } i} N_{i} \frac{\partial T_{i}}{\partial t} \mathrm{~d} S, \quad \forall \text { free } j, \tag{6.18}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
\sum_{\text {all } i}\left[\int_{S_{c}} N_{j} c_{V} N_{i} \mathrm{~d} S\right] \frac{\partial T_{i}}{\partial t}, \quad \forall \text { free } j \tag{6.19}
\end{equation*}
$$

The term in the bracket mixes together i and j from two different sets. However, some of the degrees of freedom $\partial T_{i} / \partial t$ are known. Therefore, separating the known and unknown may be a good idea:

$$
\begin{align*}
& \sum_{\text {all } i}\left[\int_{S_{c}} N_{j} c_{V} N_{i} \mathrm{~d} S\right] \frac{\partial T_{i}}{\partial t}= \\
& \sum_{\text {free } i}\left[\int_{S_{c}} N_{j} c_{V} N_{i} \mathrm{~d} S\right] \frac{\partial T_{i}}{\partial t}+ \tag{6.20}\\
& \sum_{\text {prescribed } i}\left[\int_{S_{c}} N_{j} c_{V} N_{i} \mathrm{~d} S\right] \frac{\partial \bar{T}_{i}(t)}{\partial t}, \quad \forall \text { free } j,
\end{align*}
$$

The first integral on the right hand side of (6.20) suggests defining a matrix

$$
\begin{equation*}
C_{j i}=\int_{S_{c}} N_{j} c_{V} N_{i} \mathrm{~d} S, \quad \forall \text { free } j, i, \tag{6.21}
\end{equation*}
$$

the capacity matrix. The integral in the second term will be given a different symbol, since the meaning is different from the first (the latter is a load-like term)

$$
\begin{equation*}
\bar{C}_{j i}=\int_{S_{c}} N_{j} c_{V} N_{i} \mathrm{~d} S, \quad \forall \text { free } j, \forall \text { prescribed } i . \tag{6.22}
\end{equation*}
$$

Next, the second term in (6.17):

$$
\begin{align*}
& \int_{S_{c}}(\operatorname{grad} \eta) \boldsymbol{\kappa}(\operatorname{grad} T)^{T} \mathrm{~d} S=\int_{S_{c}}\left(\operatorname{grad} N_{j}\right) \boldsymbol{\kappa}\left(\operatorname{grad} \sum_{\text {all } i} N_{i} T_{i}\right)^{T} \mathrm{~d} S= \\
& \sum_{\text {free } i}\left[\int_{S_{c}}\left(\operatorname{grad} N_{j}\right) \boldsymbol{\kappa}\left(\operatorname{grad} N_{i}\right)^{T} \mathrm{~d} S\right] T_{i}+ \tag{6.23}\\
& \sum_{\text {prescribed } i}\left[\int_{S_{c}}\left(\operatorname{grad} N_{j}\right) \boldsymbol{\kappa}\left(\operatorname{grad} N_{i}\right)^{T} \mathrm{~d} S\right] \bar{T}_{i} \quad \forall \text { free } j,
\end{align*}
$$

and the conductivity matrix may be defined

$$
\begin{equation*}
K_{i j}=\int_{S_{c}}\left(\operatorname{grad} N_{j}\right) \boldsymbol{\kappa}\left(\operatorname{grad} N_{i}\right)^{T} \mathrm{~d} S, \quad \forall \text { free } j, i, \tag{6.24}
\end{equation*}
$$

and the elements to go with the load-like term

$$
\begin{equation*}
\bar{K}_{i j}=\int_{S_{c}}\left(\operatorname{grad} N_{j}\right) \boldsymbol{\kappa}\left(\operatorname{grad} N_{i}\right)^{T} \mathrm{~d} S, \quad \forall \text { free } j, \forall \text { prescribed } i . \tag{6.25}
\end{equation*}
$$

Next, the load term corresponding to the internal heat generation:

$$
\begin{equation*}
L_{Q, j}=\int_{S_{c}} N_{j} Q \mathrm{~d} S, \quad \forall \text { free } j, \tag{6.26}
\end{equation*}
$$

Finally, the terms corresponding to natural boundary conditions. On the $C_{c, 2}$ part of the boundary, only a load term results.

$$
\begin{equation*}
L_{q 2, j}=-\int_{C_{c, 2}} N_{j} \bar{q}_{n} \mathrm{~d} C \tag{6.27}
\end{equation*}
$$

On the other hand, on the $C_{c, 3}$ part of the boundary, where the heat flux is proportional to the difference between the ambient temperature and the surface temperature, we get a load term

$$
\begin{equation*}
L_{q 3, j}=\int_{C_{c, 3}} N_{j} h T_{a} \mathrm{~d} C, \quad \forall \text { free } j, \tag{6.28}
\end{equation*}
$$

and a surface heat transfer matrix:

$$
\begin{equation*}
H_{j i}=\int_{C_{c, 3}} N_{j} h N_{i} \mathrm{~d} C, \quad \forall \text { free } j, i, \tag{6.29}
\end{equation*}
$$

To summarize, using the definitions of the various matrices and load terms, the system of ordinary differential equations that results from the finite element discretization in space reads

$$
\begin{align*}
& \sum_{\text {free } i} C_{j i} \frac{\partial T_{i}}{\partial t}+\sum_{\text {free } i} K_{j i} T_{i}+\sum_{\text {free } i} H_{j i} T_{i} \\
& +\sum_{\text {prescribed } i} \bar{C}_{j i} \frac{\partial \bar{T}_{i}(t)}{\partial t}+\sum_{\text {prescribed } i} \bar{K}_{j i} \bar{T}_{i}-L_{Q, j}-L_{q 2, j}-L_{q 3, j}=0 \tag{6.30}
\end{align*}
$$

6.6 Derivatives of the basis functions; Jacobian

The results of this section are much more general than may be expected. While we derive the formulas from which the derivatives of basis functions may be calculated for the linear triangles, the same implementation is used for all the so-called isoparametric elements in the SOFEA toolbox.

To evaluate the conductivity matrix, we need to be able to calculate the derivatives of the basis functions with respect to x and y. Equations (6.12-6.14) define the functions over the standard triangle in terms of ξ and η. Therefore, to express $\partial N_{i} / \partial x$ we use the chain rule

$$
\begin{align*}
\frac{\partial N_{i}}{\partial x} & =\frac{\partial N_{i}}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial N_{i}}{\partial \eta} \frac{\partial \eta}{\partial x} \tag{6.31}\\
\frac{\partial N_{i}}{\partial y} & =\frac{\partial N_{i}}{\partial \xi} \frac{\partial \xi}{\partial y}+\frac{\partial N_{i}}{\partial \eta} \frac{\partial \eta}{\partial y} \tag{6.32}
\end{align*}
$$

For the purpose of this discussion, the function that is being differentiated does not really matter. We will replace it with a Ω, while we arrange the above equation into a matrix expression

$$
\left[\frac{\partial \circlearrowleft}{\partial x}, \frac{\partial \odot}{\partial y}\right]=\left[\frac{\partial \circlearrowleft}{\partial \xi}, \frac{\partial \circlearrowleft}{\partial \eta}\right]\left[\begin{array}{l}
\frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial y} \tag{6.33}\\
\frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial y}
\end{array}\right]
$$

The derivatives are arranged in row matrices is that these objects are gradients of the \triangle function [compare with (5.17)]. The matrix

$$
[\widetilde{J}]=\left[\begin{array}{l}
\frac{\partial \xi}{\partial x} \tag{6.34}\\
\frac{\partial \xi}{\partial y} \\
\frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial y}
\end{array}\right]
$$

is the Jacobian matrix of the mapping $\xi=\xi(x, y), \eta=\eta(x, y)$, which is the inverse of the map $x=x(\xi, \eta), y=y(\xi, \eta)$ of equation (6.16). The question is how to evaluate the partial derivatives of the type $\partial \xi / \partial x$, since the inverse of the map (6.16) is not known (at least not in general). If we start the chain rule from the other end (switching the role of the variables), we obtain

$$
\left[\frac{\partial \circlearrowleft}{\partial \xi}, \frac{\partial \circlearrowleft}{\partial \eta}\right]=\left[\frac{\partial \circlearrowleft}{\partial x}, \frac{\partial \circlearrowleft}{\partial y}\right]\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \tag{6.35}\\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right]
$$

and inverting the Jacobian matrix in equation (6.33) we get

$$
\begin{equation*}
\left[\frac{\partial \circlearrowleft}{\partial \xi}, \frac{\partial \circlearrowleft}{\partial \eta}\right]=\left[\frac{\partial \circlearrowleft}{\partial x}, \frac{\partial \circlearrowleft}{\partial y}\right][\widetilde{J}]^{-1} \tag{6.36}
\end{equation*}
$$

Comparing (6.35) and (6.36) yields

$$
[J]=\left[\begin{array}{l}
\frac{\partial x}{\partial \xi} \tag{6.37}\\
\frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} \\
\frac{\partial y}{\partial \eta}
\end{array}\right]=[\widetilde{J}]^{-1}
$$

where $[J]$ is the Jacobian matrix of the map (6.16). The elements of $[J]$ are directly available from the matrix in (6.16). However, even more useful is to start from (6.15), and by definition the Jacobian matrix is then

$$
[J]=\left[\begin{array}{l}
\sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \xi} x_{i}, \sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \eta} x_{i} \tag{6.38}\\
\sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \xi} y_{i}, \sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right],
$$

Note that the Jacobian matrix may be expressed as the product of two matrices:

$$
\begin{equation*}
[J]=[\mathrm{x}]^{T}[\mathrm{Nder}], \tag{6.39}
\end{equation*}
$$

where $[\mathrm{x}]$ collects the coordinates of the nodes (three nodes, for the triangle)

$$
[\mathbf{x}]=\left[\begin{array}{l}
x_{1}, y_{1} \tag{6.40}\\
x_{2}, y_{2} \\
x_{3}, y_{3}
\end{array}\right],
$$

and [Nder] collects in each row the gradient of the basis function with respect to the parametric coordinates

$$
[\text { Nder }]=\left[\begin{array}{l}
\frac{\partial N_{1}}{\partial \xi}, \frac{\partial N_{1}}{\partial \eta} \tag{6.41}\\
\frac{\partial N_{2}}{\partial \xi}, \frac{\partial N_{2}}{\partial \eta} \\
\frac{\partial N_{3}}{\partial \xi}, \frac{\partial N_{3}}{\partial \eta}
\end{array}\right]
$$

The calculation of the spatial derivatives by an isoparametric geometric cell (recall that finite elements in SOFEA represent the calculation of basis functions and their derivatives in the gcell class) is a straightforward rewrite of the formulas above. The method Ndermat_spatial takes three arguments: a descendent of the class gcell, and two arrays (6.41) and (6.40). The dimensions of the two arrays are (line 0013): nbfuns= number of basis functions, and dim= number of space dimensions ($=2$ for the triangle).

```
0 0 1 3 ~ f u n c t i o n ~ [ N s p a t i a l d e r , d e t J ] ~ = ~ N d e r m a t \_ s p a t i a l ~ ' ~ ( s e l f , ~ N d e r , ~ x ) ~
0014 [nbfuns,dim] = size(Nder);
0015 if (size(Nder) ~= size(x))
0016 error('Wrong dimensions of arguments!');
0017 end
```

The Matlab code on line 0018 reflects literally the formula (6.39).
0018

```
J = x' * Nder;% Compute the Jacobian matrix
0019 detJ = det(J);% Compute the Jacobian
```

The Jacobian (determinant of the Jacobian matrix) should be positive. An error is reported when the Jacobian is non-positive; the generic case is treated in line 0023, which literally transcribes equation (6.33).

0020
0021 error('Non-positive Jacobian');
0022 else \% the generic case
0023 Nspatialder = Nder * inv(J);

[^8]0024 end
0025 return;
0026 end
Since the Jacobian is needed both to evaluate the derivatives of the basis functions, and to numerically integrate, it makes sense to compute it only once. Therefore, the method Ndermat_spatial discussed in Section 6.6 returns both the array of derivatives and the Jacobian.

To round off the discussion in this section, we need to present the code that evaluates the basis functions (6.12-6.14) and the derivatives of the basis functions with respect to the parametric coordinates ξ, η. For the linear triangle (class gcell_T3) the two methods are delightfully simple: method Nmat computes a column array of basis function values, N_{j} in row j, given the parametric coordinates $\xi \leftarrow$ param_coords (1), $\eta \leftarrow$ param_coords (2).

```
0 0 0 8 ~ f u n c t i o n ~ v a l ~ = ~ N m a t 4 ~ ( s e l f , p a r a m ` c o o r d s )
0009 val = [(1 - param_coords(1) - param_coords(2));...
0010 param_coords(1); ...
0011 param_coords(2)];
0012 return;
0013 end
```

The method Nder_param returns an array with three rows (one for each basis function), with the gradient of the basis function j with respect to ξ, η in row j.

```
0 0 1 0 ~ f u n c t i o n ~ v a l ~ = ~ N d e r \_ p a r a m ~ ( s e l f , ~ p a r a m \_ c o o r d s )
0011 val = [-1 -1; ...
0012 +1 0; \ldots
0013 0 +1];
0014 return;
0015 end
```


6.7 Numerical integration

Stepping closely along the lines of the discussion in Section 2.8, we formulate the numerical integration procedure for the linear triangle. We begin by highlighting the role of the Jacobian matrix.

Consider a map from ξ, η to x, y : a slight generalization of (6.15) in that the map is not necessarily linear (see Figure 6.9)

$$
\left[\begin{array}{l}
x \tag{6.42}\\
y
\end{array}\right]=\left[\begin{array}{l}
x(\xi, \eta) \\
y(\xi, \eta)
\end{array}\right] .
$$

[^9]The parallelogram (rectangle) generated by the vectors $[\mathrm{d} \xi, 0]^{T}$ and $[0, \mathrm{~d} \eta]^{T}$ (given in components in the Cartesian coordinate system ξ, η), has the area of (\times is the cross product symbol)

$$
\left[\begin{array}{c}
\mathrm{d} \xi \\
0
\end{array}\right] \times\left[\begin{array}{c}
0 \\
\mathrm{~d} \eta
\end{array}\right]=\mathrm{d} \xi \mathrm{~d} \eta
$$

Remember, this is happening in two dimensions: the cross product is a scalar.

Fig. 6.9. Mapping of areas for a general map between coordinates
The two vectors $[\mathrm{d} \xi, 0]^{T}$ and $[0, \mathrm{~d} \eta]^{T}$ are mapped by the map (6.42) to vectors

$$
\left[\begin{array}{c}
\mathrm{d} \xi \tag{6.43}\\
0
\end{array}\right] \longrightarrow \mathrm{d} \xi\left[\begin{array}{c}
\frac{\partial x}{\partial \xi} \\
\frac{\partial y}{\partial \xi}
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
\mathrm{~d} \eta
\end{array}\right] \longrightarrow \mathrm{d} \eta\left[\begin{array}{c}
\frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \eta}
\end{array}\right]
$$

where the square brackets hold components in the standard Cartesian basis. Note that these vectors are tangent to the coordinate curves, which consist of the points in the physical space x, y that are maps of the curves $\xi=$ const and $\eta=$ const. The area of the hatched parallelogram in Figure 6.9 is

$$
\mathrm{d} \xi\left[\begin{array}{l}
\frac{\partial x}{\partial \xi} \tag{6.44}\\
\frac{\partial y}{\partial \xi}
\end{array}\right] \times \mathrm{d} \eta\left[\begin{array}{l}
\frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \eta}
\end{array}\right]=\mathrm{d} \xi \mathrm{~d} \eta\left[\begin{array}{l}
\frac{\partial x}{\partial \xi} \\
\frac{\partial y}{\partial \xi}
\end{array}\right] \times\left[\begin{array}{l}
\frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \eta}
\end{array}\right]
$$

Compare this equation with (6.37): the two vectors in the cross product are the columns of the Jacobian matrix from (6.37). In fact, the cross product of the columns is the determinant of the Jacobian matrix (or, as the determinant is known, the Jacobian). Therefore, the map (6.42) maps areas as

$$
\begin{equation*}
\mathrm{d} \xi \mathrm{~d} \eta \longrightarrow \mathrm{~d} \xi \mathrm{~d} \eta \operatorname{det}[J] . \tag{6.45}
\end{equation*}
$$

As a consequence of (6.45), we have the following change of coordinates in integrals:

$$
\begin{equation*}
\int_{S_{[x, y]}} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{S_{[\xi, \eta]}} f(\xi, \eta) \operatorname{det}[J(\xi, \eta)] \mathrm{d} \xi \mathrm{~d} \eta \tag{6.46}
\end{equation*}
$$

Numerical quadrature rules take advantage of the relative ease with which these rules may be formulated on standard shapes, triangles, squares, cubes, etc. Thus, the integral on the left of (6.46) will be approximated as

$$
\begin{equation*}
\int_{S_{[x, y]}} f(x, y) \mathrm{d} x \mathrm{~d} y \approx \sum_{k=1}^{M} f\left(\xi_{k}, \eta_{k}\right) \operatorname{det}\left[J\left(\xi_{k}, \eta_{k}\right)\right] W_{k} \tag{6.47}
\end{equation*}
$$

We will introduce two integration rules for the standard triangle, one-point and three-point quadrature, but many other rules are available: a number of authors have compiled tables, see for instance Hughes' book [Hug00]. The 1-point rule will be able to integrate linear polynomials in ξ, η exactly, and the 3 -point does the job for up to quadratic polynomials in ξ, η. Table 6.1 gives the coordinates of the integration points, and their weights.

Rule	Coordinates ξ_{j}, η_{j} Weights W_{j}	Integrates exactly	
1-point	$1 / 3,1 / 3$	$1 / 2$	linear polynomial
3 -point	$2 / 3,1 / 6$	$1 / 6$	
	$1 / 6,2 / 3$	$1 / 6$	quadratic polynomial
	$1 / 6,1 / 6$	$1 / 6$	

Table 6.1. Numerical integration rules on the standard triangle

6.8 Conductivity matrix

As already discussed in Chapter 3, all the problem dependent code is concentrated in a descendent of the feblock class. In particular, the two-dimensional heat diffusion model of this chapter is implemented in the feblock_diffusion finite element block class.

The conductivity (6.24) and other matrices are computed by evaluating the contributions from each element separately, storing these contributions element-by-element in a cell array, and then finally assembling all the element contributions into the overall system matrix. Therefore, the conductivity matrix would be computed element-byelement as

$$
\begin{equation*}
K_{i j}=\sum_{e} \int_{D_{e}}\left(\operatorname{grad} N_{j}\right) \boldsymbol{\kappa}\left(\operatorname{grad} N_{i}\right)^{T} \mathrm{~d} S \tag{6.48}
\end{equation*}
$$

The procedure is illustrated in Figure 6.10: Only the gradients of the basis functions A, B, C are nonzero over the triangle e. The conductivity matrix of this element is calculated as if there were only three nodes in the whole mesh, all with free degrees of freedom (temperatures). It is therefore a 3×3 matrix K_{e}. However, only the unknown degrees of freedom are given equation numbers on the global level. In this example, we assume that node A carries the unknown number 13, node C carries the unknown 61 , and node B is associated with prescribed temperature, and correspondingly a zero (0) indicates that there is no equation for node B. The K_{e} matrix should be added to the global matrix as indicated in the sum (6.48), and the arrows pointing towards the appropriate elements $((13,13),(13,61),(61,13),(61,61))$ of the global conductivity matrix K indicate the so-called assembly of the element matrix. This assembly process is executed in the assemble ${ }^{6}$ method of the classes dense_sysmat and sparse_sysmat.

Fig. 6.10. Assembly of the element conductivity matrix

The method conductivity returns the array ems of element matrix objects (class elemat), each of which represents the conductivity matrix of a single element. The method begins by retrieving some information from the parent class, such as gcells (cell array of the geometric cells), integration_rule, and the material mat.

```
0 0 0 9 ~ f u n c t i o n ~ e m s ~ = ~ c o n d u c t i v i t y ~ ' ( s e l f , ~ g e o m , ~ t h e t a ) ~
0010 gcells = get(self.feblock,'gcells');
0011 ngcells = length(gcells);
0012 nfens = get(gcells(1),'nfens');
0013 dim = get(geom,'dim');
0 0 1 4 ~ \% ~ P r e - a l l o c a t e ~ t h e ~ e l e m e n t ~ m a t r i c e s ~
0015 ems(1:ngcells) = deal(elemat);
```

[^10]0016 \% Integration rule
0017 integration_rule = get(self.feblock, 'integration_rule');
0018 pc = get(integration_rule, 'param_coords');
0019 w = get(integration_rule, 'weights');
0020 npts_per_gcell = get(integration_rule, 'nets');
0021 \% Material
0022 mat = get(self.feblock, 'mater');
0023 kappa = get(mat,'conductivity');
The loop over all the geometric cells starts with the retrieval of the connectivity (ie. the numbers of the nodes which are connected together by the cell), and of the array of the node coordinates, x (compare with (6.40)). Then, the element conductivity matrix Ke is initialized to zero, and the loop over all the quadrature points may begin.
0024 \% Now loop over all gels in the block
0025 for i=1:ngcells
0026 conn $=$ get(gcells(i), 'conn'); \% connectivity
0027 x = gather (geom, conn,'values','noreshape');\% node coord
0028 Ke = zeros(nfens); \% element matrix
The loop over the integration points starts with calculation of the gradients of the basis functions with respect to the parametric coordinates, see array (6.41). Then compute the spatial derivatives of the basis functions, Nspder, and the Jacobian, $\operatorname{det} J$.

0029 \% Loop over all integration points
0030 for j=1:npts_per_gcell
0031 Nder = Ndermat_param (gcells(i), pc (j,:));
0032

```
    [Nspder,detJ] = Ndermat_spatial(gcells(i), Nder, x);
```


Fig. 6.11. Directions of material orthotropy

Often for orthotropic materials the axes of orthotropy vary from point-to-point. In that case it makes sense to describe the material properties in local Cartesian coor-
dinates, and then allow the finite element block to define a transformation matrix between the local coordinate directions and the global Cartesian basis: refer to Figure 6.11. The attribute of a material parameter is thus the material conductivity in the rotated basis, $\boldsymbol{e}_{\bar{x}}, \boldsymbol{e}_{\bar{y}}$

$$
[\bar{\kappa}]=\left[\begin{array}{cc}
\kappa_{\bar{x}} & 0 \tag{6.49}\\
0 & \kappa_{\bar{y}}
\end{array}\right]
$$

which is rotated using the transformation matrix (rotation matrix)

$$
\begin{equation*}
\left[R_{m}\right]=\left[\left[\boldsymbol{e}_{\bar{x}}\right]\left[\boldsymbol{e}_{\bar{y}}\right]\right] \tag{6.50}
\end{equation*}
$$

whose columns are the components of the basis vectors $\boldsymbol{e}_{\bar{x}}, \boldsymbol{e}_{\bar{y}}$ in the global Cartesian coordinates. in The material conductivity matrix in the global basis is then expressed using the ordinary transformation rule

$$
\begin{equation*}
[\kappa]=\left[R_{m}\right][\bar{k}]\left[R_{m}\right]^{T} \tag{6.51}
\end{equation*}
$$

Compute the local material directions.
0033
0034

```
Rm=material_directions(self,...
    map_two_xyz(gcells(i), pc(j,:),x),x'*Nder);
```

Now exercise the integration rule. Note that the element conductivity matrix may be computed as a whole, as opposed to element-by-element, since the gradients of the basis functions are arranged as rows of the Nspder matrix.

0035

```
Ke = Ke + Nspder*Rm*kappa*Rm'*Nspder' * detJ * w(j);
```

Finally, the computed element conductivity matrix Ke is stored in the ems(i) object of class elemat, both the matrix itself and the equation numbers that go with each column and each row (compare with Figure 6.10: 13, 0,61 ; zero means "no equation").

0037
0038

```
ems(i)=set(ems(i), 'mat', Ke);
ems(i)=set(ems(i), 'eqnums',gather(temp,conn,'eqnums'));
```


6.9 Surface heat transfer matrix and load

While in the preceding section the required integrals were over the area of the domain S_{c}, the surface heat transfer matrix (6.29) and the surface heats transfer load (6.28) (and also the prescribed heat flux load (6.27)) require integration over the bounding curve, $C_{c, 3}$ (or $C_{c, 2}$). Therefore, since the area integrals are being performed over the area of the triangles in the mesh, the curve integrals will be evaluated over the edges of these triangles.

Evaluating the basis functions (6.12-6.14) along the edges of the standard triangle, we may observe that the basis function associated with the opposite vertex is identically zero, and the other two at the end-points of the edge vary linearly along the edge. In fact, completely in agreement with the basis functions (2.20) defined on the line element L2. Therefore, integrating an expression along the edge of the triangle

T3 that connects nodes i, j yields exactly the same result as integrating along the line element L2 that connects nodes i, j. However, the two approaches are not the same thing: if, for the purpose of numerical integration, we use the element L2, the design of the numerical integration code will be reusable: the same piece of code may be used to integrate quantities along a curve which is tiled with finite element edges with linear variation of basis functions - the triangle T3, the quadrilateral Q4, the hexahedron H 8 , the tetrahedron T 4 .

Fig. 6.12. Mapping of the standard interval to a Cartesian space

Let us take for instance equation (6.27). The goal is to evaluate an integral of the form

$$
\begin{equation*}
\int_{C} f(\boldsymbol{p}) \mathrm{d} C \tag{6.52}
\end{equation*}
$$

where we will assume that the curve C may be "embedded" in a three-dimensional, two-dimensional, or one-dimensional Euclidean space (ie. it may be a spatial curve, plane curve, or just an interval on the real line). Correspondingly, the point on the curve \boldsymbol{p} will have appropriate number of components. To perform the integral, the elementary length $\mathrm{d} C$ is needed.

The point \boldsymbol{p} on the curve will be assumed to be the result of the mapping the standard interval $-1 \leq \xi \leq+1$ (compare with the 1-D map (2.23), and refer to Figure 6.12, where the map is two-dimensional)

$$
\begin{equation*}
\boldsymbol{p}=\boldsymbol{g}(\xi) \tag{6.53}
\end{equation*}
$$

For two closely spaced points on the curve, $\boldsymbol{p}(\xi)$ and $\boldsymbol{p}(\xi+\Delta \xi)$, where $\Delta \xi$ is the distance between the two points in the standard interval, the second point may be obtained from the first using the first two terms of the Taylor series as

$$
\begin{equation*}
\boldsymbol{p}(\xi+\Delta \xi)=\boldsymbol{p}(\xi)+\frac{\partial \boldsymbol{p}(\xi+\varepsilon \Delta \xi)}{\partial \xi} \Delta \xi \quad 0 \leq \varepsilon \leq 1 \tag{6.54}
\end{equation*}
$$

The two points may be connected with a vector approximately tracking the curve (see Figure 6.13),

$$
\boldsymbol{p}(\xi+\Delta \xi)-\boldsymbol{p}(\xi)=\frac{\partial \boldsymbol{p}(\xi+\varepsilon \Delta \xi)}{\partial \xi} \Delta \xi,
$$

whose length (squared) is

$$
(\Delta C)^{2}=\left(\frac{\partial \boldsymbol{p}(\xi+\varepsilon \Delta \xi)}{\partial \xi} \Delta \xi\right) \cdot\left(\frac{\partial \boldsymbol{p}(\xi+\varepsilon \Delta \xi)}{\partial \xi} \Delta \xi\right)=\left\|\frac{\partial \boldsymbol{p}(\xi+\varepsilon \Delta \xi)}{\partial \xi}\right\|^{2}(\Delta \xi)^{2}
$$

Skipping over the details, we may conclude that for infinitesimally short intervals, $\Delta \xi \rightarrow \mathrm{d} \xi$, the following relationship is obtained

$$
\begin{equation*}
\mathrm{d} C=\left\|\frac{\partial \boldsymbol{p}(\xi)}{\partial \xi}\right\| \mathrm{d} \xi, \tag{6.55}
\end{equation*}
$$

where $\frac{\partial \boldsymbol{p}(\xi)}{\partial \xi}$ is the vector tangent to the curve at ξ, and $\left\|\frac{\partial \boldsymbol{p}(\xi)}{\partial \xi}\right\|$ is the Jacobian to be used in the change-of-variables device for the curve integral.

Fig. 6.13. Length of a curve

Let us now specialize these developments to the L2 element: the map (6.56) reads

$$
\begin{equation*}
\boldsymbol{p}=\boldsymbol{g}(\xi)=\sum_{i=1}^{2} N_{i}(\xi) \boldsymbol{x}_{i} . \tag{6.56}
\end{equation*}
$$

where N_{i} are given by (2.25). Therefore, the tangent vector (see (6.55)) reads

$$
\frac{\partial \boldsymbol{p}(\xi)}{\partial \xi}=\frac{\boldsymbol{x}_{2}-\boldsymbol{x}_{1}}{2}
$$

and the Jacobian is $h / 2$, where $h=\left\|\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right\|$ is the length of the element.
Of course, for general elements with n nodes, the implementation confused the tangent as

$$
\frac{\partial \boldsymbol{p}(\xi)}{\partial \xi}=\mathrm{x}^{\prime} * \text { Nder }
$$

using the following two matrices ,

$$
[\mathrm{x}]=\left[\begin{array}{cc}
x_{1}, & y_{1} \tag{6.57}\\
x_{2}, & y_{2} \\
\ldots, & \ldots \\
x_{n}, & y_{n}
\end{array}\right]
$$

where the number of columns is equal to the number of spatial dimensions, 1,2 (which is assumed in (6.57)), or 3, and [Nder] collects in each row the gradient of the basis function with respect to the parametric coordinate

$$
[\text { Nder }]=\left[\begin{array}{c}
\frac{\partial N_{1}}{\partial \xi} \tag{6.58}\\
\frac{\partial N_{2}}{\partial \xi} \\
\cdots \\
\frac{\partial N_{n}}{\partial \xi}
\end{array}\right]
$$

These matrices should be compared with those defined for the triangle T3, equations (6.40) and (6.41). The only difference is the number of space dimensions, the number of basis functions, and the number of parametric dimensions; all of these are taken account of by the Matlab code automatically.

The method surface_transfer_loads is a rewrite of the above formulas. The setup is straightforward and is omitted.

```
0 0 0 9 ~ f u n c t i o n ~ e v s ~ = ~ s u r f a c e \_ t r a n s f e r - l o a d s ~ ' ~ ( s e l f , ~ g e o m , ~ t e m p , ~ a m b )
```

The main work is done in this loop: the interpolated values of the nodal ambient temperatures are retrieved from the field amb, and He is computed as the heat surface transfer matrix for the element. Note the calculation of the Jacobian: it is in evaluated from the matrix of tangent vectors $x^{\prime} *$ Nder.

0021 \% surface transfer coefficient
0022 h = self.surface_transfer;
0023 \% Now loop over all gcells in the block
0024 for i=1:ngcells
0025 conn = get(gcells(i), 'conn'); \% connectivity
0026 pT = gather (amb, conn, 'prescribed_values');
0027 if norm (pT) ~= 0
$0028 \quad \mathrm{x}=$ gather (geom, conn, 'values', 'noreshape'); \% node coord
0029
He = zeros(nfens); \% element matrix
0030 \% Loop over all integration points
0031 for $\mathrm{j}=1: n \mathrm{nts}$ per_gcell
0032
$\mathrm{N}=\operatorname{Nmat}(\mathrm{gcells}(\mathrm{i}), \mathrm{pc}(\mathrm{j},:))$;

[^11]0033
0034
0035
0036
Nder $=$ Ndermat_param (gcells(i), pc(j,:));
$\operatorname{det} J=$ Jacobian(gcells(i), $x^{\prime} *$ Nder $)$;
$\mathrm{He}=\mathrm{He}+\mathrm{h} * \mathrm{~N} * \mathrm{~N}^{\prime} * \operatorname{det} \mathrm{~J} * \mathrm{w}(\mathrm{j})$;
end

And the load vector is calculated and stored to be returned from this method.
0037
0038
evs(i) $=$ set(evs(i), 'vec', He*pT);
evs(i) $=\operatorname{set}($ evs(i), 'eqnums', \ldots
0039
gather(temp, conn, 'eqnums'));

Steady-state heat diffusion solutions

7.1 Steady-state diffusion equation

The ordinary differential equations that result from discretization in space, equations (6.30), lead to steady-state solutions when $\partial T_{i}(t) / \partial t=0$, and $\partial \bar{T}_{i}(t) / \partial t=0$. The latter are a sine qua non condition, while the former follows when all the transients in the solution decay (in infinite time, in general). Substituting into (6.30), we obtain

$$
\begin{equation*}
\sum_{\text {free } i} K_{j i} T_{i}+\sum_{\text {free } i} H_{j i} T_{i}=-\sum_{\text {prescribed } i} \bar{K}_{j i} \bar{T}_{i}+L_{Q, j}+L_{q 2, j}+L_{q 3, j} \quad \forall \text { free } j, \tag{7.1}
\end{equation*}
$$

which is a system of linear equations for the unknown nodal temperatures. The nodal temperatures are now just numbers, not functions.

7.2 Thick-walled tube

The first example is a thick-walled rectangular tube, with the outside temperature being prescribed as zero, and the interior surface (perfectly) insulated. The material is isotropic. As shown in Figure 7.1, the planes of symmetry may be used to reduce the size of the problem. Therefore, only one quarter is discretized, and perfect insulation is applied at the symmetry planes (no heat flow through the symmetry planes). There is a distributed heat source in the material (for instance, heat released by curing cement paste).

The Matlab script is lshape 1^{1}. The first few lines define some ancillary variables, and then the two-dimensional mesh generator of triangle meshes is invoked. The generator is thoroughly described in the user's guide targe2_users_guide. pdf^{2}, but we will describe a little bit the Matlab interface. The first argument is a cell array, each element a string (character array), with one command for the mesh generator. Thus, the first six strings define curves that bound the domain (straight-line segments), the line 0011 defines a subregion (chunk of area to be covered with triangles), and the last

[^12]

Fig. 7.1. Heat diffusion in a thick-walled rectangular tube
line defines the mesh size. The second argument to targe2_mesher is the thickness of the slab (of no interest here).

```
0 0 0 1 ~ k a p p a = [ 0 . 2 ~ 0 ; ~ 0 ~ 0 . 2 ] ; ~ \% ~ c o n d u c t i v i t y ~ m a t r i x ~
0 0 0 2 ~ Q = 0 . 0 1 1 0 0 ; ~ \% ~ u n i f o r m ~ h e a t ~ s o u r c e
0 0 0 3 ~ n u m \_ i n t e g \_ p t s = 1 ; ~ \% ~ 1 - p o i n t ~ q u a d r a t u r e ~
0004 [fens,gcells] = targe2_mesher({...textcolorcomment
0005 ['curve 1 line 20 0 48 0'],...
0006 ['curve 2 line 48 0 48 48'],...
0007 ['curve 3 line 48 48 0 48'],...
0008 ['curve 4 line 0 48 0 13'],...
0009 ['curve 5 line 0 13 20 13'],...
0010 ['curve 6 line 20 13 20 0'],...
0011 'subregion 1 property 1 boundary 1 2 3 4 5 6',\ldots...
0012 ['m-ctl-point constant 3.5']
0013 }, 1.0);
```

Next, the material object appropriate for heat diffusion is created, and supplied the material conductivity matrix κ, and the heat source Q. The finite element block of class feblock diffusion is created, with attributes: the material, the array of geometric cells, and an integration rule (class tri_rule is used for triangles).

```
0 0 1 4 ~ m a t e r = m a t e r ~ d i f f u s i o n ~ ( s t r u c t ( ' c o n d u c t i v i t y ' , k a p p a , ' s o u r c e ' , Q ) ) ;
0015 feb = feblock_diffusion (struct ('mater',mater,...
0016 'gcells',gcells,...
0017 'integration_rule',tri_rule(num_integ_pts)));
```

Two fields are created: geom represents the geometry (i.e. the locations of the nodes), and it is therefore initialized from the finite element node array, fens; and theta represents the temperatures at the nodes, and it is initially undefined, except for the number of nodes nfens.

```
0018 geom = field(struct('name',['geom'], 'dim', 2, 'fens',fens));
0019 theta=field(struct('name',['theta'], 'dim', 1, 'nfens',...
0020 get(geom,'nfens')));
```

The essential boundary conditions are next applied to the temperature field. The utility function fenode_select is used to select nodes from the fens array based on their location: nodes which fall into given bounding boxes are selected ($\left[x_{l o} x_{h i} y_{l o} y_{h i}\right]=[48$ $48048]$ and so on for the other box); to avoid problems with precision, the boxes are for the purpose of the "in"-test inflated by 0.01 . The array prescribed is filled with ones to indicate that all degrees of freedom are to be prescribed, the components to be prescribed are passed as an empty array (line 0026), which simply means all components are meant. The values to which the temperatures are being prescribed are all zeros. The data defining the essential boundary conditions are set in the field, and then applied (line 0029). The free node parameters are then assigned global equation numbers.

```
0021 fenids=[fenode_select(fens,struct('box',[48 48 0 48],\ldots
0022 'inflate', 0.01)),\ldots
0023 fenode_select(fens,struct('box',[0 48 48 48],\ldots
0024 'inflate', 0.01))];
0025 prescribed=ones(length(fenids),1);
0026 comp=[];
0 0 2 7 ~ v a l = z e r o s ( l e n g t h ( f e n i d s ) , 1 ) ;
0 0 2 8 ~ t h e t a ~ = ~ s e t \_ e b c ( t h e t a , ~ f e n i d s , ~ p r e s c r i b e d , ~ c o m p , ~ v a l ) ;
0 0 2 9 ~ t h e t a ~ = ~ a p p l y \_ e b c ~ ( t h e t a ) ;
0 0 3 0 ~ t h e t a ~ = ~ n u m b e r e q n s ~ ( t h e t a ) ;
```

The conductivity matrix is sparse (the linear system to be solved is going to be moderately large, and the efficiency afforded by a sparse matrix is not to be sneezed at), and it is assembled from element conductivity matrices in line 0032. The heat load vector is assembled from element load vectors, and the solution of the linear system of equations is scattered into the theta field.

```
0031 K = start (sparse_sysmat, get(theta, 'neqns'));
0032 K = assemble (K, conductivity(feb, geom, theta));
0033 F = start (sysvec, get(theta, 'neqns'));
0034 F = assemble (F, source_loads(feb, geom, theta));
0 0 3 5 ~ t h e t a ~ = ~ s c a t t e r \_ s y s v e c ( t h e t a , ~ g e t ( K , ' m a t ' ) \ g e t ( F , ' v e c ' ) ) ;
```

The last fragment of code takes care of the graphic presentation of the results. The field colorfield holds one color (a triple of floating-point numbers) per node, and those colors are obtained from the temperature field by mapping node temperatures to colors (line 0042). The geometric cells of individual finite elements are plotted twice. Once as a raised colored surface (line 0047), and the second time as a wireframe in the x, y plane (line 0049). The resulting graphic is shown in Figure 7.2.

```
0 0 3 8 ~ g v = g r a p h i c . v i e w e r ;
0 0 3 9 ~ g v = r e s e t ~ ( g v , [ ] ) ;
0040 T=get(theta,'values');
0041 dcm=data_colormap(struct('range',[min(T),max(T)],'colormap',jet));
0042 colorfield=field(struct ('name', ['colorfield'], 'data',...
```

```
0043 map_data(dcm, T)));
0 0 4 4 \text { geomT=field(struct ('name', ['geomT'], ...}
0045 'data',[get(geom,'values'), get(theta,'values')]));
0 0 4 6 ~ f o r ~ i = 1 : l e n g t h ~ ( g c e l l s )
0047 draw(gcells(i), gv, struct ('x',geomT, 'u',0*geomT,\ldots...
0048 'colorfield',colorfield, 'shrink',0.9));
0049 draw(gcells(i), gv, struct ('x',geom, 'u',0*geom, ...
0050 'facecolor','none'));
0051 end
```


Fig. 7.2. Heat diffusion in a thick-walled rectangular tube: graphic presentation of results

7.3 Orthotropic insert

The next example introduces nonzero essential boundary conditions, and orthotropic material properties. A square block of isotropic material is insulated on the vertical edges, and two different temperatures our applied on the horizontal edges. There is a square insert of orthotropic material within the larger square. The orientation of the material axes is indicated in Figure ??. Physically the insert could be made of parallel fibers (for instance carbon), embedded in a polymer matrix. The fibers conduct heat well, while in the transverse direction the polymer matrix hampers heat conduction. The problem is solved with script squareinsquare ${ }^{3}$. The domain consists of two materials, and consequently we define two material conductivity matrices: the inner material has strongly orthotropic properties; the outer material is isotropic. The rotation matrix that defines the local material properties of the insert is setup in line 0005.

0001 kappainner=[2.25 0; 0 0.06]; \% orthotropic conductivity matrix

[^13]

Fig. 7.3. Heat diffusion in inhomogeneous domain with orthotropic material properties

```
0 0 0 2 ~ k a p p a o u t e r = [ 0 . 2 5 ~ 0 ; ~ 0 ~ 0 . 2 5 ] ; ~ \% ~ i s o t r o p i c ~ c o n d u c t i v i t y ~ m a t r i x ~
0 0 0 3 ~ a l p h a ~ = - 4 5 ; \% ~ l o c a l ~ m a t e r i a l ~ o r i e n t a t i o n ~ a n g l e ~
0004 ca=cos(2*pi/360*alpha); sa=sin(2*pi/360*alpha);
0005 Rm = [ca, -sa;sa, ca];% local material directions
```

The mesh generator defines the eight boundary segments, and then sets up two subregions: note that the two subregions are assigned different numerical identifiers (1 and 2) to distinguish elements belonging to different subregions.

```
0007 [fens,gcells, groups] = targe2mesher({...
0008 ['curve 1 line -48 -48 48-48'],...
0009 ['curve 2 line 48 -48 48 48'],...
0010 ['curve 3 line 48 48-48 48'],...
0011 ['curve 4 line -48 48 -48 -48'],...
0012 ['curve 5 line 0 -31 31 0'],\ldots..
0013 ['curve 6 line 31 0 0 31'],...
0014 ['curve 7 line 0 31 -31 0'],...
0015 ['curve 8 line -31 0 0 -31'],...
0016 ['subregion 1 property 1 '...
0017 ', boundary 1 2 3 4 -8 -7 -6 -5'],\ldots.
0018 ['subregion 2 property 2 '...
0019 ', boundary 5 6 7 8'],\ldots..
0020 ['m-ctl-point constant 4.75']
0021 }, 1.0);
```

The inner subregion consists of the geometric cells gcells (groups\{2\}) (groups\{2\} is a list of indexes of the cells that belong to the subregion 2). Note that the local material directions matrix is being supplied to the finite element block constructor (line 0027).

```
0023 materinner=mater_diffusion(struct('conductivity',kappainner,...
0024 'source',0));
0025 febinner = feblock_diffusion(struct ('mater',materinner,...
```

```
0026
    'gcells',gcells(groups{2}),...
0027
    'integration_rule',tri_rule(num_integ_pts), 'Rm',Rm));
0 0 2 8 ~ m a t e r o u t e r = m a t e r ~ d i f f u s i o n ( s t r u c t ( ' c o n d u c t i v i t y ' , k a p p a o u t e r , \ldots . . . .
0029 'source',0));
0030 febouter = feblock_diffusion(struct ('mater',materouter,\ldots
0031 'gcells',gcells(groups{1}),\ldots
0032 'integration_rule',tri_rule(num_integ_pts)));
```

The boundary conditions are straightforward, but notice that the two horizontal edges are being assigned different, nonzero, temperatures.

```
0035 fenids=[fenode_select(fens,struct('box',[-48 48 -48 -48],...
0036 'inflate', 0.01))];
0037 prescribed=ones(length(fenids),1);
0038 comp=[];
0 0 3 9 ~ v a l = z e r o s ( l e n g t h ( f e n i d s ) , 1 ) + 2 0 ; \% ~ a m b i e n t ~ t e m p e r a t u r e ~
0 0 4 0 ~ t h e t a ~ = ~ s e t \_ e b c ( t h e t a , ~ f e n i d s , ~ p r e s c r i b e d , ~ c o m p , ~ v a l ) ;
0041 fenids=[fenode_select(fens,struct('box',[-48 48 48 48],...
0042 'inflate', 0.01))];
0043 prescribed=ones(length(fenids),1);
0044 comp=[];
0 0 4 5 \text { val=zeros(length(fenids),1)+57;\% hot inner surface}
0 0 4 6 ~ t h e t a ~ = ~ s e t ~ e b c ( t h e t a , ~ f e n i d s , ~ p r e s c r i b e d , ~ c o m p , ~ v a l ) ;
0 0 4 7 ~ t h e t a ~ = ~ a p p l y ~ e b c ~ ( t h e t a ) ;
```

When assembling the conductivity matrix, the contributions from the two blocks are assembled separately. The thermal loads corresponding to nonzero essential boundary conditions (conductivity only: recall that this is steady-state) are assembled only for the outer subregion block, since there are no boundary conditions on the boundary of the inner block.

```
0049 K = start (sparse_sysmat, get(theta, 'neqns'));
0050 K = assemble (K, conductivity(febinner, geom, theta));
0051 K = assemble (K, conductivity(febouter, geom, theta));
0052 F = start (sysvec, get(theta, 'neqns'));
0053 F = assemble (F, nz_ebc_loads_conductivity(febouter, geom, theta));
```

The results are presented in Figure 7.4. The distorting effect of the insert is noteworthy: in one direction the insert acts as a heat sink/source, in the perpendicular direction it is an insulator.

7.4 The T4 NAFEMS Benchmark

This problem is one of the NAFEMS (National Agency for Finite Element Methods and Standards (UK)) benchmark tests for thermal analyses. It consists of 2d region 0.6 meter wide by 1 meter high, with a fixed temperature of $100^{\circ} \mathrm{C} 100$ on the lower

Fig. 7.4. Heat diffusion in inhomogeneous domain with orthotropic material properties: temperature distribution. Notice the distorting effect of the insert
boundary, perfect insulator on the left boundary, and a heat transfer at $750 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ on the other two boundaries (see Figure 7.5). The material in the region has a thermal conductivity of $52 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. The problem is to calculate the steady-state temperature distribution. A complete description of this problem is given in the paper by Cameron, Casey, and Simpson [CCS].

Fig. 7.5. The T4 NAFEMS benchmark geometry and boundary conditions.

The SOFEAsolution is in the Matlab script t4nafems ${ }^{4}$. Note that also

```
0 0 0 1 ~ k a p p a = [ 5 2 ~ 0 ; ~ 0 ~ 5 2 ] ; ~ \% ~ c o n d u c t i v i t y ~ m a t r i x ~
0 0 0 2 ~ Q = 0 . 0 ; ~ \% ~ u n i f o r m ~ h e a t ~ s o u r c e
0 0 0 3 ~ h = 7 5 0 ;
0 0 0 4 ~ n u m \_ i n t e g \_ p t s = 1 ; ~ \% ~ 1 - p o i n t ~ q u a d r a t u r e ~
0005 [fens,gcells,groups,edge_gcells,edge_groups]=targe2_mesher({...
0006 ['curve 1 line 0 0 0.6 0'],...
0007 ['curve 2 line 0.6 0 0.6 0.2'],...
0008 ['curve 3 line 0.6 0.2 0.6 1.0'],...
0009 ['curve 4 line 0.6 1.0 0 1.0'],\ldots
0010 ['curve 5 line 0 1.0 0 0'],...
0011 'subregion 1 property 1 boundary 1 2 3 4 5',\ldots...
0012 ['m-ctl-point constant 0.05']
0013 }, 1.0);
```

Nota bene that two blocks are being created: the first for the triangular elements in the interior of the domain, and the second, edgefeb, for the edge elements (line segment elements with two nodes) along the two boundary edges of the domain with the convective boundary condition.

```
0018 edgefeb = feblock_diffusion (struct ('mater',mater,...
0019 'gcells',edge_gcells([edge_groups{[2, 3, 4]}]),\ldots
0020 'integration_rule',gauss_rule(1,num_integ_pts),\ldots
0021 'surface_transfer', h));
```

Create a field to represent the prescribed ambient temperature along the boundary. The interior values are never used, only the ones on the boundary. They happen to be all equal to zero, but we will not ignore them in the interest of clarity.

```
0025 amb = clone(theta, ['amb']);
0026 fenids=[
0027 fenode_select(fens,struct('box',[0.6 0.6 0 1],\ldots
0028 'inflate', 0.01)),\ldots
0029 fenode_select(fens,struct('box',[[0 1 1 1],\ldots
0030 'inflate', 0.01))] ;
0031 prescribed=ones(length(fenids),1);
0032 comp=[];
0 0 3 3 ~ v a l = z e r o s ( l e n g t h ( f e n i d s ) , 1 ) + 0 . 0 ;
0 0 3 4 ~ a m b ~ = ~ s e t \_ e b c ( a m b , ~ f e n i d s , ~ p r e s c r i b e d , ~ c o m p , ~ v a l ) ;
0035 amb = apply_ebc (amb);
```

The essential boundary condition on the temperature field is applied.

[^14]```
0036 fenids=[
0037 fenode_select(fens,struct('box',[0. 0.6 0 0],\ldots
0 0 3 8 ~ ' i n f l a t e ' , ~ 0 . 0 1))] ~ ;
0039 prescribed=ones(length(fenids),1);
0040 comp=[];
0 0 4 1 ~ v a l = z e r o s (l e n g t h (f e n i d s) , 1) + 1 0 0 . 0 ;
0 0 4 2 ~ t h e t a ~ = ~ s e t _ e b c (t h e t a , ~ f e n i d s , ~ p r e s c r i b e d , ~ c o m p , ~ v a l) ;
0 0 4 3 ~ t h e t a ~ = ~ a p p l y _ e b c ~ (t h e t a) ;
0 0 4 4 ~ t h e t a ~ = ~ n u m b e r e q n s ~ (t h e t a) ;
```

The system matrix and the system load vector are assembled, including the surface heats transfer contribution (line 0047), and the surface heat transfer load (line 0051). Note that these are computed on the edge element block edgefeb. The contribution of the nonzero prescribed temperature is also added in.

```
0045 K = start (sparse_sysmat, get(theta, 'neqns'));
0046 K = assemble (K, conductivity(feb, geom, theta));
0047 K = assemble (K, surface_transfer(edgefeb, geom, theta));
0048 F = start (sysvec, get(theta, 'neqns'));
0049 F = assemble(F, source_loads(feb, geom, theta));
0 0 5 0 ~ F ~ = ~ a s s e m b l e (F , ~ n z _ e b c _ l o a d s _ c o n d u c t i v i t y (f e b , ~ g e o m , ~ t h e t a)) ;
0051 F = assemble(F, surface_transfer_loads(edgefeb,geom,theta,amb));
```

After the solution, the temperature at the node $x=0.6, y=0.2$ (label A in Figure 7.6), is retrieved with gather and printed. The calculated value of $18.2481^{\circ} \mathrm{C}$ agrees well with the reference solution of $18.3^{\circ} \mathrm{C}$. The singularity near the corner where the two kinds of boundary conditions meet (prescribed temperature with convective surface heat transfer) is clearly visible.

```
0 0 5 2 ~ t h e t a ~ = ~ s c a t t e r _ s y s v e c (t h e t a , ~ g e t (K , ' m a t ') \ g e t (F , ' v e c ')) ;
0 0 5 3 \text { gather(theta,fenode_select(fens,...}
0054 struct('box',[0.6 0.6 0.2 0.2],'inflate', 0.01)),'values')
```



Fig. 7.6. Temperature distribution for the T4 NAFEMS benchmark.

## 8

## Transient heat diffusion solutions

### 8.1 Discretization in time for transient heat diffusion

The ordinary differential equations (6.30) need to be numerically integrated in time as analytical solutions are not possible in general. Hughes (2000) describes a finite difference method, the generalized trapezoidal method, including its accuracy and stability properties (Chapter 8, Reference [Hug00]). To unclutter the equations, we will use a matrix notation, with the following definitions:

$$
\begin{equation*}
\widetilde{\boldsymbol{K}}=\left[K_{j i}+H_{j i}\right], \quad \text { free } j, i \tag{8.1}
\end{equation*}
$$

for the effective conductivity matrix, which bundles the bulk conductivity with the surface heat transfer matrix,

$$
\begin{equation*}
\overline{\boldsymbol{K}}=\left[\bar{K}_{j i}\right], \quad \text { free } j, \text { prescribed } i, \tag{8.2}
\end{equation*}
$$

for the rectangular conductivity matrix that relates the prescribed temperatures to the heat fluxes,

$$
\begin{equation*}
\boldsymbol{C}=\left[C_{j i}\right], \quad \text { free } j, i, \tag{8.3}
\end{equation*}
$$

for the capacity matrix,

$$
\begin{equation*}
\overline{\boldsymbol{C}}=\left[\bar{C}_{j i}\right], \quad \text { free } j, \text { prescribed } i, \tag{8.4}
\end{equation*}
$$

for the rectangular capacity matrix that relates the prescribed temperature rates to the heat fluxes, and

$$
\begin{equation*}
\boldsymbol{L}=\left[L_{Q, j}+L_{q 2, j}+L_{q 3, j}\right], \quad \text { free } j . \tag{8.5}
\end{equation*}
$$

The free temperatures and their rates are collected in column matrices

$$
\begin{equation*}
\boldsymbol{T}=\left[T_{j}\right], \quad \dot{\boldsymbol{T}}=\left[\frac{\partial T_{i}}{\partial t}\right], \quad \text { free } j . \tag{8.6}
\end{equation*}
$$

and the prescribed temperatures and their rates

$$
\begin{equation*}
\overline{\boldsymbol{T}}=\left[\bar{T}_{j}\right], \quad \dot{\overline{\boldsymbol{T}}}=\left[\frac{\partial \bar{T}_{i}}{\partial t}\right], \quad \text { prescribed } j \tag{8.7}
\end{equation*}
$$

Therefore, equation (6.30) may be recast as

$$
\begin{equation*}
C \dot{T}+\widetilde{K} T+\overline{C \dot{T}}+\overline{K T}-L=0 \tag{8.8}
\end{equation*}
$$

The generalized trapezoidal method proposes to express the relationship between the temperatures and the rates of temperatures at two different time instants, $t_{n}$ and $t_{n+1}$, as

$$
\begin{equation*}
\theta \dot{\boldsymbol{T}}_{n+1}+(1-\theta) \dot{\boldsymbol{T}}_{n}=\frac{\boldsymbol{T}_{n+1}-\boldsymbol{T}_{n}}{\Delta t} \tag{8.9}
\end{equation*}
$$

where a quantity expressed at time $t_{n}$ is given a subscript $n$, and $\Delta t=t_{n+1}-t_{n}$. The free parameter $\theta$ is used to control accuracy and stability of the scheme.

Equation (8.9) is applied to the time stepping of (8.8) by writing (8.8) at the two time instants, $t_{n}$ and $t_{n+1}$, and then mixing together these two equations. Thus, we add together

$$
\begin{equation*}
\theta\left[\boldsymbol{C} \dot{\boldsymbol{T}}_{n+1}+\widetilde{\boldsymbol{K}} \boldsymbol{T}_{n+1}+\overline{\boldsymbol{C}}_{n+1}+\overline{\boldsymbol{K}}_{n+1}-\boldsymbol{L}_{n+1}\right]=\mathbf{0} \tag{8.10}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\theta)\left[\boldsymbol{C} \dot{\boldsymbol{T}}_{n}+\widetilde{\boldsymbol{K}} \boldsymbol{T}_{n}+\overline{\boldsymbol{C}}_{n}+\overline{\boldsymbol{K}}_{n}-\boldsymbol{L}_{n}\right]=\mathbf{0} \tag{8.11}
\end{equation*}
$$

and if we assume that equation (8.9) applies not only to the free temperatures, but also to the prescribed temperatures, the mixture of rates (left-hand side of (8.9)) may be replaced with the difference of the temperatures (right hand side of (8.9)). The resulting equation refers only to temperatures at two times, and may be solved to yield $\boldsymbol{T}_{n+1}$, provided $\boldsymbol{T}_{n}$ is known.

$$
\begin{align*}
{\left[\frac{1}{\Delta t} \boldsymbol{C}+\theta \widetilde{\boldsymbol{K}}\right] \boldsymbol{T}_{n+1}=} & {\left[\frac{1}{\Delta t} \boldsymbol{C}-(1-\theta) \widetilde{\boldsymbol{K}}\right] \boldsymbol{T}_{n}+\theta \boldsymbol{L}_{n+1}+(1-\theta) \boldsymbol{L}_{n} }  \tag{8.12}\\
& -\left[\frac{1}{\Delta t} \overline{\boldsymbol{C}}+\theta \overline{\boldsymbol{K}}\right] \overline{\boldsymbol{T}}_{n+1}+\left[\frac{1}{\Delta t} \overline{\boldsymbol{C}}-(1-\theta) \overline{\boldsymbol{K}}\right] \overline{\boldsymbol{T}}_{n}
\end{align*}
$$

The form of equation (8.12) is pleasingly symmetric, fully reflective of the blocked nature of these equations. However, for implementation the following form is going to be more profitable:

$$
\begin{align*}
{\left[\frac{1}{\Delta t} \boldsymbol{C}+\theta \widetilde{\boldsymbol{K}}\right] \boldsymbol{T}_{n+1}=} & {\left[\frac{1}{\Delta t} \boldsymbol{C}-(1-\theta) \widetilde{\boldsymbol{K}}\right] \boldsymbol{T}_{n}+\theta \boldsymbol{L}_{n+1}+(1-\theta) \boldsymbol{L}_{n} }  \tag{8.13}\\
& -\overline{\boldsymbol{C}} \frac{\overline{\boldsymbol{T}}_{n+1}-\overline{\boldsymbol{T}}_{n}}{\Delta t}-\overline{\boldsymbol{K}}\left[\theta \overline{\boldsymbol{T}}_{n+1}+(1-\theta) \overline{\boldsymbol{T}}_{n}\right]
\end{align*}
$$

The last line in this equation indicates how the contributions from prescribed temperatures (and hence also prescribed temperature rates) may be calculated: the term

$$
-\overline{\boldsymbol{C}} \frac{\overline{\boldsymbol{T}}_{n+1}-\overline{\boldsymbol{T}}_{n}}{\Delta t}
$$

introduces the contributions of the temperature rates, since the fraction on the right is an approximation of the temperature rate, and the term

$$
-\overline{\boldsymbol{K}}\left[\theta \overline{\boldsymbol{T}}_{n+1}+(1-\theta) \overline{\boldsymbol{T}}_{n}\right]
$$

contributes the effect of prescribed temperatures (in the form of a mixture of temperatures at time $n$ and $n+1$ ).

Now to the question of how to choose the value of $\theta$ : upon closer inspection of equation (8.9) we may conclude that the two choices, $\theta=0$ and $\theta=1$, will lead to Euler methods - the forward (explicit) Euler for the former, and the backward (implicit) Euler for the latter. The value of $\theta=1 / 2$ is known as the Crank-Nicholson method. The explicit Euler method has the limitation of conditional stability, which leads to severe restrictions on the time step. On the other hand, the backward Euler and the Crank-Nicholson are for equations (8.13) unconditionally stable. While the Crank-Nicholson is nominally more accurate than the backward Euler, the latter is often given preference because it tends to eliminate oscillations in the solution.

### 8.2 Transient diffusion: The T3 NAFEMS Benchmark



Fig. 8.1. Heat diffusion through a plate (one-dimensional problem), with time-dependent boundary conditions

This test is recommended by the National Agency for Finite Element Methods and Standards (UK), and it is surprisingly exacting. The domain shown in Figure 8.1. One face is held at $0^{\circ} \mathrm{C}$, the other face experiences sinusoidal variations in temperature. The temperature at $t=32$ seconds 0.02 m under the heated face is sought. It is assumed that the plate is very large compared to its thickness, and the problem may therefore be reduced to one dimension, along the thickness. The implementation of transient heat conduction in SOFEAis in fact dimension independent, and we simply take care to define the various objects properly for a 1-D problem and the rest follows.

The solution is presented in the Matlab script t3nafems ${ }^{1}$. First, the various parameters are defined. Note that the backward Euler method $(\theta=1)$ is selected for the time discretization.

```
0 0 0 1 ~ k a p p a = [3 5 . 0] ; ~ \% ~ c o n d u c t i v i t y ~ m a t r i x ~
0002 cm = 440.5;% specific heat per unit mass
0 0 0 3 ~ r h o = 7 2 0 0 ; \% ~ m a s s ~ d e n s i t y ~
0 0 0 4 ~ c v ~ = c m * ~ r h o ; \% ~ s p e c i f i c ~ h e a t ~ p e r ~ u n i t ~ v o l u m e
0 0 0 5 ~ Q = 0 ; ~ \% ~ u n i f o r m ~ h e a t ~ s o u r c e
0 0 0 6 ~ T a m p l = 1 0 0 ;
0007 Tamb=0;
0 0 0 8 ~ T b a r ~ = @ (t) (T a m p l * s i n (p i * t / 4 0) + ~ T a m b) ; \% h o t ~ f a c e ~ t e m p e r a t u r e ~
0 0 0 9 ~ n u m _ i n t e g - p t s = 2 ; ~ \% ~ q u a d r a t u r e ~
0010 L=0.1;% thickness
0011 dt=0.05; % time step
0 0 1 2 ~ t e n d = ~ 3 2 ; ~ \% ~ l e n g t h ~ o f ~ t h e ~ t i m e ~ i n t e r v a l ~
0 0 1 3 ~ t = 0 ;
0 0 1 4 \text { theta = 1.0; \% generalized trapezoidal method}
0015 online_graphics= }\mp@subsup{}{}{~}\mathrm{ true;% plot the solution as it is computed?
0016 n=100*5;% needs to be multiple of five
```

The mesh is created by block $1 \mathrm{~d}^{2}$, a simple utility which produces a uniformly spaced mesh on the interval $0 \leq x \leq L$. Note that not only the essential boundary conditions are applied to the temperature field, but also the initial condition (which happens to be $0^{\circ} \mathrm{C}$ ).

```
0017 [fens,gcells] = block1d(L,n,1.0); % Mesh
0018 mater = mater_diffusion(struct('conductivity',kappa,\ldots...
0019 'specific_heat',cv,'rho',rho,'source',Q));
0020 feb = feblock_diffusion (struct (...
0021 'mater',mater,...
0022 'gcells',gcells,...
0023 'integration_rule',gauss_rule(1,num_integ_pts)));
0024 geom = field(struct ('name',['geom'], 'dim', 1, 'fens',fens));
0025 tempn = field(struct ('name',['temp'], 'dim', 1,\ldots...
0026 'nfens',get(geom,'nfens')));
0 0 2 7 ~ t e m p n ~ = ~ s e t _ e b c (t e m p n , ~ 1 , ~ 1 , ~ 1 , ~ T b a r (t)) ;
0 0 2 8 ~ t e m p n ~ = ~ s e t _ e b c (t e m p n , ~ n + 1 , ~ 1 , ~ 1 , ~ T a m b) ;
0029 tempn = apply_ebc (tempn);
0030 tempn = numbereqns (tempn);
0031 tempn = scatter_sysvec(tempn,gather_sysvec(tempn)*0+Tamb);
```

The conductivity and capacity matrix are time independent; we compute them once, and henceforth work only with the arrays Km and Cm .

[^15]```
0032 K = start (dense_sysmat, get(tempn, 'neqns'));
0033 K = assemble (K, conductivity(feb, geom, tempn));
0034 Km = get(K,'mat');
0035 C = start (dense_sysmat, get(tempn, 'neqns'));
0036 C = assemble (C, capacity(feb, geom, tempn));
0037 Cm = get(C,'mat');
```

The time stepping begins. First, the temperature boundary conditions are timedependent, which means they have to be set for each pass through the time loop (i.e. for each time instant).

```
0038 Tfifth = [];
0 0 3 9 \text { while t<tend+0.1*dt \% Time stepping}
0046 tempn1 = tempn;
0047 tempn1 = set_ebc(tempn1, 1, 1, 1, Tbar(t+dt));
0048 tempn1 = set_ebc(tempn1, n+1, 1, 1, Tamb);
0049 tempn1 = apply_ebc (tempn1);
```

The thermal loads corresponding to nonzero temperatures and temperature rates are applied next. We may compare the fields that are being passed on lines 0052 and 0054 with (8.13) and the discussion below that equation: The Matlab code is a literal transcription of the formulas. Note that we are directly working with objects of the class field, using operator overload (adding and multiplying fields).

```
0050 F = start (sysvec, get(tempn, 'neqns'));
0051 F = assemble (F, nz_ebc_loads_conductivity(feb, geom, ...
0052 theta*tempn1 + (1-theta)*tempn));
0053 F = assemble (F, nz_ebc_loads_capacity(feb, geom, ...
0054 (tempn1-tempn)*(1/dt)));
0055 Tn=gather_sysvec(tempn);
0056 Tfifth = [Tfifth Tn(n/5+1)];
```

The individual objects in this system of linear equations for $\operatorname{Tn} 1$ are again directly recognizable in formula (8.13).

```
0057 Tn1 = (1/dt*Cm+theta*Km) \ ((1/dt*Cm-(1-theta)*Km)*Tn+\ldots
0058 get(F,'vec'));
0059 tempn = scatter_sysvec(tempn1,Tn1);
0 0 6 0 ~ t = t + d t ;
0061 end
```

The results are summarized in Figure 8.2. The reference solution is $36.6^{\circ} \mathrm{C}$ at the time $t=32$ seconds, and the curve shown in the figure has been obtained with 500 elements through the thickness (yielding $36.16^{\circ} \mathrm{C}$). The solution with 15 elements is seen to be in considerable error. This is somewhat surprising, but a closer look at the behavior of the solution during the time interval of interest shows significant temperature gradients near the hot surface, which perhaps explains why it is so expensive to get an accurate solution.

Fig. 8.2. Heat diffusion through a plate (one-dimensional problem): temperature 0.02 m under the heated face

8.3 Transient cooling in a shrink-fitting application

Shrink fitting is a common manufacturing process used to assemble two parts: Figure 8.3. In our case, the cold part is maintained at $-10^{\circ} \mathrm{C}$ prior to the assembly, while the hot part is at $84^{\circ} \mathrm{C}$. The temperature of the ambient air is $17^{\circ} \mathrm{C}$. The task is to determine how long it will take before the temperature of the hot part drops below $70^{\circ} \mathrm{C}$ (which is given as a manufacturing constraint).

Fig. 8.3. Transient cooling of a shrink-fitted assembly: schematic

The problem is solved by the script shrinkfit ${ }^{3}$. Let us jump directly into the mesh generation: Figure 8.3 shows the two regions, and the boundary edges (note the numbers next to the edges). The mesh is relatively coarse considering the thickness of some of the geometry - only around three elements through the thickness of the hot part. Even so the mesh has almost 2300 triangular elements, and the transient solution takes a couple of minutes.

[^16]```
0017 [fens,gcells,groups,edge_gcells,edge_groups]=targe2_mesher({...
0018 'curve 1 line 0 0 50 0',...
0019 'curve 2 arc 50 0 80 0 center 65-0.001 ',\ldots...
0020 'curve 3 line 80 0 110 0',...
0021 'curve 4 line 110 0 110 50',\ldots...
0022 'curve 5 line 110 50 65 50 ',...
0023 'curve 6 arc 65 50 65 70 center 65.001 60 ',\ldots
0024 'curve 7 line 65 70 110 70',...
0025 'curve 8 line 110 70 110 85',...
0026 'curve 9 arc 110 85 65 120 center 110 120 ',...
0027 'curve 10 line 65 120 0 120',...
0028 'curve 11 line 0 120 0 85',...
0029 'curve 12 arc 0 85 0 35 center -0.001 60 rev',\ldots.
0030 'curve 13 line 0 35 0 0',...
0031 'curve 14 line 110, 50, 160, 50',\ldots
0032 'curve 15 line 160, 50, 160, 70',\ldots
0033 'curve 16 line 160, 70, 110, 70',\ldots
0034 ['subregion 1 property 1 boundary '...
0035 , 1 2 3 4 5 6 7 8 9 10 11 12 13'],\ldots...
0036 ['subregion 2 property 2 boundary '...
0037 , -5 -6 -7 14 15 16'],\ldots
0038 ['m-ctl-point constant 3']
0039 }, 1.0);
```

For the edges that separate the metal from the air, elements to be used in the surface heat transfer needs to be generated (finite element block efeb). Note that the interior edges are omitted.

```
0 0 4 3 ~ f e b _ s t e e l ~ = ~ f e b l o c k < d i f f u s i o n ~ (s t r u c t ~ (' m a t e r ' , m a t e r _ s t e e l , \ldots . . .
0049 feb_tungsten = feblock_diffusion (struct ('mater',mater_tungsten,...
0 0 5 2 ~ e d g e _ g c e l l s = e d g e _ g c e l l s ([e d g e \ g r o u p s \{ [(1 : 4) ~ (8 : 1 6)] \}]) ;
0053 efeb = feblock_diffusion (struct ('mater',mater_steel,\ldots
0054 'gcells',edge_gcells,...
0055 'integration_rule',gauss_rule(1,num_integ_pts),\ldots
0056 'surface_transfer', h));
```

The ambient temperature is defined in the field amb. The temperature is applied at the nodes associated with the boundary edges in the loop (line 0063).

```
0060 amb = clone(tempn, ['amb']);
0061 for i= 1:length(edge_gcells)
0062 conn = get(edge_gcells(i),'conn');
0063 amb = set_ebc(amb, conn, conn*0+1, [], conn*0+Ta);
0064 end
```

0065 amb = apply_ebc (amb);
The time stepping loop is almost identical to the example in Section 8.2, except the thermal load vector is based on the convective surface heat transfer.

0115

```
F=assemble(F, surface_transfer_loads(efeb,geom,tempn,amb));
```

The evolution of the lowest and highest temperature in the entire assembly is shown in Figure 8.4: the highest temperature drops below $70^{\circ} \mathrm{C}$ after around 13 seconds. Obviously, we are not addressing the issue of accuracy, neither in the resolution afforded by the mesh, nor in the selection of the time step. However, the time measurements in an actual manufacturing process are not likely to be accurate to more than half a second.


Fig. 8.4. Transient cooling of a shrink-fitted assembly: time evolution of the lowest and highest temperature in the assembly

## Expanding the library of element types

The linear triangle T3 is not particularly accurate, but for the linear heat diffusion problem it is quite adequate. Nevertheless, we will introduce another couple of elements to expand the scope of the approximation methods discussed so far. This is desirable from a couple of different viewpoints. Firstly, with the linear triangle we have been able to construct basis functions which allow for linear variations in temperature to be represented exactly. Hence, if the exact solution is a constant gradient of temperature, the approximate solution does not involve any discretization error. Unfortunately, the usefulness of this is limited, since constant gradients of temperature are not commonly encountered in applications. If the basis functions can represent higher-order polynomials, for instance quadratic, the resulting method will be able to represent more complex gradients of temperature: linear, in the case of the quadratic variation of temperature. To oversimplify a little bit, the more complex the temperature variations that are reproduced without error, the higher the overall accuracy of the scheme.

Secondly, introducing different element types may enable us to play games with different quadrature schemes. One view of the finite element method could put the basis function above all: the elements are there only to integrate all the expressions that involved the basis functions and their derivatives as accurately as possible (exactly?). However,

### 9.1 Quadratic triangle T6

The triangle T6 makes it possible to design basis functions that can reproduce quadratic variations of the temperature. More precisely, it will do that in the terms of the coordinates on the standard triangle. As we shall see, the map from the standard triangle will also allow for quadratic temperature variation in the physical space, but more generally it will lead to rational expressions.

The first task will be to formulate the basis functions on the standard triangle, Figure 9.1. To be able to write down a polynomial for a particular basis function that is quadratic in $\xi, \eta$, six coefficients will be needed. To determine these coefficients, we will make use of the common device of equipping the basis functions with the


Fig. 9.1. Standard quadratic triangle.

Kronecker delta property (2.19). Let us start with the basis function $N_{2}=a_{0}+a_{1} \xi+$ $a_{2} \eta+a_{3} \xi \eta+a_{4} \xi^{2}+a_{5} \eta^{2}:$ writing

$$
N_{2}\left(\xi_{k}, \eta_{k}\right)=\delta_{2 k}, \quad \text { for } k=1,, 6
$$

at all six nodes (see Table 9.1), provides us with six equations from which the six coefficients may be determined. That is however tedious and boring: let us use commonsense and guesswork instead. Drawing the standard triangle plane while looking along the $\eta$ axis we see that three and two nodes respectively align, which obviously makes it possible to make the function $N_{2}$ equal to zero in these two locations, and equal to one at node 2 with a Lagrange polynomial

$$
N_{2}=\frac{(\xi-0)(\xi-1 / 2)}{(1-0)(1-1 / 2)}=\xi(2 \xi-1)
$$

Similarly, in the other direction we have for $N_{3}=\eta(2 \eta-1)$.


Fig. 9.2. Standard quadratic triangle: one-dimensional view of basis function $N_{2}$.

To approach the construction of the other basis functions, we note that both $N_{2}$ and $N_{3}$ may be written as the normalized product of planes: for $N_{2}$ the two planes are $\widehat{p}_{2}(\xi, \eta)=\xi$ and $\widetilde{p}_{2}(\xi, \eta)=\xi-1 / 2$, and $N_{2}$ is written as

$$
N_{2}=\frac{\widehat{p}_{2}(\xi, \eta) \widetilde{p}_{2}(\xi, \eta)}{\widehat{p}_{2}(1,0) \widetilde{p}_{2}(1,0)}=\xi(2 \xi-1) .
$$

Similarly for $N_{3}$ and $N_{1}$ : the recipe is to find two planes that go through three nodes and two nodes respectively (but not through the node at which the function is supposed to be equal to one), and normalize their product. For $N_{1}$ the planes are $\widehat{p}_{1}(\xi, \eta)=1-\xi-\eta$ (this is the same $N_{1}$ as in (6.14)) and $\widetilde{p}_{1}(\xi, \eta)=1-2 \xi-2 \eta$ (compare with Figure 9.3)

$$
N_{1}=(1-\xi-\eta)(1-2 \xi-2 \eta) .
$$

| Coordinate | Node 1 | Node 2 | Node 3 | Node 4 | Node | Node 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\xi$ | 0 | 1 | 0 | $1 / 2$ | $1 / 2$ | 0 |
| $\eta$ | 0 | 0 | 1 | 0 | $1 / 2$ | $1 / 2$ |

Table 9.1. Standard quadratic triangle: locations of the nodes

For the mid-edge nodes, $4,5,6$, we find planes that pass through two triples of nodes. For instance, for node 6 (see Figure 9.3), the two planes are $\widehat{p}_{6}(\xi, \eta)=1-\xi-\eta$ and $\widetilde{p}_{6}(\xi, \eta)=\eta$ (same as $N_{3}$ as in (6.13)

$$
N_{6}=4(1-\xi-\eta) \eta .
$$



Fig. 9.3. Standard quadratic triangle: Basis functions $N_{2}, N_{1}$, and $N_{6}$.

### 9.2 Quadratic 1-D element L3

### 9.3 Point element P1

Browsing the classes/gcell folder, one may notice the gcell_X_manifold class folders with $\mathrm{X}=0,1,2,3$. All SOFEA geometric cells are of certain so-called manifold
dimension: solids are of manifold dimension 3 , surfaces are of dimension 2 , while curves and points are of dimensions 1 and 0 . Since we commonly solve heat diffusion (and other problems) in domains that are solids, surfaces, and curves, we also have to deal with integration over the boundaries of these domains; these are, correspondingly, surfaces, curves, and points.

When the heat diffusion problem was being formulated in two-dimensional domains in Section 6, the discrete domain consisted of triangles (elements T3), and the discrete boundary consisted of line segments (elements L2). Analogously, when the heat diffusion is solved in a one-dimensional domain (interval of the real line) which is covered by elements L2, the boundary consists of two points: hence the need for elements of type P1.

Evaluating the integrals of the surface heat transfer matrix (6.29) and the surface heats transfer load (6.28) (and also the prescribed heat flux load (6.27)) over the boundary on interval on the real line simply means taking the values of the integrants at the end points. In terms of a quadrature formula applied at the boundary point $a$ (analogous to (2.24)),

$$
f(a) \approx f\left(\xi_{1}\right) J\left(\xi_{1}\right) W_{1}
$$

which is going to give the expected results with $\xi_{1}=0, f\left(\xi_{1}\right)=f(a), W_{1}=1$, and the Jacobian $J\left(\xi_{1}\right)=1$. The quadrature rule with these properties is point_rule, and a sample script to use this type of evaluation of boundary integrals for one-dimensional heat diffusion problems is transcool ${ }^{1}$.

Programming remark: With the introduction of the element P1, a closure is achieved: the same code will now work for heat diffusion problems solved on onedimensional, two-dimensional, and three-dimensional domains. The programming principles of object-oriented design that are in action here are polymorphism (the methods operate on objects in different types uniformly), and dynamic dispatch (an appropriate method is selected based on the class of the object on which it is invoked).

### 9.4 Measuring (integrating) over domains

The uniform treatment of the manifold dimension of the domain allows us to produce dimension-independent code. Therefore, integration of any scalar function over any domain or subdomain is carried out by a single method of the class feblock. Consider as an example the geometry of a cylinder, the volume tiled with tetrahedra, the bounding surface covered with triangles, the edges of the cylindrical faces approximated with straight two-node segments, and one node at each vertex of the mesh. We may integrate over the volume of the 3-D mesh to find and approximation of the volume of the original cylinder; or over the length of a single edge to approximate the circumference; or over the area of one circular face to find an approximation of the cross-sectional area; or to count all the nodes on the cylindrical surface when we integrate over all the vertices of the triangles on that surface.

[^17]

Fig. 9.4. Geometry of a cylinder.

The method measure of the class feblock evaluates the integral

$$
\begin{equation*}
\int_{V_{n}} f(\boldsymbol{x}) \mathrm{d} V_{n} \tag{9.1}
\end{equation*}
$$

where $V_{n}$ is the volume of an $n$-dimensional manifold ( $n=0,1,2,3$ ). The method takes as arguments the geometry field (evidently, the volume of any discrete manifold is going to depend on the locations of its vertices), and a function handle.

```
0 0 1 3 \text { function result = measure } { } ^ { 2 } \text { (self, geom, varargin)}
0014 gcells =self.gcells;
0015 ngcells = length(self.gcells);
0 0 1 6 ~ \% ~ I n t e g r a t i o n ~ r u l e
0017 integration_rule = get(self, 'integration_rule');
0018 pc = get(integration_rule, 'param_coords');
0019 w = get(integration_rule, 'weights');
0020 npts_per_gcell = get(integration_rule, 'npts');
```

When the function handle is not supplied, it is assumed that the function to be integrated over the manifold is $f(\boldsymbol{x})=+1$; otherwise, it can be for instance the location-dependent mass density. There are a number of uses to which this method could be applied: as an example consider the calculation of the moments of inertia, or calculation of the centroid.

```
0021 if nargin >=3
```

0022 fh =varargin\{1\};
0023 else
0024 fh =@(x) (1);
0025 end

Loop over all geometric cells: collect the geometry from the supplied field.
0026 result $=0$;
0027 \% Now loop over all gcells in the block

[^18]```
for i=1:ngcells
    conn = get(gcells(i), 'conn'); % connectivity
    x = gather(geom, conn, 'values', 'noreshape');
```

Each type of a geometric cell must provide functions for calculating the basis functions and the derivatives of the basis functions with respect to the parametric coordinates.

0031

```
% Loop over all integration points
for j=1:npts_per_gcell
    N = Nmat(gcells(i), pc(j,:));
    Nder = Ndermat_param (gcells(i), pc(j,:));
```

Finally, evaluate the Jacobian, and accumulate the result using the numerical quadrature rule. It needs to be realized that again the function Jacobian is dispatched dynamically, to be treated differently in dependence on the dimension of the manifold. The second argument to Jacobian is an array of the tangent vectors to the parametric coordinates as columns.

0035
0036
0037
0038
0039 end
0040 end
As an example, here is the Jacobian method for a two-dimensional manifold (a surface). The number of space dimensions of the space sdim in which the manifold is embedded could be 2 (the manifold is just a piece of the Euclidean plane), or 3 (the manifold is then a piece of surface). The number of tangents must be 2 (compare with (6.43), and refer to Figure 9.5): they are

$$
\frac{\partial \boldsymbol{x}(\xi, \eta)}{\partial \xi}, \quad \text { and } \quad \frac{\partial \boldsymbol{x}(\xi, \eta)}{\partial \eta}, .
$$

The Jacobian is the length of the cross product of the two tangents (refer to the Figure 6.9). Here, the cross product is expressed through a skew-symmetric matrix.

```
0 0 1 0 ~ f u n c t i o n ~ d e t J ~ = ~ J a c o b i a n ~ ( s e l f , ~ t a n g e n t s )
0011 [sdim, ntan] = size(tangents);
0012 if ntan==2 % 2-D gcell
0013 if sdim==ntan
0014 detJ = det(tangents);% Compute the Jacobian
0015 else
0016 detJ = norm(skewmat(tangents(1))*tangents(2));
0 0 1 7 ~ e n d
0 0 1 8 ~ e l s e
    3}\mathrm{ Folder: SOFEA/classes/gcell/@gcell_n_manifold, }n=0,1,2,
    4}\mathrm{ Folder: SOFEA/classes/gcell/@gcell_2_manifold
```

 end

Fig. 9.5. Surface with the coordinate curves and tangents

9.5 Tetrahedron T4

The tetrahedron with four nodes at the corners (element T4) is a straightforward extension of the triangle T3. The standard tetrahedron is shown in Figure 9.6. The basis functions in the parametric coordinates are designed to be linear functions of ξ, η, ζ, and there are four corners at which to use the Kronecker delta property. It is straightforward to deduce that

$$
\begin{equation*}
N_{1}(\xi, \eta, \zeta)=1-\xi-\eta-\zeta, \quad N_{2}(\xi, \eta, \zeta)=\xi, \quad N_{3}(\xi, \eta, \zeta)=\eta, N_{4}(\xi, \eta, \zeta)=\zeta \tag{9.2}
\end{equation*}
$$

Fig. 9.6. Standard tetrahedron

Rule	Coordinates $\xi_{j}, \eta_{j}, \zeta_{j}$	Weights W_{j}	Integrates exactly
1-point	$1 / 4,1 / 4,1 / 4$	$1 / 6$	linear polynomial
	$0.1381966,0.1381966,0.1381966$	$0.041 \overline{6}$	
4 4-point	$0.5854102,0.1381966,0.1381966$	$0.041 \overline{6}$	
	$0.1381966,0.5854102,0.1381966$	$0.041 \overline{6}$	quadratic polynomial
	$0.1381966,0.1381966,0.5854102$	$0.041 \overline{6}$	

Table 9.2. Numerical integration rules on the standard tetrahedron

The four basis functions of the tetrahedron each vanish along the opposite face (basis function N_{i} on the face opposite node i and so on). The remaining three vary along this face exactly as if it was a triangle T3. The situation is entirely analogous to the one discussed in Section 6.9 for the triangle T3 and the line segment L2. Therefore, evaluation of the surface heat transfer contributions is simply performed using geometric cells of type T3.

The script helixcooled ${ }^{5}$ illustrates a solution with a full 3-D geometry discretized with the T4 tetrahedra. The problem is to determine steady state surface temperature for a helical spring, with variable cross-section- see Figure 9.7. The thick end is maintained at constant temperature, and on the rest of the surface there's convection cooling.

Fig. 9.7. The cooling of a helical spring.

The mesh is a simple regular block tiled with tetrahedra, but it is then shaped by moving nodes to different locations using the utility transform_apply, first by changing its cross-section, and then by shifting all nodes in the y-direction. Finally, the shape is twisted into a helix using transform_2_helix.

```
0 0 0 8 ~ [ f e n s , g c e l l s ] ~ = ~ t 4 b l o c k ( A n g l e , W i d t h , H e i g h t , ~ 5 0 , ~ 6 , ~ 4 ) ;
0 0 0 9 ~ R a d i u s ~ = ~ 1 . 2 ;
0010 fens=transform_apply(fens,...
    @(x,data)(x.*[1,(1-x(1)/Angle/1.2),1]),[]);
```

[^19]```
0011 fens=transform_apply(fens,@(x,data)(x+ [0,Radius,0]), []);
0012 climbPerRevolution= 1.3;
0 0 1 3 ~ f e n s ~ = ~ t r a n s f o r m _ 2 h e l i x (f e n s , c l i m b P e r R e v o l u t i o n) ; ~
```

The surface mesh consists of triangles T3, and is extracted from the tetrahedral mesh using the utility mesh_bdry. The surface mesh is immediately drawn with drawmesh.

```
0 0 1 4 ~ b g c e l l s = m e s h _ b d r y (g c e l l s) ;
0 0 1 5 \text { drawmesh(\{fens,bgcells\},'gcells','facecolor','red')}
```

Next, the finite element blocks for the tetrahedral elements in the volume and the triangular elements on the surface are created. Note that the two blocks use different quadrature rules, tet_rule for the tetrahedra, and tri_rule for the triangles; both use just one integration point.

```
0017 feb = feblock_diffusion (struct ('mater',mater,...
0018 'gcells',gcells,...
0019 'integration_rule',tet_rule(num_integ_pts)));
0020 bfeb = feblock_diffusion (struct ('mater',mater,\ldots...
0021 'gcells',bgcells,\ldots..
0022 'integration_rule',tri_rule(num_integ_pts),\ldots
0023 'surface_transfer', h));
```

From this point on, the script does not depend on the element types, be it the calculation of the system matrices, or graphics output.

### 9.6 On the simplex elements

The point P 1 , the segment L 2 , the triangle T 3 , and the tetrahedron T 4 , are all examples of the so-called simplex elements. By definition, an $n$-dimensional simplex is the convex hull of $n+1$ points (vertices) in the $n$-dimensional space. Tiling domains with simplex elements is attractive, because a number of mathematical properties guarantees the success of automatic tools for mesh generation. This is to be contrasted with the generation of quadrilaterals in two dimensions, and of bricks (shapes bounded by six quadrilateral faces) in three dimensions: not an easy task, where mesh generators often fail to produce good-quality meshes, or where they often just fail.

While the simplex elements perform adequately in the heat conduction models, in other types of analyses their inherent simplicity tends to work against them. For instance, as we shall see in linear elasticity the response of meshes composed of simplex elements is quite poorly represented - they are "too stiff".

### 9.7 Quadrilateral Q4

### 9.8 Hexahedron H8

## Convergence and error control

### 10.1 First look at errors



Fig. 10.1. The effect of a reentrant corner on the flux.


Fig. 10.2. The effect of a reentrant corner on the flux: close-up.

### 10.2 Richardson extrapolation

Richardson extrapolation is a way of extracting an asymptotic estimate of some quantity of interest from a series of computed values for it. If we assume that the error in the quantity $q$ may be expanded in a Taylor series at mesh size $h=0$, we may write the error in the remainder form as

$$
\begin{equation*}
E_{q}(h)= \tag{10.1}
\end{equation*}
$$

### 10.3 The T4 NAFEMS Benchmark revisited

This problem has been discussed in Section 7.4. Cameron, Casey, and Simpson [CCS] cite the reference value for the temperature at the point indicated in Figure 7.5 of $18.3^{\circ} \mathrm{C}$. However, more recent investigations of this benchmark indicate that value of $18.25^{\circ} \mathrm{C}$ should be expected [IL05]. Let us check these numbers.

Two models will be used, the first using elements T3, and the second using the more accurate quadratic elements T6.
18.25396


Fig. 10.3. T4 NAFEMS Benchmark: solution with quadratic elements, initial and final mesh.

### 10.4 Shrink fitting revisited

Figure 10.5 shows the temperature distribution at three time instants. The extremely high gradient at the beginning is evident, but in fact high temperature gradients exist even at the end of the process.

As you recall, the heat flux is derived from the temperature (equation (5.14)). The finite element approximation with the triangles (T3) and with the line elements (L2) will be able to reproduce linearly varying temperatures, hence constant temperature gradients (i.e. heat flux). Therefore, we will conclude that where the heat flux changes, the finite element approximation will be in error. To control the error, we can reduce


Fig. 10.4. T4 NAFEMS Benchmark: solution with quadratic elements, initial and final mesh.


Fig. 10.5. Transient cooling of a shrink-fitted assembly; left to right: temperature distribution for time $t=0,2,13$
the element dimensions. Doing so in areas of steep changes in the heat flux, while keeping areas with approximately uniform heat flux tiled with coarse elements, is known as adaptive mesh control.

Figure 10.6 shows the heat flux on two meshes as arrows centered at the barycenters of the elements (barycenter here means average of the vertex locations). The first mesh is quite coarse (script shrinkfitad1 ${ }^{1}$ ), but it is possible to identify regions in which the gradient changes strongly (next to the tungsten inset); the adaptive mesh is generated to reflect the demand for finer (smaller) elements (script shrinkfitad2 ${ }^{2}$ ).

The temperature evolution obtained with the two meshes, the coarse one, and the adaptively refined one, is illustrated in Figure 10.7, and the higher-quality of the adaptive results should be noted: especially striking is the spurious oscillation of the lowest temperature for the coarse mesh.

[^20]

Fig. 10.6. Transient cooling of a shrink-fitted assembly; left: coarse mesh, right: adaptive mesh. Heat flux for time $t=2$


Fig. 10.7. Transient cooling of a shrink-fitted assembly: time evolution of the lowest and highest temperature in the assembly. Comparing temperatures obtained with a coarse model (dashed lines) and with an adaptively refined model (solid lines).

## Model of elastodynamics

### 11.1 Balance of linear momentum

From elementary dynamics we can apply Newton's equation of motion for a particle, $\dot{\boldsymbol{v}}=m \boldsymbol{F}$, where $\dot{\boldsymbol{v}}$ is the particle acceleration, $m$ is the particle mass, and $\boldsymbol{F}$ is the applied force. The complicating circumstance is that a deformable body can be thought of as a collection (of infinitely many) particles, all interacting through contact. Evidently, our goal is to formulate a continuum model rather than deal with the discrete collection of particles.

Let us consider a body with some distributed force on parts of the boundary (the reactions must be included) and distributed force in the volume (for instance, gravityinduced load). For simplicity, we draw a sketch in two dimensions, but obviously we are thinking of a three-dimensional body; see Figure 11.1. The distributed force on the boundary is therefore in units force/length ${ }^{2}$, and units of the distributed force in the volume are force/length ${ }^{3}$. The distributed force on the boundary is customarily called the traction.


Fig. 11.1. A continuous body with applied distributed force on the boundary, and within the volume (on the left). The same body cut up into many small volumes (particles), with their interaction represented by distributed forces along the cuts (on the right).

The continuous body will be now divided into many very small (infinitesimally small) volumes, which we may consider "particles". The interaction between the particles is occurring through contact forces (tractions) along the cuts between the particles. Assuming we know these forces, the Newton's equation may be applied to each separately. However, we will apply this equation in the form of the change of linear momentum

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(m \boldsymbol{v})=\boldsymbol{F}
$$

from which the previous form of the equation of motion may be obtained provided $m$ does not change. In our case, this will be true because each small volume holds a certain amount of material and does not exchange material with any other volume, so of the mass of each volume is conserved.

As a consequence of the above, we may write for each small particle volume $j$ the change of its linear momentum

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{j} \boldsymbol{v}_{j}\right)=\boldsymbol{F}_{j} \tag{11.1}
\end{equation*}
$$

where we may write for the mass of the particle $m_{j}=\rho V_{j}$, with $V_{j}$ the volume of the particle, and $\rho$ the mass density, $\boldsymbol{x}_{j}$ the velocity, all at some point within the volume of the particle (we are using the mean-value theorem to express integrals over the volume of the particle!). The force $\boldsymbol{F}_{j}$ includes the body force $\overline{\boldsymbol{b}}$ and the tractions $\boldsymbol{t}$ on the surface of the particle volume

$$
\begin{equation*}
\boldsymbol{F}_{j}=\overline{\boldsymbol{b}} V_{j}+\int_{S_{\text {int }}} \boldsymbol{t} \mathrm{d} S+\int_{S_{\text {ext }}} \boldsymbol{t} \mathrm{d} S \tag{11.2}
\end{equation*}
$$

where the surface integral is split into two parts (see Figure 11.2): the interior surfaces $S_{\text {int }}$, where two particle volumes are separated, and the exterior surfaces $S_{\text {ext }}$.


Fig. 11.2. Isolated particle volume.

Now we will collect the contributions of equation (11.1) by summing over all the particles

$$
\begin{equation*}
\sum_{j=1}^{N} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(m_{j} \boldsymbol{v}_{j}\right)=\sum_{j=1}^{N} \boldsymbol{F}_{j} \tag{11.3}
\end{equation*}
$$

which may be rewritten of the limit of infinitely many particles as integrals

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{m} \boldsymbol{v} \mathrm{~d} m=\int_{V} \boldsymbol{b} \mathrm{~d} V+\int_{S_{\mathrm{ext}}} \boldsymbol{t} \mathrm{~d} S+\sum_{j=1}^{\infty} \int_{S_{\mathrm{int}, j}} \boldsymbol{t} \mathrm{~d} S \tag{11.4}
\end{equation*}
$$

where the last term (the sum) is over all the shared surfaces that separate the particle volumes. Using Newton's third law of action and reaction, we may conclude that whenever two particle volumes share a piece of their boundary, the traction at the material point $A$ on the surface of particle 1 is equal in magnitude but opposite to the traction at the same material point (the one that has been split by the cut separating the two particles) at the corresponding point $A$ on the surface of particle 2. Since the sum is over all the pairs of such surfaces, the last term in the equation (11.5) cancels, and the final statement of the balance of linear momentum of the material in the volume $V$ reads

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{m} \boldsymbol{v} \mathrm{~d} m=\int_{V} \boldsymbol{b} \mathrm{~d} V+\int_{S} \boldsymbol{t} \mathrm{~d} S \tag{11.5}
\end{equation*}
$$

where $m$ is the total mass of the material inside the volume $V$, and $S$ is the bounding surface of the volume $V$. While the surface $S$ and the volume $V$ change with deformation, and hence are time-dependent, the total mass of the material $m$ does not change (the same particles that were inside the volume before deformation are there during the deformation).

### 11.2 Stress

The traction vector $t$ may be written in terms of components in a surface-aligned Cartesian basis as $\boldsymbol{t}=t_{n} \boldsymbol{n}+t_{1} \boldsymbol{e}_{1}+t_{2} \boldsymbol{e}_{2}$, where $t_{n}$ is the normal component, and $t_{k}$ are the shear components. The Cartesian basis is defined at the given point on the surface by first taking the (outer, unit) surface normal as the third basis vector, and then picking arbitrary orthogonal directions in the tangent plane- see Figure 11.3. The normal component is obtained as

$$
t_{n}=\boldsymbol{n} \cdot \boldsymbol{t}
$$

The shear part of the traction $\boldsymbol{t}_{s}$ is obtained by subtracting the normal part of the traction from the traction vector $\boldsymbol{t}$

$$
\boldsymbol{t}_{s}=\boldsymbol{t}-t_{n} \boldsymbol{n}
$$

The task before us now is to relate the traction on the surface to the deformation of the material just below the surface. The deformation will be measured by strains, and the response of the material to the strains will be related to to the tractions on


Fig. 11.3. Components of traction.
the surface (and any body loads, if present) through the mathematical device of the stress.

First, inspect Figure 11.4: it is possible to define such a Cartesian coordinate system in the vicinity of a given point that the coordinate planes will cut out a (curvilinear) tetrahedron from the solid. Our plan is to make this tetrahedron very small indeed, but still containing the given point on the surface. An enlarged image of such a tetrahedron is shown on the right, and we see how the curved edges may be approximated by straight lines in the limit of very small tetrahedron. The goal is to relate the traction at the given point to the tractions on the internal cut planes, because these tractions are representative of the deformation of the material in the volume.


Fig. 11.4. Relating the components of traction to stress.

In anticipation of the definition of stress, the traction components on the three flat cut planes, with normals pointing against the three Cartesian basis vectors, are called $\sigma_{x}, \sigma_{y}, \sigma_{z}$ (the normal components), and $\tau_{x y}, \tau_{y x}, \tau_{x z}, \tau_{z x}, \tau_{y z}, \tau_{z y}$, for the shear
components on all three planes. The areas of the triangular faces of the tetrahedron are related as $A_{x}=n_{x} A$, and so forth, where $n_{x}, n_{y}, n_{z}$ are the components of the unit normal, and $A_{x}$ is the area perpendicular to the $x$-axis and so on; this can be deduced from the volume of the tetrahedron in Figure 11.5.


Fig. 11.5. Components of traction.

When we write the conditions of equilibrium in all three directions (the volume forces do not play a role; why?), the following three equations result

$$
\begin{align*}
& t_{x}=\sigma_{x} n_{x}+\tau_{x y} n_{y}+\tau_{x z} n_{z} \\
& t_{y}=\tau_{y x} n_{x}+\sigma_{y} n_{y}+\tau_{y z} n_{z}  \tag{11.6}\\
& t_{z}=\tau_{z x} n_{x}+\tau_{z y} n_{y}+\sigma_{z} n_{z}
\end{align*}
$$

This equation relates the components of the traction on the surface with the components of the traction on the special surfaces - coordinate planes - inside the volume. The components of the traction on the internal surfaces are called normal stresses $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$, and shear stresses $\left(\tau_{x y}, \tau_{y x}, \tau_{x z}, \tau_{z x}, \tau_{y z}, \tau_{z y}\right)$. The form of equation (11.6) suggests the matrix expression

$$
\left[\begin{array}{c}
t_{x}  \tag{11.7}\\
t_{y} \\
t_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right]\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right]
$$

where all matrices hold components in the Cartesian basis. A component-free version would read

$$
\boldsymbol{t}=\boldsymbol{\Sigma} \cdot \boldsymbol{n}
$$

where $\boldsymbol{\Sigma}$ would be defined as a Cartesian tensor, the Cauchy stress tensor. The traction vector and the normal would then also become tensors. However, in this book the tensor notation is avoided, and with a few exceptions tensors will not be needed. The two exceptions that may be mentioned here, are coordinate transformations and the calculation of the principal stresses which are the eigenvalues of the matrix of the stress components. The principal direction components and the principle stress $\sigma$ are solved for from the two equations

$$
\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z}  \tag{11.8}\\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right]\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right]=\sigma\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right],
$$

and

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z}  \tag{11.9}\\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right]-\sigma\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0 .
$$

Balance of angular momentum and stress symmetry.
It would appear that there are nine components of the stress that need to be related to the deformation, but it is straightforward to show that in the matrix (11.7) the offdiagonal elements must be equal: Consider a rectangular volume of material (again, for convenience the drawing in Figure 11.6 is of a two-dimensional nature, but the argument applies to three dimensions). When the balance of angular momentum is written for the rotation about the axis perpendicular to the plane of the paper, the normal stresses and any body forces will turn out to be negligible compared to to the effect of the shear stresses, and from the resultant equation we obtain the symmetries

$$
\begin{equation*}
\tau_{x y}=\tau_{y x}, \quad \tau_{x z}=\tau_{z x}, \quad \tau_{y z}=\tau_{z y} \tag{11.10}
\end{equation*}
$$



Fig. 11.6. Components of traction.

Consequently, there is only six components of the stress that are independent. It will be convenient to manipulate these six components as a vector (as opposed to a tensor)

$$
\begin{equation*}
[\boldsymbol{\sigma}]=\left[\sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{x y}, \tau_{x z}, \tau_{y z}\right]^{T} . \tag{11.11}
\end{equation*}
$$

Equation (11.6) may be rewritten in terms of the stress vector $\boldsymbol{\sigma}$ as

$$
\begin{equation*}
\boldsymbol{t}=\mathcal{P}_{\boldsymbol{n}} \sigma, \tag{11.12}
\end{equation*}
$$

where the matrix "vector-stress vector dot product" operator is defined as

$$
\mathcal{P} \boldsymbol{n}=\left[\begin{array}{cccccc}
n_{x} & 0 & 0 & n_{y} & n_{z} & 0  \tag{11.13}\\
0 & n_{y} & 0 & n_{x} & 0 & n_{z} \\
0 & 0 & n_{z} & 0 & n_{x} & n_{y}
\end{array}\right] .
$$

Equation (11.12) may be used in a variety of ways: any of the three quantities may be given, which would then for another quantity being fixed produce the third as the result. Most useful are the two possibilities: $\boldsymbol{t}$ given, produce the stress vector in dependence on the normal; and $\boldsymbol{\sigma}$ given, produce the surface tractions for various normals.

### 11.3 Local equilibrium

In complete analogy to the model of heat conduction, the global balance equation (11.5) (in this case, balance of linear momentum, for the heat conduction it was balance of heat energy (5.4)) needs to be converted to a local form. The local form would express dynamic equilibrium of an infinitesimal particle as an equation that holds at a point.

### 11.3.1 Change of linear momentum

There are three terms in the global balance (11.5), and to produce the local form we'll have to convert all three integrals to volume integrals. The first one involves the time derivative of the integral

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{m} \boldsymbol{v} \mathrm{~d} m
$$

However, that causes no difficulties since the mass $m$ inside the volume $V$ does not change with time. Therefore,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{m} \boldsymbol{v} \mathrm{~d} m=\int_{m} \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t} \mathrm{~d} m \tag{11.14}
\end{equation*}
$$

Introducing the mass density $\rho$ (which as mass per unit volume depends on the deformation, and hence varies with time), we may write $\mathrm{d} m=\rho \mathrm{d} V$ and

$$
\begin{equation*}
\int_{m} \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t} \mathrm{~d} m=\int_{V} \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t} \rho \mathrm{~d} V \tag{11.15}
\end{equation*}
$$

### 11.3.2 Stress divergence

The divergence theorem may be now applied to the third term in (11.5), that is to the surface integral. However, introducing the abstract symbol for the divergence of stress generates more questions than answers. We will get to the form of the divergence theorem that will work for us in this book in a roundabout way.

Consider a small volume (parallelepiped) with faces parallel to coordinate planes of the global Cartesian basis (Figure 11.7, and refer also to Figure 11.1); for simplicity,
the box is drawn as two-dimensional, and it is drawn twice so that we can display the normal and the shear stresses separately. The center of the box is at $x, y, z$, and the stress components may be expanded into a truncated Taylor series. For instance,

$$
\begin{aligned}
\sigma_{x}(x+\xi \Delta x, y+\eta \Delta y, z+\zeta \Delta z) \approx & \sigma_{x}(x, y, z)+\frac{\partial \sigma_{x}(x, y, z)}{\partial x} \xi \Delta x \\
& +\frac{\partial \sigma_{x}(x, y, z)}{\partial y} \eta \Delta y+\frac{\partial \sigma_{x}(x, y, z)}{\partial z} \zeta \Delta z
\end{aligned}
$$

where $-1 \leq \xi \leq+1,-1 \leq \eta \leq+1$, and $-1 \leq \zeta \leq+1$.


Fig. 11.7. Components of traction.

As you can see, the box is loaded only by the fractions on its boundary, there are no body loads. Equilibrium in the $x$-direction requires integration of the stress $\sigma_{x}$ over the particle sides of the box, $\tau_{x y}$ over the horizontal sides, and $\tau_{x z}$ over the faces parallel to the plane of the paper. For instance, integrating $\sigma_{x}$ over the side at $\xi=1$ leads to

$$
\begin{gathered}
\Delta y \Delta z \int_{-1}^{+1} \int_{-1}^{+1} \sigma_{x}(x+\Delta x, y+\eta \Delta y, z+\zeta \Delta z) \mathrm{d} \eta \mathrm{~d} \zeta \approx \\
\Delta y \Delta z \int_{-1}^{+1} \int_{-1}^{+1}\left[\sigma_{x}(x, y, z)+\frac{\partial \sigma_{x}(x, y, z)}{\partial x} \Delta x\right. \\
\left.\quad+\frac{\partial \sigma_{x}(x, y, z)}{\partial y} \eta \Delta y+\frac{\partial \sigma_{x}(x, y, z)}{\partial z} \zeta \Delta z\right] \mathrm{d} \eta \mathrm{~d} \zeta
\end{gathered}
$$

The terms with $\eta$ and $\zeta$ integrate to zero, and the result is

$$
4 \Delta y \Delta z\left[\sigma_{x}(x, y, z)+\frac{\partial \sigma_{x}(x, y, z)}{\partial x} \Delta x\right]
$$

Next, integrating $\sigma_{x}$ over the side at $\xi=-1$ leads to

$$
\begin{gathered}
\Delta y \Delta z \int_{-1}^{+1} \int_{-1}^{+1}-\sigma_{x}(x+\Delta x, y+\eta \Delta y, z+\zeta \Delta z) \mathrm{d} \eta \mathrm{~d} \zeta \approx \\
\Delta y \Delta z \int_{-1}^{+1} \int_{-1}^{+1}\left[-\sigma_{x}(x, y, z)+\frac{\partial \sigma_{x}(x, y, z)}{\partial x} \Delta x\right. \\
\left.-\frac{\partial \sigma_{x}(x, y, z)}{\partial y} \eta \Delta y-\frac{\partial \sigma_{x}(x, y, z)}{\partial z} \zeta \Delta z\right] \mathrm{d} \eta \mathrm{~d} \zeta
\end{gathered}
$$

The terms with $\eta$ and $\zeta$ integrate to zero, and the result is

$$
4 \Delta y \Delta z\left[-\sigma_{x}(x, y, z)+\frac{\partial \sigma_{x}(x, y, z)}{\partial x} \Delta x\right]
$$

Adding together gives the total contribution of the stress $\sigma_{x}$ as

$$
8 \Delta x \Delta y \Delta z \frac{\partial \sigma_{x}(x, y, z)}{\partial x}=\Delta V \frac{\partial \sigma_{x}(x, y, z)}{\partial x}
$$

with the elementary volume $\Delta V=8 \Delta x \Delta y \Delta z$. The same exercise is now repeated for the stress components $\tau_{x y}$ and $\tau_{x z}$, giving the total force on the elementary volume in the $x$-direction

$$
\begin{equation*}
\Delta b_{x}^{*}=\Delta V\left[\frac{\partial \sigma_{x}(x, y, z)}{\partial x}+\frac{\partial \tau_{x y}(x, y, z)}{\partial y}+\frac{\partial \tau_{x z}(x, y, z)}{\partial z}\right] \tag{11.16}
\end{equation*}
$$

and analogously in the other two directions

$$
\begin{equation*}
\Delta b_{y}^{*}=\Delta V\left[\frac{\partial \tau_{y x}(x, y, z)}{\partial x}+\frac{\partial \sigma_{y}(x, y, z)}{\partial y}+\frac{\partial \tau_{y z}(x, y, z)}{\partial z}\right] \tag{11.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta b_{z}^{*}=\Delta V\left[\frac{\partial \tau_{z x}(x, y, z)}{\partial x}+\frac{\partial \tau_{z y}(x, y, z)}{\partial y}+\frac{\partial \sigma_{z}(x, y, z)}{\partial z}\right] . \tag{11.18}
\end{equation*}
$$

Now the same argument that was established around equation (11.2) will be pursued: put together the total force on the body by collecting the contributions from all the elementary volumes. This can be done in two ways:

1. Add up all the tractions on the bounding faces of the elementary volumes. The tractions on the shared faces (internal surfaces) will cancel; only the tractions on the exterior surface will be left:

$$
\int_{S} \boldsymbol{t} \mathrm{~d} S
$$

2. Add up all the resultant forces (11.16-11.18), which in the limit will become a volume integral

$$
\int_{V} \boldsymbol{b}^{*} \mathrm{~d} V
$$

where the imaginary force $\boldsymbol{b}^{*}$ has components on the Cartesian basis

$$
\left[\boldsymbol{b}^{*}\right]=\left[\begin{array}{l}
\frac{\partial \sigma_{x}(x, y, z)}{\partial x}+\frac{\partial \tau_{x y}(x, y, z)}{\partial y}+\frac{\partial \tau_{x z}(x, y, z)}{\partial z}  \tag{11.19}\\
\frac{\partial \tau_{y x}(x, y, z)}{\partial x}+\frac{\partial \sigma_{y}(x, y, z)}{\partial y}+\frac{\partial \tau_{y z}(x, y, z)}{\partial z} \\
\frac{\partial \tau_{z x}(x, y, z)}{\partial x}+\frac{\partial \tau_{z y}(x, y, z)}{\partial y}+\frac{\partial \sigma_{z}(x, y, z)}{\partial z}
\end{array}\right]
$$

and may be recognized as the stress divergence.
These two forces must be equal, and we have the following form of the divergence theorem

$$
\int_{V} \boldsymbol{b}^{*} \mathrm{~d} V=\int_{S} \boldsymbol{t} \mathrm{~d} S
$$

Using the template of the "vector-stress vector dot product" operator (11.13), we may write the stress divergence as

$$
\begin{equation*}
\boldsymbol{b}^{*}=\mathcal{B}^{T} \boldsymbol{\sigma} \tag{11.20}
\end{equation*}
$$

where the stress-divergence operator $\mathcal{B}^{T}$ is defined as

$$
\mathcal{B}^{T}=\left[\begin{array}{cccccc}
\partial / \partial x & 0 & 0 & \partial / \partial y & \partial / \partial z & 0  \tag{11.21}\\
0 & \partial / \partial y & 0 & \partial / \partial x & 0 & \partial / \partial z \\
0 & 0 & \partial / \partial z & 0 & \partial / \partial x & \partial / \partial y
\end{array}\right] .
$$

This operator (un-transposed) will make its appearance shortly yet again as the symmetric gradient operator to produce strains out of displacements. Using the definitions of these useful operators, the divergence theorem may be written in terms of stress as

$$
\begin{equation*}
\int_{V} \mathcal{B}^{T} \boldsymbol{\sigma} \mathrm{~d} V=\int_{S} \mathcal{P}_{\boldsymbol{n}} \boldsymbol{\sigma} \mathrm{d} S . \tag{11.22}
\end{equation*}
$$

### 11.3.3 All together now

Putting the three integrals from (11.5) into the volume-integral form leads to a pointwise expression of local equilibrium (following exactly the same argument as in Section 5.1):

$$
\begin{equation*}
\int_{V} \rho \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t} \mathrm{~d} V=\int_{V} \overline{\boldsymbol{b}} \mathrm{~d} V+\int_{V} \mathcal{B}^{T} \boldsymbol{\sigma} \mathrm{~d} V \Rightarrow \rho \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t}=\overline{\boldsymbol{b}}+\mathcal{B}^{T} \boldsymbol{\sigma} . \tag{11.23}
\end{equation*}
$$

This is a statement of dynamic equilibrium of a point particle: On the left-hand side we have the inertial force (mass times acceleration), on the right hand side is the body load and the force generated by a stress gradient across the particle. Analogously to the heat conduction problem, this local balance equation contains too many variables. The stress plays the role of the heat flux, and it also will be replaced by reference to measurable variables - the strains.

### 11.4 Strains and displacements

The measurable quantities in this problem are the strains (the relative deformation). The strains are divided into two groups, based on the effect the strains display when expressed in Cartesian coordinates: the normal strains (stretches), and the shear strains.

The strains are an expression of local variations in the positions of points after deformation. The deformation (motion) is expressed as displacements. The displacemeat $\boldsymbol{u}$ is expressed in the Cartesian coordinates by components, and connects the locations of a given material point (particle) $A$ before deformation and after deformation

$$
[\boldsymbol{u}(A, t)]=\left[\begin{array}{l}
x(A, t)  \tag{11.24}\\
y(A, t) \\
z(A, t)
\end{array}\right]-\left[\begin{array}{l}
x(A, 0) \\
y(A, 0) \\
z(A, 0)
\end{array}\right] . E
$$



Fig. 11.8. Material curves, and tangents to material curves. Left: before deformation, right: after deformaton.

It will be useful to approach the meaning of strains from the point of view of what happens to tangents to material curves. A material curve consists of the same material points (particles) during the deformation of the material. A visual picture may be useful: recall that some specimens have a grid etched upon them before they are being mechanically tested (deformed). The etching curves that go in one direction may be thought of as points whose one coordinate changes and the other is being held fixed. Figure 11.8 shows a blob of material with two material curves before and after deformation. Before deformation, the curve that is horizontal consists of points $P$ such that the coordinates are

$$
[P]=\left[\begin{array}{c}
x \\
y=\text { constant }
\end{array}\right]
$$

and the curve that is vertical consists of points $M$ such that

$$
[M]=\left[\begin{array}{c}
x=\text { constant } \\
y
\end{array}\right]
$$

The parameter that varies along the curve through the point $P$ is $x$. Therefore, the tangent vector to this curve is

$$
\frac{\partial}{\partial x}[P]=\left[\begin{array}{l}
1  \tag{11.25}\\
0
\end{array}\right]
$$

The parameter that varies along the curve through the point $M$ is $y$. Therefore, the tangent vector to this curve is

$$
\frac{\partial}{\partial y}[M]=\left[\begin{array}{l}
0  \tag{11.26}\\
1
\end{array}\right]
$$

The tangent vectors (11.25) and (11.28) are of course just the basis vectors of the Cartesian coordinates.

After deformation, the curve that used to be horizontal consists of points $P$ such that

$$
[P]=\left[\begin{array}{c}
x+u_{x} \\
(y=\text { constant })+u_{y}
\end{array}\right]
$$

and the curve that is vertical consists of points $M$ such that

$$
[M]=\left[\begin{array}{c}
(x=\text { constant })+u_{x} \\
y+u_{y}
\end{array}\right]
$$

Since these are material curves, they are still parameterized by the same parameters as before deformation. Consequently, for the originally horizontal curve we have the tangent vector after deformation

$$
\frac{\partial}{\partial x}[P]=\left[\begin{array}{c}
1+\frac{\partial u_{x}}{\partial x}  \tag{11.27}\\
\frac{\partial u_{y}}{\partial x}
\end{array}\right]
$$

The parameter that varies along the curve through the point $M$ is $y$. Therefore, the tangent vector to this curve is

$$
\frac{\partial}{\partial y}[M]=\left[\begin{array}{c}
\frac{\partial u_{x}}{\partial y}  \tag{11.28}\\
1+\frac{\partial u_{y}}{\partial y}
\end{array}\right]
$$

The stretches measure the relative change in length of the tangent vectors at the same point before and after deformation. For instance, the tangent vector (11.25) is of unit length before deformation, and the vector (11.27) is of length

$$
\sqrt{\left(1+\frac{\partial u_{x}}{\partial x}\right)^{2}+\left(\frac{\partial u_{y}}{\partial x}\right)^{2}}=\sqrt{1+2 \frac{\partial u_{x}}{\partial x}+\left(\frac{\partial u_{x}}{\partial x}\right)^{2}+\left(\frac{\partial u_{y}}{\partial x}\right)^{2}} .
$$

If we now make the assumption that the derivatives of the displacement components are very small in magnitude,

$$
\begin{equation*}
\left|\frac{\partial u_{k}}{\partial j}\right| \ll 1, \quad k, j=x, y, z \tag{11.29}
\end{equation*}
$$

the length of the tangent vector may be expressed as

$$
\sqrt{1+2 \frac{\partial u_{x}}{\partial x}+\left(\frac{\partial u_{x}}{\partial x}\right)^{2}+\left(\frac{\partial u_{y}}{\partial x}\right)^{2}} \approx 1+\frac{\partial u_{x}}{\partial x},
$$

and the relative change in length (the stretch in the $x$ direction) is

$$
\frac{1+\frac{\partial u_{x}}{\partial x}-1}{1}=\epsilon_{x} .
$$

The shears measure the change in angle between originally perpendicular directions of pairs of the Cartesian axes. Therefore, we could measure the change in the angle between the tangents of two intersecting material curves before and after deformation. For the two curves in Figure 11.8, the initial angle is $\pi / 2$; the cosine of the angle after the deformation is

$$
\frac{\partial}{\partial x}[P]^{T} \frac{\partial}{\partial y}[M]=\left(1+\frac{\partial u_{x}}{\partial x}\right) \frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\left(1+\frac{\partial u_{y}}{\partial y}\right)
$$

which, again using the assumption (11.29), gives for the change of angle

$$
\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}=\gamma_{x y} .
$$

In this way we define all six strain components: three stretches, and three shears. In fact, we could have defined nine strains (components of the strain tensor), which would correspond to the nine components of the Cauchy stress tensor. However, we will stick to the vector representation in this book.

The six strain components are a mixture of the derivatives of the displacement components, and may be expressed in an operator equation, using the definition (11.20)

$$
\begin{equation*}
\epsilon=\mathcal{B} \boldsymbol{u} \tag{11.30}
\end{equation*}
$$

where $\mathcal{B}$ is now called the symmetric gradient (or strain-displacement) operator.

### 11.5 Constitutive equation

The stress may now be replaced in the balance equation (11.23) by reference to the primary variable, the displacement. However, first we need to discuss the link between
the measurable quantities, the strains, and the mathematical device in the balance equation, the stress. As for the thermal model, this link is the constitutive equation.

Since the angular momentum balance (11.10) reduces the number of stress components to six, correspondingly there is six components of strain. Therefore, the energy of deformation may be defined as the work of each stress component on the corresponding strain component. Let us consider some pre-existing stressed state in a very small neighborhood of a given point. So that we don't have to specify the volume, we will refer to energy density (the energy in a certain volume may be obtained by integrating the energy density over this volume). The state of stress is described by the stress vector $\boldsymbol{\sigma}$. Let us superimpose an infinitesimal strain variation $\mathrm{d} \boldsymbol{\epsilon}$ upon the extant strains. The density of the work of the current stress on the strain change is expressed as

$$
\begin{equation*}
\mathrm{d} \boldsymbol{\epsilon}^{T} \boldsymbol{\sigma} \tag{11.31}
\end{equation*}
$$

The constitutive equation that will be of interest in this book is the model of linear elasticity. It is expressed as a linear relationship between the strain and the stress, and since these are vectors, the linear relationship,constitutive equation, is expressed as a matrix product

$$
\begin{equation*}
\sigma=D \epsilon \tag{11.32}
\end{equation*}
$$

where $\boldsymbol{D}$ is a constant $6 \times 6$ matrix of the elastic coefficients (also known as the elasticities); $\boldsymbol{D}$ may be also referred to as the material stiffness matrix. Clearly, when there is no strain, the stress is zero. Let us now increase strain from zero to its final value, $\boldsymbol{\epsilon}$, by scaling with a number $0 \leq \theta \leq 1$

$$
\widehat{\boldsymbol{\epsilon}}=\theta \boldsymbol{\epsilon},
$$

and furthermore use the linear elasticity (11.32). The expression for the change of the energy of deformation density (11.33) will become

$$
\begin{equation*}
\mathrm{d} \widehat{\boldsymbol{\epsilon}}^{T} \widehat{\boldsymbol{\sigma}}=\mathrm{d} \widehat{\boldsymbol{\epsilon}}^{T} \boldsymbol{D} \widehat{\boldsymbol{\epsilon}}=\mathrm{d} \theta \boldsymbol{\epsilon}^{T} \boldsymbol{D} \theta \boldsymbol{\epsilon} . \tag{11.33}
\end{equation*}
$$

The deformation process starts at $\theta=0$ and reaches its final stage at $\theta=1$. In this process, the total energy density stored in the material is

$$
\begin{equation*}
\phi(\boldsymbol{\epsilon})=\int_{0}^{1} \mathrm{~d} \theta \boldsymbol{\epsilon}^{T} \boldsymbol{D} \theta \boldsymbol{\epsilon}=\frac{1}{2} \boldsymbol{\epsilon}^{T} \boldsymbol{D} \boldsymbol{\epsilon} . \tag{11.34}
\end{equation*}
$$

Mathematically, the expression $\frac{1}{2} \boldsymbol{\epsilon}^{T} \boldsymbol{D} \boldsymbol{\epsilon}$ is known as a quadratic form. One interesting the property of the quadratic form is that the unsymmetrical part of the matrix $\boldsymbol{D}$ does not contribute to the energy:

$$
\frac{1}{2} \boldsymbol{\epsilon}^{T} \boldsymbol{D} \boldsymbol{\epsilon}=\left(\frac{1}{2} \boldsymbol{\epsilon}^{T} \boldsymbol{D} \boldsymbol{\epsilon}\right)^{T}=\frac{1}{2} \boldsymbol{\epsilon}^{T} \boldsymbol{D}^{T} \boldsymbol{\epsilon} \quad \Rightarrow \quad \frac{1}{2} \boldsymbol{\epsilon}^{T}\left(\boldsymbol{D}-\boldsymbol{D}^{T}\right) \boldsymbol{\epsilon}=0 .
$$

Because the energy of deformation is a fundamental quantity, from physical principles, and from the point of view of mathematical modeling, this is a very good reason for postulating a priori the symmetry of the material stiffness, $\boldsymbol{D}=\boldsymbol{D}^{T}$.

At the moment, we will leave the material stiffness matrix unspecified, since a detailed discussion follows in Section 12.5.

### 11.6 Initial conditions

### 11.7 Boundary conditions

Similarly to the heat conduction problem, at each point on the bounding surface a boundary condition is required. The boundary conditions may be in terms of the primary variable, the displacement, or in terms of the flux variable, the stress. For heat conduction, the boundary condition in terms of flux referred to the normal flux only, since the flux parallel to the surface is essentially uncontrollable. Similarly, for elasticity the flux boundary condition will not attempt to prescribe all six components of stress, but rather the "projection" of stress, the traction.

A complicating circumstance is that the primary variable and the traction both have three components. Therefore, the surface of the solid needs to be considered three times as to the appropriate boundary condition, once for each component.

### 11.7.1 A few examples of the modeling of the boundary conditions

Selection of the appropriate boundary conditions is critical to successful modeling. Typically, the boundary conditions that are applied to our models are only approximations of the physical reality.


Fig. 11.9. Example of boundary conditions: a dam with the tunnel.

Thus, the first guidelines for the application of boundary conditions will be based on physical considerations. For instance, Figure 11.9 shows the cross-section of a dam, and of interest is the stress near point $C$ in the corner of the tunnel. Therefore, we could decide to neglect the deformation of the soil near the base of the dam, and prescribe along the surface $A$ zero magnitude for all displacement components. In reality, this is not strictly true, and a so-called modeling error is being introduced by making this choice. In a careful analysis, the influence of this error would be assessed, for instance by varying the boundary condition, or including the soil in the analysis.

On the surfaces exposed to the water behind the dam, including the one with point $A$, the structure is loaded by water pressure, which is a special kind of traction: using an ad hoc Cartesian coordinate system as indicated in the figure, the traction components are

$$
t_{\bar{x}}=0, \quad t_{\bar{y}}=p, \quad t_{\bar{z}}=0
$$

where $p$ is the water pressure at the particular location.
All the other surfaces in the model that show up as curves, are assigned so-called traction-free boundary condition: there are no known loads applied there. Assuming the model is two-dimensional, of the so-called plane strain type, the remaining surfaces are parallel to the plane of the paper, and are assigned zero displacement normal to the paper, and zero shear components of traction in the plane of the paper. This type of model is discussed later in the textbook.

Let us now discuss the associated variable (so-called work-conjugate variable)traction - along the surfaces where we prescribed displacements, for instance at point $A$. The physical meaning of such tractions, which are generated in the soil by the stress in the bulk of the dam near the surface, is clear: they are the reactions. They are initially unknown, but as soon as the displacements are available from the solution, the reactions may be calculated.

The work-conjugate variable along the traction-free surfaces is displacement, which is initially unknown, but which will be produced during the solution process. Similarly, displacement is unknown on the surfaces exposed to the water behind the dam.


Fig. 11.10. Example of boundary conditions: silo with a granular material.

Another example: silo filled with some granular material. The granular material interacts with the wall of the silo, and at difference with the water pressure loads, the granular material can also produce shear forces along the walls.


Fig. 11.11. Example of boundary conditions: rigid punch.


Fig. 11.12. Example of boundary conditions: dog bone specimen under tension.


Fig. 11.13. Example of boundary conditions: plate with unknown boundary conditions.

### 11.7.2 Formal definition of boundary conditions

At each point of the boundary we define a Cartesian coordinate system. It could be the surface-aligned system of Figure 11.3, it could be the global system, or an arbitrarily oriented system. For instance, refer to Figure 11.14. Both the traction vector and the displacement vector at a given point may be written in such a coordinate system in terms of the components as

$$
[\boldsymbol{t}]=\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right], \quad[\boldsymbol{u}]=\left[\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right] .
$$

For each direction $i=x, y, z$ we separate the surface $S$ into two disjoint parts:

1. $S_{t, i}$ where the traction component $t_{i}$ is being prescribed;
2. $S_{u, i}$ where the displacement component $u_{i}$ is being prescribed.

It holds that $S=S_{t, i} \bigcup S_{u, i}$, and it could be that either $S_{t, i}=\emptyset$ or $S_{u, i}=\emptyset$.
The boundary conditions may now be expressed as

$$
\begin{equation*}
t_{i}=(\mathcal{P} \boldsymbol{n} \boldsymbol{\sigma})_{i}=\bar{t}_{i} \quad \text { on } S_{t, i} \quad \text { for } i=x, y, z \tag{11.35}
\end{equation*}
$$

as the traction (natural) boundary condition, and

$$
\begin{equation*}
u_{i}=\bar{u}_{i} \quad \text { on } S_{u, i} \quad \text { for } i=x, y, z \tag{11.36}
\end{equation*}
$$

as the displacement (essential) boundary condition.


Fig. 11.14. Local coordinate systems used for boundary condition definitions.

### 11.8 Comparing the Thermal and Deformation models

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{m} \boldsymbol{v} \mathrm{~d} m & =\int_{V} \boldsymbol{b} \mathrm{~d} V+\int_{S} \boldsymbol{\Sigma} \cdot \boldsymbol{n} \mathrm{~d} S .  \tag{11.37}\\
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} u \mathrm{~d} V & =\int_{V} Q \mathrm{~d} V-\int_{S} \boldsymbol{q} \cdot \boldsymbol{n} \mathrm{~d} S . \tag{11.38}
\end{align*}
$$

## 12

## Galerkin formulation for elastodynamics

### 12.1 Manipulation of the residuals

Rearranging the balance equation (11.23) into the residual form leads to

$$
\begin{equation*}
\boldsymbol{r}_{B}=\rho \frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}-\overline{\boldsymbol{b}}-\mathcal{B}^{T} \boldsymbol{\sigma} \tag{12.1}
\end{equation*}
$$

which is a statement of imbalance when the force residual is nonzero. This is in complete analogy to the model of taut wire, or the model of heat conduction. The plan of action is the same:

1. Formulate weighted residual equations for the balance, force boundary condition, and displacement boundary condition.
2. Satisfy the displacement condition by design, which will place a condition on the form of the trial functions.
3. Shift a derivative from the stress to the test function, which will incorporate the natural boundary conditions in the balance residual equation (and eliminate the force boundary condition residual), and which will place a condition on the form of the test functions.

### 12.1.1 The first two steps

We begin with step 1: The natural boundary condition (11.35) leads to the residual

$$
\begin{equation*}
r_{t, i}=\left(\mathcal{P}_{n} \boldsymbol{\sigma}\right)_{i}-\bar{t}_{i} \quad \text { on } S_{t, i} \quad \text { for } i=x, y, z \tag{12.2}
\end{equation*}
$$

which will be incorporated into the balance residual equation, and the displacement boundary condition (11.36)

$$
\begin{equation*}
r_{u, i}=u_{i}-\bar{u}_{i} \quad \text { on } S_{u, i} \quad \text { for } i=x, y, z \tag{12.3}
\end{equation*}
$$

which will be satisfied by the choice of the trial functions (which takes care of the step 2).

The weighted residual equations are simply integrals of the residuals over the corresponding surface. Since the displacement boundary condition residual is identically zero, it may be ignored. The traction boundary condition residual equation reads

$$
\int_{S_{t, i}} r_{t, i} \eta_{i} \mathrm{~d} S=0
$$

or, expanded,

$$
\begin{equation*}
\int_{S_{t, i}} r_{t, i} \eta_{i} \mathrm{~d} S=\int_{S_{t, i}}\left[\left(\mathcal{P}_{n} \boldsymbol{\sigma}\right)_{i}-\bar{t}_{i}\right] \eta_{i} \mathrm{~d} S=0 \quad \Rightarrow \quad \int_{S_{t, i}}\left(\mathcal{P}_{n} \boldsymbol{\sigma}\right)_{i} \mathrm{~d} S=\int_{S_{t, i}} \bar{t}_{i} \mathrm{~d} S \tag{12.4}
\end{equation*}
$$

The balance weighted residual equation reads

$$
\begin{equation*}
\int_{V} \boldsymbol{r}_{B} \cdot \boldsymbol{\eta} \mathrm{~d} V=\int_{V} \boldsymbol{\eta} \cdot \boldsymbol{r}_{B} \mathrm{~d} V=0 \tag{12.5}
\end{equation*}
$$

where $\boldsymbol{\eta}$ is a vector test function (with three components). At this point, we only require that the test function be sufficient to smooth for the integral to exist. The dot product of the residual and the vector test function is written in the "dot" form; when the weighted residual equation is written in terms of the components, transposes must be used as

$$
\int_{V}\left[\boldsymbol{r}_{B}\right]^{T}[\boldsymbol{\eta}] \mathrm{d} V=\int_{V}[\boldsymbol{\eta}]^{T}\left[\boldsymbol{r}_{B}\right] \mathrm{d} V=0
$$

### 12.1.2 Step 3: Preliminaries

While the first two terms on the right hand side of (12.1) present no difficulties, the stress term needs to be treated similarly to the previous two models to move one differentiation from the stress to the test function. Therefore, in the next few paragraphs we focus on the term

$$
\int_{V} \boldsymbol{\eta} \cdot \mathcal{B}^{T} \boldsymbol{\sigma} \mathrm{~d} V
$$

which will be sought as part of the chain rule formula (analogously to equation (6.4) for the heat conduction). The product of $\boldsymbol{\eta}$ and $\boldsymbol{\sigma}$ may be expressed using the vectorstress vector dot product operator (11.13) in the form $\mathcal{P} \boldsymbol{\eta} \boldsymbol{\sigma}$. Therefore, we need an identity for the chain rule applied to the divergence $\operatorname{div}\left(\mathcal{P}_{\boldsymbol{\eta}} \boldsymbol{\sigma}\right)$ :

$$
\begin{equation*}
\operatorname{div}(\mathcal{P} \boldsymbol{\eta} \boldsymbol{\sigma})=(\mathcal{B} \boldsymbol{\eta}) \cdot \boldsymbol{\sigma}+\boldsymbol{\eta} \cdot \mathcal{B}^{T} \boldsymbol{\sigma} \tag{12.6}
\end{equation*}
$$

It may not be immediately clear why the right hand side has this form, but to verify this formula is straightforward, albeit tedious. Expressing the last piece of (12.6) in terms of the other two, we obtain

$$
\int_{V} \boldsymbol{\eta} \cdot \mathcal{B}^{T} \boldsymbol{\sigma} \mathrm{~d} V=\int_{V} \operatorname{div}(\mathcal{P} \boldsymbol{\eta} \boldsymbol{\sigma}) \mathrm{d} V-\int_{V}(\mathcal{B} \boldsymbol{\eta}) \cdot \boldsymbol{\sigma} \mathrm{d} V
$$

The divergence theorem (5.10) may be applied to the first term on the right to yield

$$
\int_{V} \boldsymbol{\eta} \cdot \mathcal{B}^{T} \boldsymbol{\sigma} \mathrm{~d} V=\int_{S}(\mathcal{P} \boldsymbol{\eta} \boldsymbol{\sigma}) \cdot \boldsymbol{n} \mathrm{d} S-\int_{V}(\mathcal{B} \boldsymbol{\eta}) \cdot \boldsymbol{\sigma} \mathrm{d} V .
$$

The traction boundary condition (11.35) references $\mathcal{P}_{\boldsymbol{n}} \boldsymbol{\sigma}$. To extricate this form from $(\mathcal{P} \boldsymbol{\eta} \boldsymbol{\sigma}) \cdot \boldsymbol{n}$ we notice that the result is a scalar (number), indicating a double dot product: the stress vector with two vectors. Indeed, it is easily verified by multiplying through that

$$
\left(\mathcal{P}_{\boldsymbol{\eta}} \boldsymbol{\sigma}\right) \cdot \boldsymbol{n}=\left(\mathcal{P}_{\boldsymbol{n}} \boldsymbol{\sigma}\right) \cdot \boldsymbol{\eta},
$$

with the result

$$
\int_{V} \boldsymbol{\eta} \cdot \mathcal{B}^{T} \boldsymbol{\sigma} \mathrm{~d} V=\int_{S} \boldsymbol{\eta} \cdot\left(\mathcal{P}_{\boldsymbol{n}} \boldsymbol{\sigma}\right) \mathrm{d} S-\int_{V}(\mathcal{B} \boldsymbol{\eta}) \cdot \boldsymbol{\sigma} \mathrm{d} V .
$$

We are ready to write the balance residual equation (12.5) now as

$$
\begin{gather*}
\int_{V} \boldsymbol{\eta} \cdot \rho \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t} \mathrm{~d} V-\int_{V} \boldsymbol{\eta} \cdot \overline{\boldsymbol{b}} \mathrm{~d} V \\
-\int_{S} \boldsymbol{\eta} \cdot(\mathcal{P} \boldsymbol{n} \boldsymbol{\sigma}) \mathrm{d} S+\int_{V}(\mathcal{B} \boldsymbol{\eta}) \cdot \boldsymbol{\sigma} \mathrm{d} V=0 \tag{12.7}
\end{gather*}
$$

### 12.1.3 Step 3: The glorious conclusion

Closely paralleling Section (6.6), the surface will now be split, for each component, into the part where traction is known, and the part where displacement is being prescribed

$$
\int_{S} \boldsymbol{\eta} \cdot(\mathcal{P} \boldsymbol{n} \boldsymbol{\sigma}) \mathrm{d} S=\sum_{i=x, y, z} \int_{S_{t, i}}(\boldsymbol{\eta})_{i}(\mathcal{P} \boldsymbol{n} \boldsymbol{\sigma})_{i} \mathrm{~d} S+\int_{S_{u, i}}(\boldsymbol{\eta})_{i}(\mathcal{P} \boldsymbol{n} \boldsymbol{\sigma})_{i} \mathrm{~d} S
$$

where $(\boldsymbol{\eta})_{i}$ is the $i^{\text {th }}$ component of the test function. On the $S_{t, i}$ subset the traction component $i$ is known from (11.35), but on the $S_{u, i}$ subset of the bounding surface the traction, the component $i$ of the traction is not known, it represents the reaction. The same trick as for the other PDE models may be resorted to, namely to put in place a requirement

$$
(\boldsymbol{\eta})_{i}=0 \quad \text { on } \quad S_{u, i} .
$$

Therefore, with the constraint on the trial function to satisfy the essential boundary conditions, and a constraint on the test function to vanish on $S_{u, i}$, we have the weighted balance residual equation

$$
\begin{equation*}
\int_{V} \boldsymbol{\eta} \cdot \rho \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t} \mathrm{~d} V-\int_{V} \boldsymbol{\eta} \cdot \overline{\boldsymbol{b}} \mathrm{~d} V-\sum_{i=x, y, z} \int_{S_{t, i}}(\boldsymbol{\eta})_{i}(\mathcal{P} \boldsymbol{n} \boldsymbol{\sigma})_{i} \mathrm{~d} S+\int_{V}(\mathcal{B} \boldsymbol{\eta}) \cdot \boldsymbol{\sigma} \mathrm{d} V=0 \tag{12.8}
\end{equation*}
$$

and using the natural boundary condition (12.4) (and subsuming this condition in the balance residual equation), we obtain the final form of the weighted residual equation

$$
\begin{array}{r}
\int_{V} \boldsymbol{\eta} \cdot \rho \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t} \mathrm{~d} V-\int_{V} \boldsymbol{\eta} \cdot \overline{\boldsymbol{b}} \mathrm{~d} V-\sum_{i=x, y, z} \int_{S_{t, i}}(\boldsymbol{\eta})_{i} \bar{t}_{i} \mathrm{~d} S+\int_{V}(\mathcal{B} \boldsymbol{\eta}) \cdot \boldsymbol{\sigma} \mathrm{d} V=0  \tag{12.9}\\
u_{i}=\bar{u}_{i} \quad \text { and } \quad(\boldsymbol{\eta})_{i}=0 \quad \text { on } S_{u, i} \quad \text { for } i=x, y, z
\end{array}
$$

So far we have been using the velocity and the stress vector for convenience and brevity, but to produce a displacement-based computational model these will have to be replaced by references to the displacement field. Using

$$
\boldsymbol{v}=\frac{\mathrm{d} \boldsymbol{u}}{\mathrm{~d} t} \quad \Rightarrow \quad \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} \boldsymbol{v}}{\mathrm{~d} t^{2}}=\ddot{\boldsymbol{u}}
$$

and the constitutive equation (11.32) and the displacement-strain relation (11.30), the form that goes into the discretization process reads

$$
\begin{gathered}
\int_{V} \boldsymbol{\eta} \cdot \rho \ddot{\boldsymbol{u}} \mathrm{~d} V-\int_{V} \boldsymbol{\eta} \cdot \overline{\boldsymbol{b}} \mathrm{~d} V-\sum_{i=x, y, z} \int_{S_{t, i}}(\boldsymbol{\eta})_{i} \bar{t}_{i} \mathrm{~d} S+\int_{V}(\mathcal{B} \boldsymbol{\eta}) \cdot \boldsymbol{D} \mathcal{B} \boldsymbol{u} \mathrm{d} V=0(12.10) \\
u_{i}=\bar{u}_{i} \quad \text { and } \quad(\boldsymbol{\eta})_{i}=0 \quad \text { on } S_{u, i} \quad \text { for } i=x, y, z
\end{gathered}
$$

### 12.2 Method of weighted residuals as the Principle of Virtual Work

An alternative route to equation (12.9) is via the principle of virtual work. The validity of (12.5) is postulated as a principle: the principle of virtual work. The test function is interpreted as virtual displacement. The constraint on the test function is postulated a priori: virtual displacement is kinematically admissible. The various terms in (12.9) are interpreted as the virtual work of the inertial forces, applied body load, applied tractions, and internal forces.

This approach tends to seem completely arbitrary, since a number of concepts are postulated to be taken on faith. In this book we therefore avoid this viewpoint. Nevertheless, it may be useful to be aware of these possible interpretations of the various terms as virtual quantities (especially work).

### 12.3 Discretizing

The primary variable, the displacement, is a vector quantity

$$
\boldsymbol{u}=u_{x} \boldsymbol{e}_{x}+u_{y} \boldsymbol{e}_{y}+u_{z} \boldsymbol{e}_{z}
$$

where $u_{x}, \ldots$ are the components, and $\boldsymbol{e}_{x}, \ldots$ are the basis vectors. All computer manipulations are performed in terms of components, the basis vectors are necessary only when a transition needs to be made from one basis to another. For simplicity, in this work and in the toolbox SOFEA, the basis in which the displacement field is expressed is the global Cartesian basis.

### 12.3.1 The trial function

Therefore, the trial displacement vector function will be expressed in terms of the components in the global Cartesian basis (the basis is implied) as (compare with Sections 2.7 and 6.5)

$$
[\boldsymbol{u}(\boldsymbol{x}, t)]=\left[\begin{array}{l}
u_{x}(\boldsymbol{x}, t)  \tag{12.11}\\
u_{y}(\boldsymbol{x}, t) \\
u_{z}(\boldsymbol{x}, t)
\end{array}\right]=\sum_{i=1}^{N} N_{i}(\boldsymbol{x})\left[\boldsymbol{u}_{i}(t)\right]=\sum_{i=1}^{N} N_{i}(\boldsymbol{x})\left[\begin{array}{l}
u_{i x}(t) \\
u_{i y}(t) \\
u_{i z}(t)
\end{array}\right] .
$$

Here $N_{i}(\boldsymbol{x})$ is a finite element basis function (at this point we assume it is defined on a three-dimensional mesh), and $u_{i x}(t), \ldots$ are nodal degrees of freedom (displacements at nodes) as functions of time. As in Section 6.5), it will be useful to separate the free degrees of freedom from the prescribed displacements. However, this expression will be complicated by the fact that now we have three components, each of which has different sets of the free degrees of freedom and the prescribed ones. As an illustration consider Figure 12.1: for the $x$ component, the free degrees of freedom are $u_{2 x}$, the prescribed (at zero value) are $u_{1 x}, u_{3 x}$; for the $y$ component, the free degrees of freedom are $u_{3 y}$, the prescribed (at zero value) are $u_{1 y}, u_{2 y}$.


Fig. 12.1. A single element, with free degrees of freedom.

One possibility is to write

$$
\left[\begin{array}{l}
u_{x}(\boldsymbol{x}, t)  \tag{12.12}\\
u_{y}(\boldsymbol{x}, t) \\
u_{z}(\boldsymbol{x}, t)
\end{array}\right]=\left[\begin{array}{l}
\sum_{\text {free } i} N_{i}(\boldsymbol{x}) u_{i x}(t)+\sum_{\text {prescribed } i} N_{i}(\boldsymbol{x}) \bar{u}_{i x}(t) \\
\sum_{\text {free } i} N_{i}(\boldsymbol{x}) u_{i y}(t)+\sum_{\text {prescribed } i} N_{i}(\boldsymbol{x}) \bar{u}_{i y}(t) \\
\sum_{\text {free } i} N_{i}(\boldsymbol{x}) u_{i z}(t)+\sum_{\text {prescribed } i} N_{i}(\boldsymbol{x}) \bar{u}_{i z}(t)
\end{array}\right],
$$

but a more convenient approach is the following trick:

$$
\left[\begin{array}{l}
u_{x}(\boldsymbol{x}, t)  \tag{12.13}\\
u_{y}(\boldsymbol{x}, t) \\
u_{z}(\boldsymbol{x}, t)
\end{array}\right]=\sum_{\text {all } i} N_{i}(\boldsymbol{x})\left\{\left[\begin{array}{l}
u_{i x}(t) \\
u_{i y}(t) \\
u_{i z}(t)
\end{array}\right]+\left[\begin{array}{c}
\bar{u}_{i x}(t) \\
\bar{u}_{i y}(t) \\
\bar{u}_{i z}(t)
\end{array}\right]\right\}
$$

where we define
$u_{i x}(t)=0$ if the $x$ degree of freedom at node $i$ is prescribed;
$u_{i y}(t)=0$ if the $y$ degree of freedom at node $i$ is prescribed;
$u_{i z}(t)=0$ if the $z$ degree of freedom at node $i$ is prescribed,
and

$$
\begin{aligned}
& \bar{u}_{i x}(t)=0 \text { if the } x \text { degree of freedom at node } i \text { is free; } \\
& \bar{u}_{i y}(t)=0 \text { if the } y \text { degree of freedom at node } i \text { is free; } \\
& \bar{u}_{i z}(t)=0 \text { if the } z \text { degree of freedom at node } i \text { is free. }
\end{aligned}
$$

Thus, for the example of Figure 12.1 we have the following

$$
\left[\begin{array}{l}
u_{1 x}(t) \\
u_{1 y}(t)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
\bar{u}_{1 x}(t) \\
\bar{u}_{1 y}(t)
\end{array}\right]=\left[\begin{array}{l}
\text { as given } \\
\text { as given }
\end{array}\right],
$$

for node 1,

$$
\left[\begin{array}{l}
u_{2 x}(t) \\
u_{2 y}(t)
\end{array}\right]=\left[\begin{array}{c}
u_{2 x}(t) \\
0
\end{array}\right], \quad\left[\begin{array}{l}
\bar{u}_{2 x}(t) \\
\bar{u}_{2 y}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\text { as given }
\end{array}\right],
$$

for node 2, and finally,

$$
\left[\begin{array}{l}
u_{3 x}(t) \\
u_{3 y}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
u_{3 y}(t)
\end{array}\right], \quad\left[\begin{array}{l}
\bar{u}_{3 x}(t) \\
\bar{u}_{3 y}(t)
\end{array}\right]=\left[\begin{array}{c}
\text { as given } \\
0
\end{array}\right],
$$

for node 3. In the toolbox code, the free degrees of freedom may be distinguished from the prescribed ones using the attributes of the field class. The free degrees of freedom get nonzero equation numbers (attribute eqnums), and the magnitudes are stored in the attribute values; the prescribed degrees of freedom are marked with the attribute is_prescribed and the value to which these degrees of freedom are being set is the prescribed_value. The gather() method of the field class may be used to retrieve all these attributes.

### 12.3.2 The test function

Using the trick described below equation (12.13), we will write the test function as

$$
\left[\begin{array}{c}
\eta_{x}(\boldsymbol{x})  \tag{12.14}\\
\eta_{y}(\boldsymbol{x}) \\
\eta_{z}(\boldsymbol{x})
\end{array}\right]=\sum_{\text {all } i} N_{i}(\boldsymbol{x})\left[\begin{array}{c}
\eta_{i x} \\
\eta_{i y} \\
\eta_{i z}
\end{array}\right],
$$

where we define
$\eta_{i x}=0$ if the $x$ degree of freedom at node $i$ is prescribed;
$\eta_{i y}=0$ if the $y$ degree of freedom at node $i$ is prescribed;
$\eta_{i z}=0$ if the $z$ degree of freedom at node $i$ is prescribed.
Note that $\eta_{i x}, \eta_{i y}, \eta_{i z}$ are arbitrary numbers (except when they are forced to be zero as shown above). We will also use a more succinct version

$$
\left[\begin{array}{l}
\eta_{x}(\boldsymbol{x})  \tag{12.15}\\
\eta_{y}(\boldsymbol{x}) \\
\eta_{z}(\boldsymbol{x})
\end{array}\right]=[\eta(\boldsymbol{x})]=\sum_{\text {all } i} N_{i}(\boldsymbol{x})\left[\eta_{i}\right],
$$

where $\left[\eta_{i}\right]$ stands for a column matrix holding the components $\left[\eta_{i}\right]_{k}$ of the vector of the degrees of freedom at node $i$.

### 12.3.3 Producing the requisite equations

It may be easily verified that the definition of the test function gives us just enough equations to solve for all the free degrees of freedom. Use (12.14) in equation (12.10) to obtain

$$
\begin{align*}
& \int_{V}[\boldsymbol{\eta}]^{T} \rho[\ddot{\boldsymbol{u}}] \mathrm{d} V-\int_{V}[\boldsymbol{\eta}]^{T}[\overline{\boldsymbol{b}}] \mathrm{d} V-\sum_{i=x, y, z} \int_{S_{t, i}}(\boldsymbol{\eta})_{i} \bar{t}_{i} \mathrm{~d} S \\
&+\int_{V}(\mathcal{B}[\boldsymbol{\eta}])^{T} \boldsymbol{D B}[\boldsymbol{u}] \mathrm{d} V=0  \tag{12.16}\\
& u_{i}=\bar{u}_{i} \quad \text { and } \quad(\boldsymbol{\eta})_{i}=0 \quad \text { on } S_{u, i} \quad \text { for } i=x, y, z
\end{align*}
$$

The key is to obtain $[\boldsymbol{\eta}]^{T}$ in all the terms. The trickiest seems to be $\mathcal{B}[\boldsymbol{\eta}]$. Substituting (12.14), we get

$$
\mathcal{B}[\boldsymbol{\eta}]=\mathcal{B} \sum_{\text {all } j} N_{j}(\boldsymbol{x})\left[\begin{array}{l}
\eta_{j x} \\
\eta_{j y} \\
\eta_{j z}
\end{array}\right],
$$

but since the $\eta_{j x}, \eta_{j y}, \eta_{j z}$ 's are just numbers, the symmetric gradient operator works with the basis functions, as if we simply multiplied the matrix of the operator with a scalar

$$
\mathcal{B}[\boldsymbol{\eta}]=\sum_{\text {all } j} \mathcal{B}\left(N_{j}(\boldsymbol{x})\right)\left[\begin{array}{c}
\eta_{j x} \\
\eta_{j y} \\
\eta_{j z}
\end{array}\right] .
$$

We are ready to proceed: the test function is substituted as

$$
\begin{array}{r}
\sum_{\text {all } j}\left[\eta_{j}\right]^{T} \int_{V} N_{k}(\boldsymbol{x}) \rho[\ddot{\boldsymbol{u}}] \mathrm{d} V-\sum_{\text {all } j}\left[\eta_{j}\right]^{T} \int_{V} N_{j}(\boldsymbol{x})[\overline{\boldsymbol{b}}] \mathrm{d} V \\
\quad-\sum_{i=x, y, z} \sum_{\text {all } j}\left(\left[\eta_{j}\right]\right)_{i} \int_{S_{t, i}} N_{j}(\boldsymbol{x}) \bar{t}_{i} \mathrm{~d} S \\
\quad-+\sum_{\text {all } j}\left[\eta_{j}\right]^{T} \int_{V} \mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B}[\boldsymbol{u}] \mathrm{d} V=0  \tag{12.17}\\
u_{i}=\bar{u}_{i} \quad \text { and } \quad(\boldsymbol{\eta})_{i}=0 \quad \text { on } S_{u, i} \quad \text { for } i=x, y, z
\end{array}
$$

The components are independent, hence (12.17) should hold for each component separately

$$
\begin{array}{r}
\sum_{\text {all } j}\left[\eta_{j}\right]_{i} \int_{V} N_{j}(\boldsymbol{x}) \rho[\ddot{\boldsymbol{u}}]_{i} \mathrm{~d} V-\sum_{\text {all } j}\left[\eta_{j}\right]_{i} \int_{V} N_{j}(\boldsymbol{x})[\overline{\boldsymbol{b}}]_{i} \mathrm{~d} V \\
-\sum_{\text {all } j}\left[\eta_{j}\right]_{i} \int_{S_{t, i}} N_{j}(\boldsymbol{x}) \bar{t}_{i} \mathrm{~d} S+\sum_{\text {all } j}\left[\eta_{j}\right]_{i} \int_{V}\left[\mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B}[\boldsymbol{u}]\right]_{i} \mathrm{~d} V=0  \tag{12.18}\\
u_{i}=\bar{u}_{i} \quad \text { and } \quad(\boldsymbol{\eta})_{i}=0 \quad \text { on } S_{u, i} \quad \text { for } i=x, y, z
\end{array}
$$

Collecting all the sums yields finally

$$
\begin{gather*}
\sum_{\text {all } j}\left[\eta_{j}\right]_{i}\left\{\int_{V} N_{j}(\boldsymbol{x}) \rho[\ddot{\boldsymbol{u}}]_{i} \mathrm{~d} V-\int_{V} N_{j}(\boldsymbol{x})[\overline{\boldsymbol{b}}]_{i} \mathrm{~d} V\right. \\
\left.-\int_{S_{t, i}} N_{j}(\boldsymbol{x}) \bar{t}_{i} \mathrm{~d} S+\int_{V}\left[\mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B}[\boldsymbol{u}]\right]_{i} \mathrm{~d} V\right\}=0  \tag{12.19}\\
u_{i}=\bar{u}_{i} \quad \text { and } \quad(\boldsymbol{\eta})_{i}=0 \quad \text { on } S_{u, i} \quad \text { for } i=x, y, z
\end{gather*}
$$

We are ready for the punchline: some of the $\left[\eta_{j}\right]_{i}$ components are zero. These components do not field any equations, they are simply ignored. The components $\left[\eta_{j}\right]_{i}$ that are not zero are completely arbitrary. Therefore, the interiors of the braces have to vanish identically, yielding one equation for each free degree of freedom.

$$
\begin{gather*}
\int_{V} N_{j}(\boldsymbol{x}) \rho[\ddot{\boldsymbol{u}}]_{i} \mathrm{~d} V-\int_{V} N_{j}(\boldsymbol{x})[\overline{\boldsymbol{b}}]_{i} \mathrm{~d} V \\
-\int_{S_{t, i}} N_{j}(\boldsymbol{x}) \bar{t}_{i} \mathrm{~d} S+\int_{V}\left[\mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B}[\boldsymbol{u}]\right]_{i} \mathrm{~d} V=0  \tag{12.20}\\
\text { where } \quad u_{i}=\bar{u}_{i} ; \quad \text { for all } j, \quad \text { and } i=x, y, z, \quad \text { such that }\left[\eta_{j}\right]_{i} \neq 0 .
\end{gather*}
$$

Note that $\left[\eta_{j}\right]_{i}=0$ whenever node $j$ is on the boundary $S_{u, i}$. The meaning of these equations is dynamic force equilibrium.

### 12.4 The discrete equations: system of ODE's

Finally, we substitute the trial function from (12.13). We will use the more streamlined version

$$
\left[\begin{array}{l}
u_{x}(\boldsymbol{x}, t)  \tag{12.21}\\
u_{y}(\boldsymbol{x}, t) \\
u_{z}(\boldsymbol{x}, t)
\end{array}\right]=[u(\boldsymbol{x}, t)]=\sum_{\text {all } k} N_{k}(\boldsymbol{x})\left\{\left[u_{k}(t)\right]+\left[\bar{u}_{k}(t)\right]\right\},
$$

where $\left[u_{k}\right]$ stands for a column matrix holding the components $\left[u_{k}\right]_{m}$ of the vector of the free degrees of freedom at node $k$; analogously for the prescribed degrees of freedom. To satisfy the essential boundary conditions by interpolation, we set for the prescribed $m^{\text {th }}$ component at node $k$

$$
\left[\bar{u}_{k}(t)\right]_{m}=\left[\bar{u}\left(\boldsymbol{x}_{k}, t\right)\right]_{m}
$$

where $\boldsymbol{x}_{k}$ is the location of node $k$.
The trial function is substituted into (12.20). To keep things orderly and clear, we will substitute term by term.

### 12.4.1 Inertial term: Mass matrix

Starting with the first:

$$
\begin{align*}
& \int_{V} N_{j}(\boldsymbol{x}) \rho[\ddot{\boldsymbol{u}}]_{i} \mathrm{~d} V= \\
& \int_{V} N_{j}(\boldsymbol{x}) \rho \sum_{\text {all } k} N_{k}(\boldsymbol{x})\left\{\left[\ddot{u}_{k}(t)\right]_{i}+\left[\bar{u}_{k}(t)\right]_{i}\right\} \mathrm{d} V= \\
& \sum_{\text {all } k} \int_{V} N_{j}(\boldsymbol{x}) \rho N_{k}(\boldsymbol{x}) \mathrm{d} V\left\{\left[\ddot{u}_{k}(t)\right]_{i}+\left[\bar{u}_{k}(t)\right]_{i}\right\}= \\
& \sum_{\text {all } k} \int_{V} N_{j}(\boldsymbol{x}) \rho N_{k}(\boldsymbol{x}) \mathrm{d} V\left[\ddot{u}_{k}(t)\right]_{i}+\sum_{\text {all } k} \int_{V} N_{j}(\boldsymbol{x}) \rho N_{k}(\boldsymbol{x}) \mathrm{d} V\left[\bar{u}_{k}(t)\right]_{i} \tag{12.22}
\end{align*}
$$

Two terms emerge: firstly, the inertial force

$$
\begin{equation*}
F_{a,(j, i)}=\sum_{\text {all } k} M_{(j, i)(k, m)}\left[\ddot{u}_{k}(t)\right]_{m}, \tag{12.23}
\end{equation*}
$$

produced by the free accelerations which are coupled together by the consistent mass matrix

$$
\begin{equation*}
M_{(j, i)(k, m)}=\left[\int_{V} N_{j}(\boldsymbol{x}) \rho N_{k}(\boldsymbol{x})\left[{ }_{3 \times 3}^{\mathbf{1}}\right] \mathrm{d} V\right]_{i m} \tag{12.24}
\end{equation*}
$$

where $(j, i)$ means equation number corresponding to component $i$ at node $j$ (which is a free degree of freedom).

Secondly, there is the inertial load produced by the acceleration of the supported nodes

$$
\begin{equation*}
F_{\bar{a},(j, i)}=\sum_{\text {all } k} \bar{M}_{(j, i)(k, m)}\left[\bar{u}_{k}(t)\right]_{m}, \tag{12.25}
\end{equation*}
$$

where the matrix elements $\bar{M}_{(j, i)(k, m)}$ are calculated exactly as those of (12.24), but ( $k, m$ ) corresponds to component $m$ at node $k$, which is prescribed.

### 12.4.2 Body loads and traction loads

The next two terms represent external loads. The body load vector component ( $j, i$ ) corresponding to free component $i$ at node $j$ is

$$
\begin{equation*}
F_{b,(j, i)}=\int_{V} N_{j}(\boldsymbol{x})[\overline{\boldsymbol{b}}]_{i} \mathrm{~d} V \tag{12.26}
\end{equation*}
$$

The surface traction load vector component $(j, i)$ corresponding to free component $i$ at node $j$ is

$$
\begin{equation*}
F_{t,(j, i)}=\int_{S_{t, i}} N_{j}(\boldsymbol{x}) \bar{t}_{i} \mathrm{~d} S \tag{12.27}
\end{equation*}
$$

### 12.4.3 Resisting forces: Stiffness matrix

Finally, the trial function (12.21) is substituted into the last term of (12.20).

$$
\begin{align*}
& \int_{V}\left[\mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B}[\boldsymbol{u}]\right]_{i} \mathrm{~d} V= \\
& \int_{V}\left[\mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B} \sum_{\text {all } k} N_{k}(\boldsymbol{x})\left\{\left[u_{k}(t)\right]+\left[\bar{u}_{k}(t)\right]\right\}\right]_{i} \mathrm{~d} V= \\
& \sum_{\text {all } k} \int_{V}\left[\mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B}\left(N_{k}(\boldsymbol{x})\right)\left\{\left[u_{k}(t)\right]+\left[\bar{u}_{k}(t)\right]\right\}\right]_{i} \mathrm{~d} V= \\
& \sum_{\text {all } k} \sum_{m}\left[\int_{V} \mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B}\left(N_{k}(\boldsymbol{x})\right) \mathrm{d} V\right]_{i m}\left\{\left[u_{k}(t)\right]_{m}+\left[\bar{u}_{k}(t)\right]_{m}\right\} \tag{12.28}
\end{align*}
$$

Two contributions result: the first is the resisting force produced by the deformed material.

$$
\begin{equation*}
F_{r,(j, i)}=\sum_{\text {all } k} K_{(j, i)(k, m)}\left[u_{k}(t)\right]_{m} . \tag{12.29}
\end{equation*}
$$

The matrix generating the resisting force is the stiffness matrix

$$
\begin{equation*}
K_{(j, i)(k, m)}=\left[\int_{V} \mathcal{B}^{T}\left(N_{j}(\boldsymbol{x})\right) \boldsymbol{D} \mathcal{B}\left(N_{k}(\boldsymbol{x})\right) \mathrm{d} V\right]_{i m} \tag{12.30}
\end{equation*}
$$

where $(j, i)[(k, m)]$ means equation number corresponding to component $i$ at node $j$ (component $m$ at node $k$ ); both are free degrees of freedom.

The second is the nonzero-displacement load produced by the deformation induced by prescribed essential boundary conditions. (Remark: In structural analysis, this kind of load is frequently associated with the loading condition called the support settlement.)

$$
\begin{equation*}
F_{\bar{r},(j, i)}=\sum_{\text {all } k} \bar{K}_{(j, i)(k, m)}\left[\bar{u}_{k}(t)\right]_{m} . \tag{12.31}
\end{equation*}
$$

The elements $\bar{K}_{(j, i)(k, m)}$ are computed exactly as in (12.30), but ( $k, m$ ) corresponds to component $m$ at node $k$, which is prescribed.

### 12.4.4 Summary of the elastodynamics ODE's

Summing the forces (12.23), (12.25), (12.26), (12.27), (12.29), and (12.31) yields a system of second-order ordinary differential equations for the free displacements $\left[\ddot{u}_{k}(t)\right]_{m}$

$$
\begin{align*}
& \sum_{\text {all } k} M_{(j, i)(k, m)}\left[\ddot{u}_{k}(t)\right]_{m}+\sum_{\text {all } k} K_{(j, i)(k, m)}\left[u_{k}(t)\right]_{m}= \\
& \quad-\sum_{\text {all } k} \bar{M}_{(j, i)(k, i)}\left[\bar{u}_{k}(t)\right]_{i}-\sum_{\text {all } k} \bar{K}_{(j, i)(k, m)}\left[\bar{u}_{k}(t)\right]_{m} \\
& \quad+\int_{V} N_{j}(\boldsymbol{x})[\overline{\boldsymbol{b}}]_{i} \mathrm{~d} V+\int_{S_{t, i}} N_{j}(\boldsymbol{x}) \bar{t}_{i} \mathrm{~d} S \tag{12.32}
\end{align*}
$$

In the convenient matrix notation, we could write

$$
\begin{equation*}
M \ddot{U}+\boldsymbol{K} U=L \tag{12.33}
\end{equation*}
$$

where $\boldsymbol{U}$ collects all the free degrees of freedom. These equations could be directly integrated using a Matlab integrator as indicated in Section 3.4, or even more suitably with a specialized mechanical integrator such as the Newmark average-acceleration integrator. Other approaches, such as integration of the harmonic modal equations are often used.

### 12.5 Constitutive equations of linearly elastic materials

The strain displacement operator(symmetric gradient operator) (11.30) links displacements in terms of their components in the global Cartesian basis to strains. The strains could be expressed in the same Cartesian basis, but need not be. In fact, it will be most useful not to express the strains in the same global Cartesian coordinate system. The motivating factor is the constitutive equation: For some materials it will be important to keep track of the local orientation of the material volume. For instance, fiber reinforced materials will have very different stiffness properties along the fibers as opposed to perpendicularly to the fibers.

The components of the material stiffness matrix (or the material compliance matrix) are to be understood as being expressed in the local coordinate system $\boldsymbol{e}_{\bar{x}}, \boldsymbol{e}_{\bar{y}}, \boldsymbol{e}_{\bar{z}}$ attached to the material point in the form of (6.50) (except that the transformation matrix has three columns).

## General anisotropic material.

Because of the symmetry of the material stiffness, for the most general elastic material the number of elastic coefficients is only 21 out of the total of 36 elements of the material stiffness matrix: the general anisotropic material. Still, to identify all of these constants represents a major experimental effort, and few engineering materials are characterized as fully anisotropic.

### 12.5.1 Orthotropic material.

If a material has only three planes of symmetry, it is known as an orthotropic material. For instance wood is often characterized as such type of material, and fiberreinforced composites are in more sophisticated analyses also treated as orthotropic. The compliance matrix

$$
\boldsymbol{C}=\boldsymbol{D}^{-1}
$$

has a pleasingly simple appearance

$$
\boldsymbol{C}=\left[\begin{array}{cccccc}
E_{1}^{-1}, & -\frac{\nu_{12}}{E_{1}}, & -\frac{\nu_{13}}{E_{1}}, & 0, & 0, & 0 \\
-\frac{\nu_{12}}{E_{1}}, & E_{2}^{-1}, & -\frac{\nu_{23}}{E_{2}}, & 0, & 0, & 0 \\
-\frac{\nu_{13}}{E_{1}}, & -\frac{\nu_{23}}{E_{2}}, & E_{3}^{-1}, & 0, & 0, & 0 \\
0, & 0, & 0, & G_{12}^{-1}, & 0, & 0 \\
0, & 0, & 0, & 0, & G_{13}^{-1}, & 0 \\
0, & 0, & 0, & 0, & 0, & G_{23}^{-1}
\end{array}\right]
$$

All nine coefficients are independent, and needs to be provided as input [?]. The material stiffness matrix is a bit of a mess. The nonzero elements are

$$
\begin{array}{lll}
D_{11}=\frac{C_{22} C_{33}-C_{23} C_{23}}{C}, & D_{12}=\frac{C_{13} C_{23}-C_{12} C_{33}}{C}, & D_{13}=\frac{C_{12} C_{23}-C_{13} C_{22}}{C}, \\
D_{22}=\frac{C_{33} C_{11}-C_{13} C_{13}}{C}, & D_{23}=\frac{C_{12} C_{13}-C_{23} C_{11}}{C}, & D_{33}=\frac{C_{11} C_{22}-C_{12} C_{12}}{C}, \\
D_{44}=G_{12}, & D_{55}=G_{13}, & D_{66}=G_{23} .
\end{array}
$$

### 12.5.2 Transversely isotropic material.

If a material has an infinite number of planes of symmetry passing through an axis (in this case, local $x$-axis), and one plane of symmetry perpendicular to this axis, it is known as an transversely isotropic material. Unidirectionally reinforced composites are of this type, as are for instance muscles. The direction of the fibers is special (oriented along the local $x$-axis), but the material behaves isotropically in the planes perpendicular to the fibers. Layered materials are also modeled as transversely isotropic: here the direction perpendicular to the layers is special.

The compliance matrix is obtained from the orthotropic compliance by setting $E_{2}=E_{3}, \nu_{12}=\nu_{13}, G_{12}=G_{13}$, and importantly

$$
G_{23}=\frac{E_{2}}{2\left(1+\nu_{23}\right)},
$$

requiring five independent constants, $E_{1}, E_{2}, \nu_{12}, G_{12}$, and $\nu_{23}$.

### 12.5.3 Isotropic material.

If a material has an infinite number of planes of symmetry of all possible orientations, it is known as an isotropic material. The compliance matrix of isotropic material is based on two material properties, for instance the Young's modulus $E$ and Poisson's ratio $\nu$

$$
\boldsymbol{C}=\left[\begin{array}{cccccc}
E^{-1}, & -\frac{\nu}{E}, & -\frac{\nu}{E}, & 0, & 0, & 0 \\
-\frac{\nu}{E}, & E^{-1}, & -\frac{\nu}{E}, & 0, & 0, & 0 \\
-\frac{\nu}{E}, & -\frac{\nu}{E}, & E^{-1}, & 0, & 0, & 0 \\
0, & 0, & 0, & G^{-1}, & 0, & 0 \\
0, & 0, & 0, & 0, & G^{-1}, & 0 \\
0, & 0, & 0, & 0, & 0, & G^{-1}
\end{array}\right] .
$$

The shear modulus $G$ is not independent, but is expressed as $G=E / 2 /(1+\nu)$. The material stiffness is then

$$
\boldsymbol{D}=\left[\begin{array}{cccccc}
\lambda+2 G & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & \lambda+2 G & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda+2 G & 0 & 0 & 0 \\
0 & 0 & 0 & G & 0 & 0 \\
0 & 0 & 0 & 0 & G & 0 \\
0 & 0 & 0 & 0 & 0 & G
\end{array}\right]
$$

where we introduce the Lamé constant $\lambda=E \nu /(1+\nu) /(1-2 \nu)$ for convenience.

### 12.6 Strain-displacement matrix

The elements of the stiffness matrix (12.30) are evaluated using numerical quadrature element-by-element (explained in detail in Section 6.8 for the conductivity matrix). This operation produces element-level stiffness matrices that couple together the finite element nodes of each element. To simplify the notation, we will tentatively define the strain-displacement matrix (one further refinement follows)

$$
\begin{equation*}
\boldsymbol{B}_{k}^{e}=\mathcal{B}\left(N_{k}(\boldsymbol{x})\right) \quad \text { for } \boldsymbol{x} \in \text { element } e, \tag{12.34}
\end{equation*}
$$

where $k$ indicates the node number, and $e$ identifies the element (it bears emphasis that the strain-displacement matrix of node $k$ is different in each element that shares this node).

Consider now a structure that consists of a single element, say a tetrahedron with four nodes, $A, B, C$ and $D$ (Figure 12.2). Let us also assume that all the degrees of freedom are free (hypothetically: if they really were, the stiffness matrix would be singular). The stiffness matrix of such a structure (i. e. of this single element) has 12 rows and columns.

$$
\begin{equation*}
K_{(j, i)(k, m)}=\left[\int_{V_{e}} \boldsymbol{B}_{j}^{e T} \boldsymbol{D} \boldsymbol{B}_{k}^{e} \mathrm{~d} V\right]_{i m}, \quad j, i=A, B, C, D . \tag{12.35}
\end{equation*}
$$

For $j, k$ fixed, say $j=B$ and $k=D$, the matrix


Fig. 12.2. Assembly of the element stiffness matrix

$$
\begin{equation*}
\int_{V_{e}} \boldsymbol{B}_{B}^{e T} \boldsymbol{D} \boldsymbol{B}_{D}^{e} \mathrm{~d} V \tag{12.36}
\end{equation*}
$$

is a $3 \times 3$ submatrix of the element stiffness matrix: compare with the illustration in Figure 12.2 (the off-diagonal block). Similarly, for $j=B$ and $k=B$ we would obtain the diagonal block. Therefore, the whole element stiffness matrix may be computed in one shot as

$$
\begin{equation*}
\boldsymbol{K}_{e}=\int_{V_{e}} \boldsymbol{B}^{e T} \boldsymbol{D} \boldsymbol{B}^{e} \mathrm{~d} V \tag{12.37}
\end{equation*}
$$

using the blocked matrix (the elementwise strain-displacement matrix)

$$
\begin{equation*}
\boldsymbol{B}_{e}=\left[\boldsymbol{B}_{A}^{e}, \boldsymbol{B}_{B}^{e}, \boldsymbol{B}_{C}^{e}, \boldsymbol{B}_{D}^{e}\right] \tag{12.38}
\end{equation*}
$$

Correspondingly, the displacements at the notes will be ordered into a column vector of displacement components in the global Cartesian basis (with the Matlab syntax: semicolon means new line)

$$
\begin{equation*}
\boldsymbol{U}_{e}=\left[\left[u_{A}\right] ;\left[u_{B}\right] ;\left[u_{C}\right] ;\left[u_{D}\right]\right] . \tag{12.39}
\end{equation*}
$$

### 12.6.1 Transformation of basis

It remains to discuss the issue of the choice of coordinate systems when evaluating the stiffness matrix integrals. As discussed in Section 12.5, the components of the material stiffness matrix are expressed on the local Cartesian basis of material orientation directions. Referring to the definition of the stiffness matrix (12.30), we see that there is a need to mediate between the local material directions and the global Cartesian basis. Drawing on the example of the element stiffness matrix (12.37), the element's restoring force may be expressed as

$$
\begin{equation*}
\boldsymbol{F}_{e}=\boldsymbol{K}_{e} \boldsymbol{U}_{e}=\int_{V_{e}} \boldsymbol{B}^{e T} \boldsymbol{D} \boldsymbol{B}^{e} \mathrm{~d} V \boldsymbol{U}_{e} \tag{12.40}
\end{equation*}
$$

While the displacement components in $\boldsymbol{U}_{e}$ and the force components in $\boldsymbol{F}_{e}$ are in the global Cartesian basis, the material stiffness matrix is expressed on the basis of the local material directions. Evidently, the linear algebra operations between the material matrix and displacements/forces must incorporate the transformation from one basis to another.

There are several ways in which this transformation could be carried out. In the SOFEA toolbox the following approach is used: the strain-displacement matrix is defined to produce strains in the local material basis, while taking displacement components in the global basis. This can be accomplished writing

$$
\begin{equation*}
[\boldsymbol{\epsilon}]^{(\bar{x})}=\mathcal{B}^{\bar{x}}[\boldsymbol{u}]^{(\bar{x})}=\mathcal{B}^{(\bar{x})}\left([T][\boldsymbol{u}]^{(x)}\right)=\left(\mathcal{B}^{(\bar{x})}[T]\right)[\boldsymbol{u}]^{(x)}=\mathcal{B}^{(\bar{x}, x)}[\boldsymbol{u}]^{(x)} \tag{12.41}
\end{equation*}
$$

where we use the superscript $(\bar{x})$ or $(x)$ to indicate in which coordinate system the components are expressed. The strain-displacement operator $\mathcal{B}^{(\bar{x}, x)}=\mathcal{B}^{(\bar{x})}[T]$ incorporates the geometric transformation $[T]$ of the displacement vector components from the global basis into the local material directions basis. This transformation may be derived from the equality

$$
\left[\boldsymbol{e}_{x}, \boldsymbol{e}_{y}, \boldsymbol{e}_{z}\right]\left[\begin{array}{l}
u_{x}  \tag{12.42}\\
u_{y} \\
u_{z}
\end{array}\right]=\left[\boldsymbol{e}_{\bar{x}}, \boldsymbol{e}_{\bar{y}}, \boldsymbol{e}_{\bar{z}}\right]\left[\begin{array}{l}
u_{\bar{x}} \\
u_{\bar{y}} \\
u_{\bar{z}}
\end{array}\right] .
$$

Pre-multiplying with

$$
\left[\begin{array}{l}
e_{\bar{x}} \\
e_{\bar{y}} \\
e_{\bar{z}}
\end{array}\right]
$$

leads to the transformation of vector components

$$
\left[\boldsymbol{R}_{m}\right]^{T}\left[\begin{array}{l}
u_{x}  \tag{12.43}\\
u_{y} \\
u_{z}
\end{array}\right]=[T]\left[\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right]=\left[\begin{array}{l}
u_{\bar{x}} \\
u_{\bar{y}} \\
u_{\bar{z}}
\end{array}\right] .
$$

The transformation $[T]$ is thus identified with an orthogonal (rotation) matrix

$$
\left[\boldsymbol{R}_{m}\right]=\left[\begin{array}{lll}
\boldsymbol{e}_{\bar{x}} \cdot \boldsymbol{e}_{x}, & \boldsymbol{e}_{\bar{y}} \cdot \boldsymbol{e}_{x}, & \boldsymbol{e}_{\bar{z}} \cdot \boldsymbol{e}_{x}  \tag{12.44}\\
\boldsymbol{e}_{\bar{x}} \cdot \boldsymbol{e}_{y}, & \boldsymbol{e}_{\bar{y}} \cdot \boldsymbol{e}_{y}, & \boldsymbol{e}_{\bar{z}} \cdot \boldsymbol{e}_{y} \\
\boldsymbol{e}_{\bar{x}} \cdot \boldsymbol{e}_{z}, & \boldsymbol{e}_{\bar{y}} \cdot \boldsymbol{e}_{z}, & \boldsymbol{e}_{\bar{z}} \cdot \boldsymbol{e}_{z}
\end{array}\right]
$$

which is just a three-dimensional analog of the two-dimensional transformation (6.50).
The global-to-local strain-displacement matrix is therefore defined as

$$
\begin{equation*}
\boldsymbol{B}_{k}^{e}=\mathcal{B}^{(\bar{x}, x)}\left(N_{k}(\boldsymbol{x})\right)=\mathcal{B}^{(\bar{x})}\left(N_{k}(\boldsymbol{x})\right)\left[\boldsymbol{R}_{m}\right]^{T} \quad \text { for } \boldsymbol{x} \in \text { element } e . \tag{12.45}
\end{equation*}
$$

The $\boldsymbol{B}_{k}^{e}$ matrix is used to compose the element-wise strain-displacement matrix (12.38) In the SOFEA the strain-displacement matrix is computed for a three-dimensional solid geometric cell by the method Blmat:

```
0 0 1 9 ~ f u n c t i o n ~ B ~ = ~ B l m a t ~ ' ~ (s e l f , ~ N d e r s p , ~ R m) ~
0020 nfens = size(Ndersp, 1);
0021 dim=3;
0022 B = zeros(6,nfens*dim);
0023 for i= 1:nfens
0024 B(:,dim*(i-1)+1:dim*i)\ldots
0025
0026
0027
0028
0029
0 0 3 0
0031 end
0032 return;
0 0 3 3 ~ e n d
```

The input arguments are the matrix of basis function gradients (as rows of Ndersp), and the transformation matrix $\boldsymbol{R}_{m}$. Comparing with the definitions (12.45) and (12.38), the Matlab code is an almost literal translation of the formulas. It is of interest to note that the method Blmat is defined for the gcell_3 manifold class; in other words, it is not specific to any particular element type or shape.

### 12.7 Stiffness matrix

In Chapter 3 and further and Section 6.8, it was pointed out and discussed that all the problem dependent code is concentrated in a descendent of the feblock class. The elastodynamics model of this chapter is implemented in the feblock_defor_ss finite element block class.

The stiffness matrix (12.30) is constructed from element-wise stiffness matrices (12.37). These are calculated by the stiffness method, and returned in the ems array. The stiffness method takes as arguments the geometry of the mesh (field geom), in order to have access to the locations of the nodes, and the displacement field $u$ to provide the global equation numbers of the unknowns.

```
0 0 0 8 ~ f u n c t i o n ~ e m s ~ = ~ s t i f f n e s s ~ 2 ~ (s e l f , ~ g e o m , ~ u) ~
0 0 0 9 ~ g c e l l s ~ = ~ g e t (s e l f . f e b l o c k , ' g c e l l s ') ;
0010 nfens = get(gcells(1),'nfens');
0011 ems(1:length(gcells)) = deal(elemat);% Pre-allocate
0 0 1 2 ~ \% ~ I n t e g r a t i o n ~ r u l e ~
0013 integration_rule = get(self.feblock, 'integration_rule');
0014 pc = get(integration_rule, 'param_coords');
0015 W = get(integration_rule, 'weights');
```

[^21]npts_per_gcell = get(integration_rule, 'npts');
\% Material
0018 mat $=$ get (self.feblock, 'mater');

The material stiffness matrix is pre-allocated, and the loop over all the geometric cells within the block begins. The connectivity of the geometric cell is retrieved, and, based on the connectivity, the locations of the nodes x are gathered from the geometry field geom. Finally, the matrix Ke is zeroed out in preparation for the numerical integration.
0024

```
0019 Ke = zeros(get(geom,'dim')*nfens); % preallocate
```

0019 Ke = zeros(get(geom,'dim')*nfens); % preallocate
0020 % Now loop over all gcells in the block
0021 for i=1:length(gcells)
0022 conn = get(gcells(i), 'conn'); % connectivity
0023 x = gather(geom, conn, 'values', 'noreshape'); % coord
Ke = 0*Ke; % zero out element stiffness

```

The loop over the quadrature points begins by calculating the parametric derivatives (gradients) of the basis functions (see equation (6.41)), and the location of the current integration point.

0026
0027 Nder = Ndermat_param (gcells(i), pc(j,:));
0028
 xyz =map_to_xyz(gcells(i),pc(j,:),x);

The matrix of the local material directions (material orientation matrix) is computed. It may depend on the location of the quadrature point, \(x y z\), and/or on the tangents to the parametric curves through the quadrature point, \(\mathrm{x}^{\prime} *\) Nder.

0029
```

Rm=material_directions(self,xyz,x'*Nder);%loc.b.

```

The matrix of the spatial gradients of the basis functions is computed. Note that the global location vectors for each node x are transformed into the local Cartesian basis of material directions, \(\mathrm{x} * \mathrm{Rm}\), as the matrix \(\mathcal{B}^{(\bar{x})}\left(N_{k}(\boldsymbol{x})\right)\) in equation (12.45) requires derivatives with respect to the material basis.

0030
```

Nspder=Ndermat_spatial(gcells(i),Nder,x*Rm);

```
detJ= Jacobian3D(gcells(i), pc(j,:), x'*Nder);

The strain-displacement matrix for the element is calculated from the spatial gradients of the basis functions, and the material directions matrix.

0032
```

B = Blmat(gcells(i), Nspder, Rm);

```

The material stiffness matrix is calculated by the material object mat, and since it may change from point to point, the location of the current integration point, xyz, is passed to the method.

0033
```

D = tangent_moduli(mat,struct('xyz',xyz));

```

The product of the strain-displacement matrix and the tangent moduli (the material stiffness matrix) is accumulated.
```

    Ke = Ke + B'*D*B * detJ * w(j);
    end

```
0035

Finally, the computed element stiffness matrix is stored in the ems(i) object of the elemat class. Note that the equation numbers are gathered from the displacement field.
```

0 0 3 6
0037
0 0 3 8 ~ e n d
0 0 3 9 ~ r e t u r n ;
0 0 4 0 end

```

\section*{First examples and further developments}

With the formulation sketched out, it only remains to pick an element formulation to perform an analysis. We begin with the tetrahedron T4. All the necessary formulas have been put into place in Section 9.5, and we may immediately proceed to the first example.

The equation of motion (12.33) stands for the so-called free vibration when there is no forcing, \(\boldsymbol{L}=\mathbf{0}\). (Compare also with (3.5).) The built-in Matlab eigenvalue solver will be used to obtain the numerical solution, and the task for the SOFEA is relatively simple: compute the stiffness matrix and the mass matrix.

\subsection*{13.1 Modal analysis with the tetrahedron T4: the drum}

As our first example, we consider the vibration of a moderately thick circular plate as shown in Figure 13.2. The cylindrical surface is fully clamped (all displacements zero). The material is isotropic. The analytical solution has been worked out in dependence on the number of "nodes" (locations of approximately zero displacement) radially and circumferentially [Blevins]. Therefore, this is a very good example with which to test the finite element formulation, and the finite element T4 in particular.

Fig. 13.1. Clamped circular plate drum.

The Matlab script drum_t \(4^{1}\) solves the vibration problem for the four lowest eigenvalues (shown in Figure 13.2). First, a few variables are defined and a mesh is produced

\footnotetext{
\({ }^{1}\) Folder: SOFEA/examples/stress
}
using the mesh function t4cylinderdel. The mesh is relatively coarse, with only two element edges through the thickness.
```

0001 E=0.1e6;% Pa
0002 nu=0.3;
0 0 0 3 ~ r h o = 1 0 0 0 ; \% ~ k g
0004 R= 25.0e-3;% m
0 0 0 5 ~ t = ~ 2 . 0 e - 3 ; \% ~ m ~
0 0 0 6 ~ r a n d ( ' s t a t e ' , 0 ) ; \% ~ t r y ~ t o ~ c o m m e n t ~ o u t ~ t h i s ~ l i n e ~ a n d ~ c o m p a r e ~
0007% results for several subsequent runs
0008
0009 % Mesh
0010 [fens,gcells] = t4cylinderdel(t,R, 2,7);

```

The material is small-strain (ss), linearly elastic (linel), isotropic (iso), and triaxial (triax). The material class mater_defor_ss_linel_iso_triax defines the material response based on these assumptions. Note that the mass density needs also be supplied (dynamics!).
```

0012 mater = mater_defor_ss_linel_iso_triax (struct('E',E,'nu',nu,'rho',rho));

```

The finite element block is of class feblock_defor_ss. The integration rule is a onepoint quadrature, provided by the class tet_rule.
```

0013 % Finite element block
0014 feb = feblock_defor_ss (struct ('mater',mater, 'gcells',gcells,...
0015 'integration_rule',tet_rule (1)));

```

The geometry field and the displacement field are set up as usual. The essential boundary condition is applied to all finite element nodes on the cylindrical surface (line 0024).
```

0017 geom = field(struct ('name',['geom'], 'dim', 3, 'fens',fens));
0 0 1 8 \% ~ D e f i n e ~ t h e ~ d i s p l a c e m e n t ~ f i e l d ~
0019 u = 0*geom; % zero out
0020 % Apply EBC's
0021 for i=1:length(fens)
0022 xyz = get(fens(i),'xyz');
0023 if abs(R-norm(xyz(2:3))) <0.02*R
0024 u = set_ebc(u, i, [1], [], 0.0);
0 0 2 5 ~ e n d
0 0 2 6 ~ e n d
0 0 2 7 ~ u ~ = ~ a p p l y \_ e b c ~ ( u ) ;
0028 % Number equations
0029 u = numbereqns (u);

```

The two methods, stiffness and mass, discussed previously are invoked. Notice that this will lead to the free vibration problem with a consistent mass matrix.
```

0031 K = start (sparse_sysmat, get(u, 'neqns'));
0032 K = assemble (K, stiffness(feb, geom, u));
0033 M = start (sparse_sysmat, get(u, 'neqns'));
0034 M = assemble (M, mass(feb, geom, u));

```

Finally, the built-in Matlab solver eigs is called. Four lowest eigenvalues are requested (the flag 'SM'). The returned eigenvalues needs to be sorted from the smallest to the largest (line 0039-0040).
```

0 0 3 7 neigvs = 4;
0038 [W,Omega]=eigs(get(K, 'mat'), get(M, 'mat'), neigvs, 'SM');
0039 [Omegas,ix]=sort(diag(Omega));
0 0 4 0 ~ O m e g a = ~ d i a g ( O m e g a s ) ;

```

The plotting section of the script is omitted, but the resulting shapes and the calculated frequencies are summarized in Figure 13.2: taking the analytical solution as reference, it is clear that the errors are huge. Evidently, a much more refined mesh would be required to obtain reasonable answers (recall: smaller elements, smaller error). A valuable observation: all the calculated values are above the reference frequencies. This is called "convergence from above", and it is an indication that the discrete model (in other words, the T4 finite element) is too stiff.

Fig. 13.2. Mode shapes of thick clamped plate. The analytical solution for the natural frequencies yields for these modes \(\omega_{1}=15.7511 \mathrm{~Hz}, \omega_{2}=\omega_{3}=32.7659 \mathrm{~Hz}, \omega_{4}=53.757 \mathrm{~Hz}\)

\subsection*{13.2 Modal analysis with the tetrahedron T4: the composite rod}

As the second example we will again consider a free vibration problem, but this time the material of the structure is modeled as transversely isotropic. The structure is a straight rod of circular cross-section, manufactured from carbon fiber infused with polymer resin (Figure 13.3). The reinforcing fibers are twisted, and for lack of other information, we assume that the twist angle decreases from the outside surface (\(15^{\circ}\)) to zero along its axis. The rod is clamped at both ends. Of interest is the lowest natural frequency of the structure.

Fig. 13.3. The cantilever Rod.

The Matlab solution of the problem is in the form of a function this time, twist_t \(4^{2}\). The reason is that in this case we are interested in the convergence behavior of our finite element model, and this function will be run from within a script to produce solutions for the first natural frequency for different resolutions radially (number of element edges nR) and longitudinally (number of element edgesnt).
```

0001 function frequency1 =twist_t4(nR,nt)

```

The transversely isotropic material from Section 12.5.2 requires the definition of the local material orientation matrix (12.44) at each integration point. The axis \(\bar{x}\) needs to be oriented along the fibers; the orientation of the remaining two basis vectors in the isotropy plane is arbitrary. In the function twist, the orientation matrix is derived by first turning a basis triad around the first vector (line 0022-0024), and then twisting the intermediate triad by an angle ramped up from \(0^{\circ}\) to \(15^{\circ}\) proportionally to the distance from the axis of the rod (line 0025).
0018
```

function Rm = twist (XYZ, ts)
r= norm(XYZ( 2:3));
if r>0
y=XYZ(2);z=XYZ(3);
e2 = [0, y/r, z/r]';
e3 = skewmat([1, 0, 0])*e2;
0024 Rm= [[1, 0, 0]',e2,e3];
0025 Rm=rotmat(r/R*twist_angle*skewmat (e2))*Rm;

```

\footnotetext{
\({ }^{2}\) Folder: SOFEA/examples/stress
}
 else
 \(R m=\) eye (3);
0028
 end
0029
end

The class mater_defor_ss_linel_transv_iso_triax defines the material behavior for the transversely isotropic material model. Note that five independent material constants need to be supplied.

0033
```

mater = mater_defor_ss_linel_transv_iso_triax (...
0034 struct('E1',E1,'E2',E2,...
'G12',G12, 'nu12',nu12, 'nu23',nu23, 'rho',rho));

```

It is noteworthy that the function twist that defines the directions of the local material basis is supplied to the finite element block as a function handle. Call for Section 12.7 for details on the use of the material orientation matrix.

0036
```

feb=feblock_defor_ss(struct('mater',mater,'gcells',gcells,...

```

0037
The rest of the function twist_t4 is omitted. The shape of the composite rod for a relatively fine mesh is shown in Figure 13.4: notice that the rod twists as well as bends due to the orientation of the reinforcing fibers in the form of a helix.

Fig. 13.4. The shape of the first eigenmode.

Let us now address the issue of convergence: The lowest frequency has been computed for a number of meshes with varying number of elements radially, and along the length of the rod. The lowest natural frequency is displayed for these different meshes in Figure 13.5. The frequency varies from approximately 2300 Hz to slightly less than 1900 Hz . It should be noted that the first natural frequency decreases in magnitude with a refinement (convergence from above), but the resulting surface is not smooth. (The bad shapes of some elements in the mesh have a profound effect on the accuracy.) The numerical answers are still changing significantly with the refinement, and it is therefore not clear how far from the "exact" solution we might be.

Fig. 13.5. Convergence of the lowest natural frequency with the T 4 element.

\subsection*{13.3 Tetrahedron T10}

\subsection*{13.4 Modal analysis with the tetrahedron T10}

Analytical eigenvalue 1: 15.7511 Hz Analytical eigenvalue 2, 3: 32.7659 Hz Analytical eigenvalue 4: 53.757 Hz ans \(=5.5433 \mathrm{e}-007\) Eigenvector 1 frequency 15.7866 ans \(=\) \(1.5410 \mathrm{e}-006\) Eigenvector 2 frequency 32.4844 ans \(=6.4863 \mathrm{e}-007\) Eigenvector 3 frequency 32.4883 ans \(=1.5295 \mathrm{e}-006\) Eigenvector 4 frequency 52.7092

Fig. 13.6. Convergence of the lowest natural frequency. Comparison of the two tetrahedral elements.

\title{
Appendix: GNU Free Documentation License
}

\author{
Version 1.2, November 2002 \\ Copyright © 2000,2001,2002 Free Software Foundation, Inc. \\ 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
}

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

\section*{Preamble}

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

\section*{1. APPLICABILITY AND DEFINITIONS}

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or BackCover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

\section*{2. VERBATIM COPYING}

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3 .

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

\section*{3. COPYING IN QUANTITY}

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

\section*{4. MODIFICATIONS}

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

\section*{5. COMBINING DOCUMENTS}

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

\section*{6. COLLECTIONS OF DOCUMENTS}

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

\section*{7. AGGREGATION WITH INDEPENDENT WORKS}

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

\section*{8. TRANSLATION}

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

\section*{9. TERMINATION}

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

\section*{10. FUTURE REVISIONS OF THIS LICENSE}

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

\section*{ADDENDUM: How to use this License for your documents}

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

\section*{References}
[Blevins] Blevins, R. D., Formulas for Natural Frequency and Mode Shape, Krieger publishing company, reprint edition 2001.
[BS89] Bogacki, P. and L. F. Shampine, A 3(2) pair of Runge-Kutta formulas, Appl. Math. Letters, Vol. 2, 1989, pp 1-9.
[Gra91] Graff, KF: Wave motion in elastic solids. Dover publications, New York (1991)
[Hug00] Hughes, TJR: The finite element method. Linear static and dynamic finite element analysis. Dover publications, New York (2000).
This book is a must-read for anyone serious about learning finite element analysis properly. Meticulously written, and brimming with insights. Quite mathematical.
[CC2005] Chapra, SC and RP Canale: Numerical Methods for Engineers. McGraw-Hill (2005)
[CCS] A.D. CAMERON, J.A. CASEY, G.B. SIMPSON: Benchmark Tests for Thermal Analyses, NAFEMS Documentation.
[IL05] http://www.infolytica.com/en/coolstuff/ex0047/
[LL05] John H. Lienhard IV, and John H. Lienhard V, A Heat Transfer Textbook, 3rd edition, http://web.mit.edu/lienhard/www/ahtt.html

\section*{Index}
adaptive mesh control, 99
anisotropic material, 131
argument
passed by value, 21
assembly, 61
average acceleration method, 27
balance equation, 3
global, 38
local, 38
balance of angular momentum, 108
balance of linear momentum, 105
balance residual, 7
barycenter, 99
basis function
derivative, 58
triangle T3, 50
triangle T6, 89
basis functions, 12
body load, 129
boundary condition
displacement, 120
essential, 5, 40, 120
natural, 5, 41, 120
overspecified, 32
sufficient, 41
traction, 120
boundary conditions, 4,5
Bubnov-Galerkin method, 7
capacity matrix, 54
Cauchy stress tensor, 107
chain rule, 17
change of coordinates in integrals, 60
circular frequency, 23
class
body_load, 22
dense_sysmat, 21, 61
elemat, 61, 63
feblock_defor_ss, 136, 140
feblock_diffusion, 60, 70
feblock, 20, 60, 90, 136
field, 20, 83, 126
gcell_3_manifold, 136
gcell_T3, 58
gcell, 57
mater_defor_ss_linel_iso_triax, 140
mater_defor_ss_linel_transv_iso_triax, 143
sparse_sysmat, 61
sysvec, 22
tet_rule, 95, 140
tri_rule, 70, 95
fenode, 20
Clough, 48
compliance matrix, 131
conductivity matrix, 54
connectivity, 20
consistent mass matrix, 23
constitutive equation, 116
constructor, 20
control volume, 37
convergence, 23
convex hull, 95

Courant, 48
Crank-Nicholson method, 81
cross product, 59, 92
curved boundary
approximation, 52
degree of freedom, 15
diagonal mass matrix, 17
Dirac delta function, 10
displacement, 113
displacement boundary condition, 120
divergence theorem, 39, 109, 112, 122
dynamic dispatch, 90
dynamic equilibrium, 112
dynamic force equilibrium, 128
eigenmode, 23
eigenvalue, 107
elastic coefficients, 116
energy of deformation, 116
equation number, 129
error
heat flux, 98
essential boundary condition, 5, 29, 40
fiber-reinforced composite, 131
finite difference
backward Euler, 81
forward Euler, 81
finite element, 13
edge, 48
H8, 95
isoparametric, 55
L2, 13
L3, 89
node, 13, 48
P1, 90
Q4, 95
T3, 58
T4, 93, 139
T6, 87
finite element mesh, 13
flux boundary condition, 41
flux variable, 117
free vibration, 23, 139

Galerkin method, 7
generalized eigenvalue problem, 23
generalized trapezoidal method, 79, 80
geometric cells, 20
hat function, 49
heat
conduction, 37
diffusion, 37
heat energy, 37
heat flux, 38
inertial force, 112, 129
inertial load, 129
initial boundary value problem, 6
initial conditions, 6
integration by parts, 11
integration rule
tetrahedron, 93
triangle, 60, 89
interpolation, 12
isoparametric element, 55
isotropic material, 40, 132
Jacobian, 59, 92
Jacobian determinant, 16
Jacobian matrix, 56, 58
kinematically admissible displacement, 124
Kronecker delta, 14, 88
Lagrange interpolation polynomial, 13
Lamé constant \(\lambda, 133\)
linear elasticity, 116
linear momentum, 104
lumped mass matrix, 23
manifold dimension, 90
map
of areas, 59
of points, 58
of vectors, 59
mass density, 109
mass matrix, 13
consistent, 13, 23, 129
lumped, 23
material curve, 113
material orientation matrix, \(63,131,135\), 137
material point, 113
material stiffness, 116
Matlab script
drum_t4, 139
helixcooled, 94
lshape1, 69
shrinkfit, 84
squareinsquare, 72
t3nafems, 82
t4nafems, 76
transcool, 90
twist_t4, 142
woverspec, 33
wtransient1, 25
wtransient2, 27
wvib, 23
method
backward Euler, 81
Crank-Nicholson, 81
forward Euler, 81
modal equations, 131
modeling error, 117
motion, 113
natural boundary condition, \(5,29,41\)
natural frequency, 23
Neumann problem, 31, 42
Newmark algorithm, 27
Newmark average-acceleration integrator, 27, 131
Newmark explicit algorithm, 18
Newmark integrator, 27
Newton's equation of motion, 103
Newton's law, 3
node, 13
nonzero-displacement load, 130
normal strain, 113
normal stresses, 107
numerical quadrature, 15
point, 90
triangles, 60
ordinary differential equations, 13
orthogonal matrix, 135
orthotropic material, 40, 131
outer normal, 38
parametric coordinates, 17
particle, 103
piecewise linear, 9
piecewise linear approximation, 13
plane strain, 118
Poisson's ratio \(\nu, 132\)
polymorphism, 90
pressure, 118
primary variable, 117
principal direction, 107
principal stress, 107
principle of virtual work, 124
pure-traction problem, 31, 42
quadratic form, 116
quadrature point, 15
rate of heat generation, 38
reaction, 31, 123
reactions, 118
reduction
dimension, 46
residual, \(7,10,45\)
balance, 45
resisting force, 130
Richardson extrapolation, 98
rotation matrix, 63, 131, 135
Runge-Kutta ODE integrator, 25
shear modulus, 133
shear strain, 113
shear stresses, 107
simplex element, 95
Simpson's \(1 / 3\) rule, 16
singular stiffness matrix, 32
skew-symmetric matrix, 92
smoothness, 10
sparse matrix, 13
specific heat, 38
standard interval, 16, 64
standard tetrahedron, 93
standard triangle, 50, 87
static equilibrium, 19
stiffness matrix, 12, 130, 136
strain displacement operator, 131
strain tensor, 115
strain-displacement matrix, 133, 135
strain-displacement operator, 115
strains, 105
stress, 106
normal, 107
shear, 107
stress divergence, 112
stress-divergence operator, 112
stretch, 113
surface heat transfer matrix, 55
surface traction load, 129
symmetric gradient operator, 112,115 , 131
symmetric matrix, 13
tangent to material curve, 113
tangent vector, 59, 65, 92, 137
taut string, 3
temperature gradient, 40
tensor, 107
tent, 49
test function, 8,122
thermal conductivity, 40
traction, 103
traction boundary condition, 120
traction-free, 118
transformation matrix, 63, 131
transformation of vector components, 135
transversely isotropic material, 132
Trapezoidal ODE integrator, 27
trapezoidal rule, 26
trial function, 10, 12
trial-and-test approximate method, 9
triangulation, 48
utility
drawmesh, 95
mesh_bdry, 95
transform_apply, 94
vector-stress vector dot product operator, 108, 122
virtual displacement, 124
virtual work, 124
weighted residual equation
stress analysis, 123
weighted residual method, 8
work, 116
work-conjugate, 118
Young's modulus \(E, 132\)```

[^0]: ${ }^{1}$ Boris Grigoryevich Galerkin became a teacher of structural mechanics in St. Petersburg Polytechnical Institute in in 1908. Among his contemporaries, also active in St. Petersburg, were I. G. Bubnov, A. N. Krylov, and S. P. Timoshenko, well-known names in the profession. In 1915 Galerkin published an article, in which he put forward an idea of an approximate method to solve differential boundary value problems (he was working on plate and shell models at that time). Around that time Bubnov developed similar variational approach, hence this method is also known as the Bubnov-Galerkin method.

[^1]: ${ }^{1}$ SOFEA is © 2005 , Petr Krysl

[^2]: ${ }^{2}$ Folder: SOFEA/examples/taut_wire

[^3]: ${ }^{3}$ Folder: SOFEA/examples/taut_wire

[^4]: ${ }^{4}$ Folder: SOFEA/examples/taut_wire

[^5]: ${ }^{1}$ Folder: SOFEA/examples/taut_wire

[^6]: ${ }^{1}$ The so-called "linear triangle" made its first appearance in a lecture by Courant in 1943, applied to Poisson's equation, which is a time-independent version of the heat conduction equation of this chapter. It was then picked up as a structural element in aerospace engineering to model Delta wing skin panels, as described in the 1956 paper by Turner, Clough, Martin and Topp. Clough then applied the triangle to problems in civil engineering, and he also coined the terminology "finite element".

[^7]: ${ }^{2}$ Apropos boundaries: Figure 6.8 clearly shows that with straight edges we are only approximating any boundaries that are curved. Some error is involved, but fortunately we are able to control this error by reducing the length of the edges.

[^8]: ${ }^{3}$ Folder: SOFEA/classes/gcell/@gcell

[^9]: ${ }^{4}$ Folder: SOFEA/classes/gcell/@gcell_T3
 ${ }^{5}$ Folder: SOFEA/classes/gcell/@gcell_T3

[^10]: ${ }^{6}$ Folder: SOFEA/classes/sysmat/@dense_sysmat
 ${ }^{7}$ Folder: SOFEA/classes/feblock/@feblock_diffusion

[^11]: ${ }^{8}$ Folder: SOFEA/classes/feblock/@feblock_diffusion

[^12]: ${ }^{1}$ Folder: SOFEA/examples/heat_diffusion
 ${ }^{2}$ Folder: SOFEA/meshes/targe2

[^13]: ${ }^{3}$ Folder: SOFEA/examples/heat_diffusion

[^14]: ${ }^{4}$ Folder: SOFEA/examples/heat_diffusion

[^15]: ${ }^{1}$ Folder: SOFEA/examples/diffusion
 ${ }^{2}$ Folder: SOFEA/meshes

[^16]: ${ }^{3}$ Folder: SOFEA/examples/diffusion

[^17]: ${ }^{1}$ Folder: SOFEA/examples/diffusion

[^18]: ${ }^{2}$ Folder: SOFEA/classes/feblock/@feblock

[^19]: ${ }^{5}$ Folder: SOFEA/examples/diffusion

[^20]: ${ }^{1}$ Folder: SOFEA/examples/diffusion
 ${ }^{2}$ Folder: SOFEA/examples/diffusion

[^21]: ${ }^{1}$ Folder: SOFEA/classes/gcell/@gcell_3_manifold
 ${ }^{2}$ Folder: SOFEA/classes/feblock/@feblock_defor_ss

