
Petr Krysl

A Pragmatic Introduction to the
Finite Element Method
for Thermal and Stress Analysis

With the Matlab toolbox SOFEA

November 2005

Pressure Cooker Press
San Diego
pkrysl@ucsd.edu

Contents

Part I Introducing the Galerkin method

1 Model of a Taut Wire . 3
1.1 Deriving the PDE model . 3
1.2 Balance equation . 3
1.3 Boundary conditions . 4
1.4 Boundary conditions (in space) . 4
1.5 Initial conditions . 5
1.6 Anything else? . 6

2 The method of Mr. Galerkin . 7
2.1 Residual of the balance equation . 7
2.2 Integral test of the residual . 8
2.3 Test function . 8
2.4 Trial function . 9
2.5 Manipulation of the residuals . 10
2.6 Stiffness and mass matrix . 11
2.7 Piecewise linear basis functions . 12
2.8 Numerical quadrature . 14
2.9 Putting it together: system of ODE’s . 16

3 Introducing the Matlab code . 19
3.1 Statics . 19
3.2 Statics: uniform load . 19
3.3 Free vibration . 22
3.4 Virtual work principle . 23

4 The boundary conditions for the model of a taut wire 25
4.1 Essential and natural boundary conditions at separate end-points 25
4.2 Essential boundary conditions only . 26
4.3 Natural boundary conditions only . 27
4.4 Overspecified boundary conditions . 27

Part II Thermal analysis

VI Contents

5 Model of Heat Diffusion . 33
5.1 Balance equation . 33
5.2 Constitutive equation . 35
5.3 Boundary conditions . 36
5.4 Initial condition . 37
5.5 Summary of the PDE model of heat conduction . 38

6 Galerkin method for the model of heat conduction 39
6.1 Weighted residual formulation . 39
6.2 Reducing the model dimension . 40
6.3 Test and trial functions: basis functions on triangulations 41
6.4 Basis functions on the standard triangle . 43
6.5 Discretizing the weighted residual equation . 45
6.6 Derivatives of the basis functions; Jacobian . 48
6.7 Numerical integration . 51
6.8 Conductivity matrix . 52
6.9 Surface heat transfer matrix and load . 54

7 Steady-state heat diffusion solutions . 59
7.1 Steady-state diffusion equation . 59
7.2 Thick-walled tube . 59
7.3 Orthotropic insert . 61
7.4 The T4 NAFEMS Benchmark . 64

8 Transient heat diffusion solutions . 69
8.1 Discretization in time for transient heat diffusion . 69
8.2 Transient diffusion: The T3 NAFEMS Benchmark . 71
8.3 Transient cooling in a shrink-fitting application . 73

9 Expanding the library of element types . 77
9.1 Quadratic triangle T6 . 77
9.2 Quadratic 1-D element L3 . 79
9.3 Point element P1 . 79
9.4 Measuring (integrating) over domains . 80
9.5 On the simplex elements . 82
9.6 Quadrilateral Q4 . 83
9.7 Tetrahedron T4 . 83

10 Convergence and error control . 85
10.1 First look at errors . 85
10.2 Richardson extrapolation . 86
10.3 The T4 NAFEMS Benchmark revisited . 86
10.4 Shrink fitting revisited . 87

Part III Stress analysis

11 Model of elastodynamics . 91
11.1 Balance of linear momentum . 91
11.2 Stress . 93
11.3 Local equilibrium: change of linear momentum . 96
11.4 Local equilibrium: divergence of stress . 96

Contents VII

11.5 Local equilibrium: all together . 99
11.6 Strains and displacements . 99
11.7 Constitutive equation . 101
11.8 Initial conditions . 103
11.9 Boundary conditions . 103
11.10Comparing the Thermal and Deformation models . 104

References . 107

Index . 109

Part I

Introducing the Galerkin method

1

Model of a Taut Wire

This chapter will formulate a relatively simple model of a taut string. In the next chapter,
we will seek approximate solutions to this model that are obtained with the Galerkin
method.

1.1 Deriving the PDE model

Figure 1.1 illustrates an idealization of a taught wire. The wire is under prestressing force,
P , assumed to be uniform along the length of the wire. The left hand end is immovably
fixed, while the right hand side end is held in a fixture which can slide perpendicularly to
the axis of the wire. A transverse force FL is applied at the movable end. In addition, there
may be some distributed force q acting along the length (but we shall ignore gravity).
The transverse displacement is a function of both the axial coordinate x and the time t,
w = w(x, t) . The transverse displacement is assumed to be very small compared to the
length of the wire.

Fig. 1.1. Schematic of taut wire

1.2 Balance equation

Taking a section of length ∆x of the wire (see Figure 1.2, collecting all the forces, and
equating them to the inertial force (Newton’s law), leads to a balance equation for the
taut wire

P
∂2w

∂x2
+ q = µẅ , (1.1)

4 1 Model of a Taut Wire

where ẅ = ∂2w
∂t2 is the acceleration.

Fig. 1.2. The forces acting on a segment of the taut wire

1.3 Boundary conditions

The function w that describes the transverse deflection takes two arguments, x, and t.
It is defined on a rectangle shown in Figure 1.3: 0 ≤ x ≤ L, and 0 ≤ t ≤ t̄. It needs to be
determined to satisfy the balance equation (1.1), but that would not completely nail the
answer down. We also know something about the solution, namely at the boundaries
of the domain rectangle.

How many pieces of information do we need to know? A reasonable answer is, ‘Enough
to make the solution unique.’ To find the deflection w is going to involve integration, be-
cause the balance equation refers to space and time derivatives of w. Using the definitions

v =
∂w

∂t

θ =
∂w

∂x

we may rewrite all the balance equation that involves the second derivatives of the func-
tion w as a system of first order differential equations

∂θ

∂t
=

∂v

∂x

P
∂θ

∂x
+ q − µ

∂v

∂t
= 0

For each derivative ∂v
∂x , ∂θ

∂x , one boundary condition (integration constant) will be needed.
Similarly, for each of the time derivatives ∂v

∂t , and ∂θ
∂t one boundary condition along the

time axis will be required.

1.4 Boundary conditions (in space)

The conditions on w along the edges of the domain rectangle parallel to the time axis
are known (for historical reasons) as the boundary conditions. (Perhaps also because
they are applied along the physical boundaries of the structure.)

It needs to be realized that the domain of the wire, that is the interval 0 ≤ x ≤ L,
has only one boundary, namely the two endpoints. Since these two points are disjoint,

1.5 Initial conditions 5

Fig. 1.3. The domain of the deflection function w

the boundary of the interval consists of two disjoint sets. As discussed in more detail in
Chapter 4, we are really prescribing a single boundary condition. Since it happens to be
applied at two disjoint points, we talk loosely of boundary conditions, even the though
we should be saying boundary condition specifications.

For the sake of definiteness and this example, at the left-hand side end of the wire we
are prescribing in general nonzero displacement,

w(0, t) = w̄0.and (1.2)

As we shall find out, there is a good reason why this kind of condition is commonly called
the essential boundary condition.

At the other end the boundary condition is of a different nature. It is also a bit more
interesting, as we have to derive it. Again, we take a short section of the wire of length
∆x (see Figure 1.4). This time there are terms that are multiplied by ∆x, but there are
also others which are not. Only the latter survive when we make ∆x go to zero.

− P
∂w

∂x
(L, t) + FL(t) = 0 . (1.3)

This boundary condition is simply the balance of forces at the end of the wire. Boundary
conditions of this kind are called natural boundary conditions, and we’ll find out
presently why.

Fig. 1.4. The forces acting on a right hand side segment of the taut wire

1.5 Initial conditions

Along the edges of the domain rectangle that are parallel to the space axis we also apply
two conditions. However, as we all are aware, the time direction is special. Therefore, it

6 1 Model of a Taut Wire

will probably come to us naturally to expect to know something about the deflection at
one point in time, typically at t = 0. Because this is the initial point along the time axis,
these conditions are known as the initial conditions (and we need two of them):

w(x, 0) = W̄ (x),
∂w

∂t
(x, 0) = V̄ (x) , (1.4)

where W̄ (x) (the initial deflection) and V̄ (x) (the initial velocity) are known functions.

1.6 Anything else?

The balance equation (1.1), the boundary conditions (1.2) and (1.3), and the initial
conditions (1.4) are all we need to fully define what model it is we are trying to find
solutions to. It is an initial boundary value problem, and as such it is quite typical
of the models with which structural engineers have to deal. In what follows, we shall find
out how to formulate an algorithm, the so-called Galerkin finite element method, which
will supply an approximate solution to this problem.

2

The method of Mr. Galerkin

We will have to come to grips with the impossibility of satisfying the governing equation
exactly with an approximate method. There’s going to be an error in the balance equation
(which we shall call a residual; another appropriate label might be imbalance). Similarly,
the natural (force) boundary condition may not be satisfied exactly, and there is going
to be a residual there too.1

2.1 Residual of the balance equation

The balance equation (1.1) may be written in the residual form as

P
∂2w

∂x2
+ q − µẅ = rB(x, t) , (2.1)

by simply moving the inertial force on the other side of the equals sign. The residual rB

is identically zero if w is the exact solution. For an approximate solution, the residual rB

varies from point to point, and from time to time, and is in general nonzero.

Fig. 2.1. Residual that integrates to zero, but is not identically zero

Checking that the balance residual is identically zero at each point x and each time
t does not provide us with anything we can use to talk about approximate solutions:
the residual is either zero or it isn’t, but how do we measure whether the approximate
solution for which the residual is not zero is good?

1Boris Grigoryevich Galerkin became a teacher of structural mechanics in St. Petersburg
Polytechnical Institute in in 1908. Among his contemporaries, also active in St. Petersburg,
were I. G. Bubnov, A. N. Krylov, and S. P. Timoshenko, well-known names in the profession. In
1915 Galerkin published an article, in which he put forward an idea of an approximate method
to solve differential boundary value problems (he was working on plate and shell models at that
time). Around that time Bubnov developed similar variational approach, hence this method is
also known as the Bubnov-Galerkin method.

8 2 The method of Mr. Galerkin

2.2 Integral test of the residual

One possible choice of a quality measure is to integrate the residual over the domain
(length of the wire). We could think of the integral

∫ L

0

rB(x, t) dx . (2.2)

as a test: if the residual is identically zero, this integral will also come out zero. However,
(2.2) may be zero even when the residual is not identically zero. In other words, if
we wanted to prove that the residual corresponds to an exact solution, this would be an
incomplete and flawed test. Consider Figure 2.1: the integral (2.2) is zero, but the residual
itself may be very large (for instance, when rB = A sin(2πnx/L), with n = 1, 2, ...).

2.3 Test function

A remedy that addresses this blindness of (2.2) to the shape of the residual may be to
use a “window” (test) function η(x)

∫ L

0

η(x)rB(x, t) dx . (2.3)

Note that η(x) is an arbitrary function. In particular, it could be a function of the
shape shown in Figure 2.2, which is certainly going to give a nonzero value for (2.3) (the
hatched area at the bottom). Therefore, it correctly indicates that the residual does not
correspond to the exact solution. Equation (2.3) is known as the weighted residual
statement . Approximate approaches that start from the weighted residual statement
are known as weighted residual methods.

Fig. 2.2. Nonzero a residual which is detected in the integral (2.3)

Equation (2.3) is a reliable way of testing the residual, but computationally it seems
hardly less difficult than testing the residual at each point of the domain: equation (2.3)
needs to be evaluated for an infinite number of functions η in order to make sure there
are no bumps in the residual. The job will still take an infinite time.

Let us contemplate a tangible analogy of what we’re trying to do in equation (2.3).
Imagine our job is to hold an inflatable balloon in a box, so that it does not jut out
anywhere. Use the fingers of one hand to press down on the balloon, so that the balloon
is at the top of the box in the spot where it is being held by the finger. If we put down
all five fingers, the situation is as shown on the left in Figure 2.3. Each of the fingers may
be thought of as a single test function η that pushes down the residual in some spots.

2.4 Trial function 9

Fig. 2.3. Stuffing a balloon into a box

Evidently, the balloon bulges out a little bit in between the fingers, and a lot every-
where else. However, we have the option of pressing down on the balloon with the fingers
of our other hand, and if we enrol our friends and relatives, and the chance passersby,
we will manage to do a better and better job of stuffing the balloon into the box and
holding it so that it does not protrude very much. Indeed, with an infinite number of
fingers, we can hold the balloon so that it does not protrude at all.

In this way, we may begin to see how an trial-and-test approximate method may be
formulated. Selecting a finite number of suitable functions ηj (fingers), we may be able
to keep the residual small (but in general nonzero). By applying larger numbers of test
functions, we may hope to be able to reduce the error in the residual. Also, for each ηj ,
j = 1, ..., N , we will make the integral (2.3) vanish

∫ L

0

ηj(x)rB(x, t) dx = 0 , (2.4)

which provides us with the means of calculating N coefficients (numbers) from these N
equations.

2.4 Trial function

The task of formulating the approximate solution consists really of describing the shape
of the deflection w. This can be done in a variety of ways, but for reasons that we shall
give later, a piecewise linear representation is a good choice. Figure 2.4 illustrates this
concept by showing how the shape may be defined by the N coefficients wj . The attentive
reader will at this point fidget: the piecewise linear shape of the deflection curve is not
going to allow us to express the second order derivatives ∂2w/∂x2. At the corners, the
first derivatives will be discontinuous, and hence the second derivative will be a spike
(so-called Dirac delta function). We can choose either to abandon the piecewise linear
shape, and pass a smooth curve through the filled-circle points, or, we could change the
rules of the game by getting rid of the second-order derivatives. As we shall presently
see, the latter choice is commonly preferred.

In any case, the equations (2.4) may be used to calculate the values of wj , j = 1, ..., N .
The function that describes the shape of the approximate solution (with the N free
parameters) is known as the trial function. It describes a possible (candidate, trial)
shape of the approximate solution; which becomes the solution once the values of the
free parameters are known.

10 2 The method of Mr. Galerkin

Fig. 2.4. Piecewise linear trial function

2.5 Manipulation of the residuals

We will seek the approximate solution w to satisfy the balance equation in the residual
form (2.4), and we’ll incorporate the boundary conditions and residual form too. The
displacement boundary condition (1.2) will be included in the form of the residual

rw(t) = w(0, t)− w̄0(t). (2.5)

and the natural boundary condition (1.3) will be included as the residual

rF (t) = −P
∂w

∂x
(L, 0) + FL . (2.6)

Therefore, the approximate solution will be sought from the conditions
∫ L

0
ηj(x)rB(x, t) dx = 0

ξwrw(t) = 0
ξF rF (t) = 0

(2.7)

There are no conditions at this point on the trial function w other than smoothness that
will guarantee the existence of the integrals in the first equation (2.7).

To reduce the complexity of (2.7), we may immediately realize that at the left-hand
side end of the wire, we can quite simply design the trial function to make the resid-
ual (2.5) identically zero. This will put another condition on w, and (2.7) may be cast
as ∫ L

0
ηj(x)rB(x, t) dx = 0

ξF rF (t) = 0
(2.8)

where w(0, t) = w̄0(t), and w(x, t) sufficiently smooth in x.
In this way we managed to reduce the number of residuals, but we will do even better

now. By applying integration by parts to the first equation in (2.8), we will be able to
reduce the number of residuals further, and furthermore, we will be able to make it much
easier to design a trial function by allowing for less smooth functions.

Substituting for the balance residual, we get three terms
∫ L

0

ηj(x)rB(x, t) dx =
∫ L

0

ηj(x)P
∂2w

∂x2
(x) dx +

∫ L

0

ηj(x)q(x) dx−
∫ L

0

ηj(x)µ(x)ẅ(x, t) dx

(2.9)

Integration per partes will not affect the second and third term on the right hand side,
but for the first term we obtain

∫ L

0

ηjP
∂2w

∂x2
dx =

[
ηjP

∂w

∂x

]L

0

−
∫ L

0

∂ηj

∂x
P

∂w

∂x
dx (2.10)

2.6 Stiffness and mass matrix 11

The bracketed term is fraught with possibilities. Number one, we may recognize part of
the bracket in equation (2.6). In fact, if we propose to satisfy rF = 0 at the right hand
side end of the wire (x = L) identically, we may simply replace P ∂w

∂x (which is known
there) with FL. That takes care of the force residual (2.6). Number two, at the left-hand
side end of the wire the value of P ∂w

∂x is unknown, but we have the option of making ηj

vanish at x = 0. This will burden all the ηj ’s with a condition, ηj(x = 0) = 0, but that
is something we can afford.

We are in a position to summarize: We have been able to avoid the need to carry
the displacement residual (2.5) [eliminated by design of the trial function] and the force
residual (2.6) [incorporated into the balance residual– hence, “natural” boundary con-
dition]. Therefore, we will try to find the approximate solution w to satisfy the balance
equation in the residual form

ηj(L)FL −
∫ L

0

∂ηj

∂x
P

∂w

∂x
dx +

∫ L

0

ηjq dx−
∫ L

0

ηjµẅ dx = 0, j = 1, ..., N (2.11)

where
ηj(x = 0) = 0, ηj ∈ C0, j = 1, ..., N
w(x = 0, t) = w̄0(t), w ∈ C0,

w(x, t = 0) ≈ W̄ (x),
∂w

∂t
(x, t = 0) ≈ V̄ (x).

(2.12)

We write for the trial function w ∈ C0 and similarly for the test functions. This literally
means that the functions are continuous, which is a substitute here for a more precise
mathematical statement, but which nevertheless ensures that the integrals in (2.11) exist.

The initial conditions need to be suitably approximated, in general we will not be
able to satisfy them exactly (which is why we write ≈). Typically, interpolation is used.

2.6 Stiffness and mass matrix

It is time to come back to the choice of the test and trial functions. As advertised in
Section 2.4, we have been able to change the requirements on the test and trial function:
Their derivatives are now balanced– only the first-order derivatives are needed for both.
Therefore, the piecewise linear interpolation function of Figure 2.4 is now an possibility.
However, we can still forge ahead while keeping our options open.

Let us make the assumption that the time is fixed t = t̄ (t̄ some given number). To
describe the trial function, we will resort to a common technique in interpolation which
is to write the interpolant as a linear combination of basis functions. Therefore, let us
assume that the trial function is written as

w(x, t̄) =
N∑

i=1

Ni(x)wi(t̄) (2.13)

where by wi(t̄) we simply mean that the coefficients of the linear combination wi are
actually functions of time, evaluated at the particular time t̄. Substituting into (2.12),
we obtain

ηj(L)FL −
∫ L

0

∂ηj

∂x
P

N∑

i=1

∂Ni

∂x
wi(t̄) dx+

∫ L

0

ηjq dx−
∫ L

0

ηjµ

N∑

i=1

Niẅi(t̄) dx = 0, j = 1, ..., N ,

(2.14)

which may be simplified to

12 2 The method of Mr. Galerkin

ηj(L)FL −
N∑

i=1

(∫ L

0

∂ηj

∂x
P

∂Ni

∂x
dx

)
wi(t̄)+

∫ L

0

ηjq dx−
N∑

i=1

(∫ L

0

ηjµNi dx

)
ẅi(t̄) = 0, j = 1, ..., N ,

(2.15)

With the definitions

Kji =
∫ L

0

∂ηj

∂x
P

∂Ni

∂x
dx , (2.16)

where Kji is usually referred to as the stiffness matrix, and

Mji =
∫ L

0

ηjµNi dx , (2.17)

where Mji is the mass matrix, we may write (2.15) as

ηj(L)FL −
N∑

i=1

Kjiwi(t̄) +
∫ L

0

ηjq dx−
N∑

i=1

Mjiẅi(t̄) = 0, j = 1, ..., N , (2.18)

The matrix equation (2.29) is a system of coupled ordinary differential equations (eval-
uated at time t̄), where the coupling is effected by the matrices Kji and Mji. The linear
algebra is going to be much more efficient if the two matrices are symmetric and sparse.

The first property will follow if we take as the test functions ηj the basis functions
themselves, ηj ≡ Ni. The second property may be achieved if the basis functions Ni are
nonzero only on a small subset of the interval 0 ≤ x ≤ L.

2.7 Piecewise linear basis functions

Lets us get back to the piecewise linear approximation we advertised for the trial function
in Section 2.4. The broken line cannot be represented as a linear combination of linear
functions that are all defined on the whole interval 0 ≤ x ≤ L (only two such functions
are linearly independent, and these functions cannot represent the corners in the broken
line). Therefore, we have to describe the piecewise linear curve interval-by-interval.

A common technique in interpolation is to write the interpolant as a linear combi-
nation of basis functions. In one dimension, the piecewise linear basis function is called
the hat functions. The six functions that are shown in Figure 2.5, all are examples of
hat functions. For reasons that will be discussed later, we would want the hat functions
as the constituent parts of a linear combination to be able to reproduce an arbitrary
linear function over the whole interval. Because of the way in which we construct the hat
functions in Figure 2.5, this property is automatically available.

Let us describe the construction of the piecewise linear basis functions. (In this book,
the one-dimensional elements with two nodes at the end points are going to be referred to
as L2.) First, the length of the wire is divided into disjoint subintervals. These subintervals
are the finite elements for the one-dimensional problem. The end-points of the finite
elements are called nodes. Together, the finite elements and the nodes are known as the
finite element mesh: see Figure 2.6 (the element numbers are in the boxes; nodes are
indicated by filled circles). Since all basis functions are constructed in the same way, we
show the procedure for basis function N3: as shown in the Figure 2.5, it is nonzero over
two elements, 2 and 3; zero everywhere else. To be able to write it down over the two
adjacent elements, we have to agree on the value of N3 at node 3 (i.e. N3(x3)), which is
shared by elements 2 and 3. Choosing N3(x3) = 1 has certain advantages, which will be

2.7 Piecewise linear basis functions 13

Fig. 2.5. Piecewise linear basis functions

introduced momentarily. Using the concept of Lagrange interpolation polynomials, we
may write the function N3 within element 2 as

N3(x) =
x− x2

x3 − x2
, x2 ≤ x ≤ x3

and within element 3 as

N3(x) =
x− x4

x3 − x4
, x3 ≤ x ≤ x4 .

All the other functions are expressed analogously. Putting them together in a linear
combination for the trial function, we write

w(x) =
N∑

i=1

Ni(x)wi

(for simplicity, we omit the time argument). Evaluating w(x) at node k, we obtain

w(xk) =
N∑

i=1

Ni(xk)wi

where the crucial expression is Ni(xk): by definition, the basis function Nk has value
+1 at xk, while all other functions Ni, i 6= k are zero at xk. This property is usually
expressed mathematically as

Ni(xk) = δik , (2.19)

where the symbol δik is known as the Kronecker delta

δik =
{

1, if i = k;
0, otherwise.

Because of this property, the value of w(xk) is

14 2 The method of Mr. Galerkin

w(xk) =
N∑

i=1

Ni(xk)wi =
N∑

i=1

δikwi = wk ,

and the parameters wi have the physical meaning of the value of the interpolated function
at the node i. The wi’s are usually called the degrees of freedom, since being the control
parameters of the trial function, they determine the shape of the actual solution from all
the possible shapes of the trial function. They are the objects that our numerical method
solves for.

Fig. 2.6. The finite element mesh

2.8 Numerical quadrature

While in the preceding section we described how to compute the basis function N3 by
visiting the adjacent finite elements on which the function was nonzero, the task in an
actual finite element program is different. The algorithm there is designed to facilitate
numerical evaluation of the integrals in the residual equations. The integrals are calcu-
lated element-by-element (the integrands are in general discontinuous from element to
element). Therefore, instead of being interested in a single basis function at any point
within the mesh, we will rather be striving to calculate the values (and their derivatives)
of all the nonzero basis functions at a particular point (the quadrature point) within a
single finite element ; see Figure 2.7. In the element-centric view, we would evaluate the

Fig. 2.7. Two different views on how to evaluate basis functions in the finite element mesh:
top – compute a single basis function over the whole mesh; bottom – compute all nonzero basis
functions over a single element.

functions associated with the nodes at the endpoints of the element. Say for element
connecting nodes i, and j, the functions Ni and Nj would be expressed as

Ni(x) =
x− xj

xi − xj
, Nj(x) =

x− xi

xj − xi
(2.20)

It is common practice to develop numerical integration rules on standard intervals.
Often that will be −1 ≤ ξ ≤ +1 (line elements in one dimension, quadrilaterals in two
dimensions, and bricks in three dimensions all use this interval definition in so-called
tensor-product forms). For instance, Simpson’s 1/3 rule is given on this interval as

2.8 Numerical quadrature 15

∫ +1

−1

f(ξ)dξ ≈ 1
3
f(ξ = −1) +

4
3
f(ξ = 0) +

1
3
f(ξ = +1)

In general, a numerical quadrature rule would be written on the standard interval −1 ≤
ξ ≤ +1 as ∫ +1

−1

f(ξ)dξ ≈
M∑

k=1

f(ξk)Wk (2.21)

where ξk are the locations of the integration points, and Wk are their weights. Integrating
numerically arbitrary functions over arbitrary intervals is then made possible by a map
from the standard interval −1 ≤ ξ ≤ +1 to the arbitrary interval a ≤ x ≤ b

x =
1
2
(a + b) +

1
2
(b− a)ξ (2.22)

(the first part is the midpoint of the interval a ≤ x ≤ b, the second part is the departure
from the midpoint to either side). Because this map is linear, the relationship between
the differentials is constant,

dx =
1
2
(b− a)dξ

where the factor 1
2 (b− a) is called the Jacobian determinant. The Simpson’s 1/3 rule

is for an arbitrary interval a ≤ x ≤ b expressed as
∫ b

a

f(x)dx ≈ 1
2
(b− a)

[
1
3
f(ξ = −1) +

4
3
f(ξ = 0) +

1
3
f(ξ = +1)

]

In general, if the map is
x = g(ξ) (2.23)

and the numerical quadrature over an arbitrary interval may be written as

∫ b

a

f(x)dx ≈
M∑

k=1

f(ξk)
∂g

∂ξ
(ξk)Wk (2.24)

where ∂g
∂ξ (ξk) is the Jacobian determinant evaluated at the quadrature point ξk.

Lets us now look at the integrals in the mass matrix (2.17). The integral will be eval-
uated over each element individually, and these contributions will be summed together.
Therefore, let us consider the integral (2.17)over a single element, connecting nodes i and
j ∫ xj

xi

Nj(x)µ(x)Ni(x) dx .

Notice that we are not getting the indexes mixed up: Nj and Ni are the only two basis
functions which are nonzero over the interval xi ≤ x ≤ xj . Clearly, the function f(x) in
equation (2.24) is

Nj(x)µ(x)Ni(x)

which means that we have to express the basis functions in terms of ξ (µ(x) is typically
constant over an element). However, we have the map (2.22), which upon substitution
into (2.20) yields

Ni(ξ) =
ξ − 1
−2

, Nj(ξ) =
ξ + 1
+2

(2.25)

Basis functions expressed on the standard interval (2.25) are sometimes referred to as
being expressed in the parametric coordinates. It is noteworthy that (2.25) are just the

16 2 The method of Mr. Galerkin

Lagrange interpolation polynomials on the standard interval. As we shall see later, writ-
ing down the basis functions over a standard shape – a square for general quadrilaterals,
a cube for general brick elements, standards triangles or standard tetrahedra for general
triangles or general tetrahedra, and so on– is not only convenient, but also highly advis-
able from the point of view of computer implementation: most of the code for different
element shapes and types is then shared, and does not have to be repeated. However,
it does mean that we have to express the derivative of the basis functions using a chain
rule:

∂Ni(ξ)
∂x

=
∂Ni(ξ)

∂ξ

∂ξ

∂x
(2.26)

The partial derivative ∂ξ
∂x is readily available from (2.22), and may be identified as the

inverse of the Jacobian. To state the integral of the term corresponding to the mass
matrix ∫ xj

xi

Nj(x)µ(x)Ni(x) dx ≈ 1
2
(xj − xi)

M∑

k=1

∂Nj

∂x
(ξk)

∂Ni

∂x
(ξk)Wk.

where (2.26) is used to evaluate the derivatives of the basis functions.
At a first sight, the integrals in the stiffness matrix (2.16), and in the mass ma-

trix (2.17), the latter will seem to require a more accurate numerical quadrature rule:
the stiffness matrix involves products of the derivatives of the basis functions, which for
linear basis functions are constants; the mass matrix, on the other hand, requires prod-
ucts of the basis functions themselves, which are linear functions of x. Therefore, the
stiffness matrix will result from integrals of constants, while the mass matrix is the result
of integrals of quadratic functions. However, at times increased efficiency and even accu-
racy may be achieved if the mass matrix is not integrated exactly, in particular diagonal
mass matrices are often used to achieve both benefits.

The numerical quadratures that are in common use with polynomial finite elements
are the Gaussian rules. They are well described in a number of textbooks, see for instance
Reference [CC2005], and we are going to introduce them later.

2.9 Putting it together: system of ODE’s

Applying the piecewise linear basis functions derived in Section 2.7 to equation (2.29)
is a straightforward. The unknown degrees of freedom are w2(t), w3(t), ..., wN (t); the
function w1(t) is given by the boundary conditions: the condition w(x = 0, t) = w̄0(t)
becomes, as a result of the Kronecker delta property, w1(t) = w̄0(t).

The stiffness and mass matrices will be symmetric, tri-diagonal, i.e.

Kji =
∫ L

0

∂Nj

∂x
P

∂Ni

∂x
dx

{ 6= 0, if |i− j| ≤ 1;
= 0, otherwise. , (2.27)

and

Mji =
∫ L

0

NjµNi dx

{ 6= 0, if |i− j| ≤ 1;
= 0, otherwise. , (2.28)

Equation (2.15) is trivially modified to read

Nj(L)FL −
N∑

i=1

Kjiwi(t) +
∫ L

0

Njq dx−
N∑

i=1

Mjiẅi(t) = 0, j = 2, ..., N , (2.29)

Note that j runs from 2 to N (as explained above), but i ranges over all nodes, i.e. also
the first degree of freedom is included, even though it is determined from the boundary

2.9 Putting it together: system of ODE’s 17

condition. In effect, nonzero displacement w1(t) generates an external force with the jth
component

−Kj1w1(t)−Mj1ẅ1(t) .

The second order differential equations (2.29) may be integrated for instance by con-
verting them to first order form and using an off-the-shelf Matlab integrator. However,
because of their special form, there are excellent custom-tailored algorithms for this pur-
pose: for example the Newmark explicit algorithm.

3

Introducing the Matlab code

In this chapter we will introduce a finite element library (or toolbox, if you prefer),
SOFEA1. It will be used to produce finite element solutions using the results of the previous
chapter for the Galerkin method. SOFEA implementation is in Matlab, and its design is
based on the object oriented support in Matlab (release 14 and later). In particular, all
the methods and algorithms are present in the library as classes, or methods defined for
classes.

3.1 Statics

When the inertial forces may be neglected in the balance equation, we have the case of
statics (static equilibrium). The Galerkin formulation simply drops the terms with the
accelerations, and reads

Nj(L)FL −
N∑

i=1

Kjiwi +
∫ L

0

Njq dx = 0, j = 2, ..., N , (3.1)

which may be arranged in matrix form as

Kd = L (3.2)

where K is a square (N − 1)× (N − 1) matrix collecting Kji, i, j = 2, ..., N . The column
matrix d collects the degrees of freedom dk = wk+1, k = 1, ..., N − 1. The column matrix
L is the load vector, with components

Lk = Nk+1(L)FL −Kk+1,1w1 +
∫ L

0

Nk+1q dx = 0, k = 1, ..., N − 1 , (3.3)

3.2 Statics: uniform load

Furthermore, we assume the transverse load q is uniform, and the transverse force is
absent, FL = 0. The Matlab script implementing the solution is taut_wire/w1. It starts
with the definition of the variables.

0001 disp(’Taut wire: example 1-- statics, uniform load’);
0002 L=6;
0003 P=4;
0004 q =-0.1;

1SOFEA is c©2005, Petr Krysl

20 3 Introducing the Matlab code

Next, the mesh is defined: an array of nodes is created, with node 1 at x = 0 and so on.
The function fenode is the constructor of the class fenode, and the attributes are being
passed as fields of a struct, as pairs “name, value” (for instance, ’id’,j): this approach
is uniformly adopted for all constructors. The array gcells collects finite elements of
the type gcell l2. The attribute conn is the connectivity: the numbers of nodes that
are connected by the element. The finite elements are referred to as geometric cells.
The main reason is that the finite elements have rather limited responsibilities in SOFEA,
namely calculation of the basis functions (and their derivatives), and drawing of the
shape of the cell are essentially all that is required.

0005 n=2; % number of elements
0006 % Mesh
0007 x=0;
0008 fens=[];
0009 for j= 1:n+1
0010 fens=[fens fenode(struct (’id’,j,’xyz’,[x]));];
0011 x = x+(L/n);
0012 end
0013 gcells = [];
0014 for j= 1:n
0015 gcells = [gcells gcell l2(struct(’id’,j,’conn’,[j j+1]))];
0016 end

The operations on the mesh that reflect the particular problem that is being solved are
encapsulated in the class descended from the finite element block, feblock. In particular,
the prestressed wire stiffness and mass matrix, the effect of the distributed load, q, and
the effect of the nonzero displacement at x = 0, are computed by the methods of the class
feblock defor taut wire. Note that Simpson’s 1/3 rule is being used for the numerical
quadrature. The finite element block consists of all the finite elements.

0017 % Finite element block
0018 feb = feblock defor taut wire(struct (’mater’,mater defor,...
0019 ’gcells’,gcells,...
0020 ’integration rule’,simpson 1 3 rule,...
0021 ’P’,P));

The quantities that are interpolated on the finite element mesh, such as the transverse
displacement of the wire, w, or the geometry of the mesh, are represented in SOFEA as
instances of the class field. The field geom records the geometry of the mesh. The
constructor on line 0023 retrieves this information from the array of the nodes. The
dimension of the field is 1 because each degree of freedom is just a single displacement.
On line 0025 we define the field of the transverse displacements, w. For convenience, it
is defined by cloning the geom field, and then zeroing out all the degrees of freedom.

0022 % Geometry
0023 geom = field(struct (’name’,[’geom’], ’dim’, 1, ’fens’,fens));
0024 % Define the displacement field
0025 w = 0*clone(geom,’w’);

Next, the displacement (essential) boundary conditions are defined, and applied to the
displacement field. The method set ebc simply records which components of the degrees
of freedom, at which node, are being prescribed (or released), and to which value are
they being prescribed. The method apply ebc is then used to transfer this information
to the actual degrees of freedom. Finally, the method numbereqns numbers the degrees

3.2 Statics: uniform load 21

of freedom that are not being prescribed, effectively assigning each one a global equation
number.

An important remark should be made here: Lines 0028, 0029, and 0030 illustrate a
design feature of Matlab, where all arguments are passed by value. Therefore, no matter
what we do with the arguments inside the functions, the values that were passed by the
caller into those functions do not change at all. The functions work with copies, not the
actual variables that the caller passed. If the caller wishes to change the variables, the
method must return the changed value, and the caller must assign this value. Example:
on line 0031 the method numbereqns will number the equations in a copy of the field
w, and then will return the copy. Since we assign back to the field w, the computed
numbering of the equations will be now available in w; if we did not sign back to w, all
the work done by the method numbereqns would be forgotten.

0026 % Apply EBC’s
0027 fenids=[1]; prescribed=[1]; component=[1]; val=0;
0028 w = set ebc(w, fenids, prescribed, component, val);
0029 w = apply ebc (w);
0030 % Number equations
0031 w = numbereqns (w);

Next we create the global system equations. The stiffness matrix is an object, K, which
gets created in line 0033, and initialized to represent a dense neqns×neqns matrix. In
line 0034, the stiffness matrices calculated for each finite element by the block feb are as-
sembled into the global matrix K (class dense sysmat). The number of equations is being
retrieved from the displacement field (the globally equation numbers have been placed
there above) using the get method. The get method is available for all SOFEA objects,
and just typing w at the command line produces a list of all the properties that can be
obtained from the object. A great way in which objects may be explored is the graphical
user interface of the object browser, OBgui (part of SOFEA). Its operation is supported
by the output of get(w) (notice that only the object itself is passed as argument): using
get in this way returns a cell array, with the name and the description of each attribute.

0032 % Assemble the system matrix
0033 K = start (dense sysmat, get(w, ’neqns’));
0034 K = assemble (K, stiffness(feb, geom, w));

The load q is in this case represented by the body load class. The global load object
sysvec is assembled from element load vectors computed by the finite element block.

0035 % Load
0036 bl = body load(struct (’magn’,inline(num2str(q))));
0037 F = start (sysvec, get(w, ’neqns’));
0038 F = assemble (F, body loads(feb, geom, w, bl));

Finally, the global stiffness object is asked to produce the actual stiffness array, and the
global load object is asked to supply the actual load vector. The standard backslash
Matlab operator than produces the solution, which is then stored in the proper places
in the displacement field w. The method scatter sysvec distributes the system vector
(the solution of the system of linear equations) to the proper degrees of freedom, and we
should note that again the result is assigned to w.

0039 % Solve
0040 w = scatter sysvec(w, get(K,’mat’)\get(F,’vec’));
A graphical representation is generated by plotting the linear coordinate (gathered from
the geometry field geom) versus the linear interpolation of the approximate displacements

22 3 Introducing the Matlab code

(gathered from w). The analytical solution is also plotted (line 0043). It is noteworthy
that the approximate solution interpolates the analytical solution.

0041 % Plot
0042 xs= (0:0.01:L);
0043 plot (xs, -q/P*xs.*(xs/2-L),’r-’,’linewidth’, 3);
0044 hold on
0045 plot (gather (geom, (1:n+ 1),’values’), ...
0046 gather (w, (1:n+ 1),’values’),’bo-’,’linewidth’, 3);
0047 figure (gcf)

0 1 2 3 4 5 6
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Fig. 3.1. The displacements of the taut wire

3.3 Free vibration

If we remove all external loads, and prescribe homogeneous (zero) displacements, the
Galerkin formulation reads

−∑N
i=2 Kjiwi(t)−

∑N
i=2 Mjiẅi(t) = 0, j = 2, ..., N , (3.4)

which may be arranged in matrix form as

Kw + Mẅ = 0 (3.5)

where K is a square (N − 1)× (N − 1) matrix collecting Kji, i, j = 2, ..., N , and analo-
gously for the mass matrix. The column matrix w collects the degrees of freedom wi(t).
Equations (3.5) represent the so-called free vibration response. The solution is sought in
the form w(t) = φ exp(ωt), which leads to the generalized eigenvalue problem

Kφ− ω2Mφ = 0 (3.6)

where ω is the circular frequency, and φ is the eigenmode.
As an example, the present model will be used to calculate the first five natural

frequencies of a simply-supported taut string of constant mass density. The Matlab script
wvib2 obtains the solution for a series of progressively finer and finer meshes (from 8
elements to 1024 elements). The mass matrix is either computed from the formula (2.17)

2Folder: SOFEA/examples/taut wire

3.4 Virtual work principle 23

(this is the so-called consistent mass matrix), or or it is diagonalized (lumped) by
assigning each node half the mass of the adjacent finite elements

Mji = µhδji ,

which results in the so-called lumped mass matrix .
The analytical formula for the natural frequency [Gra91]

ω2 =
P

µ

(nπ

L

)2

, n = 1, 2, 3, ...

produces reference values which are compared with the frequencies solved for from (3.6).
The results are summarized in Figure 3.2. The progressive reduction of error due to the
use of more and more elements is called convergence . It may be observed that the
two mass matrix formulations leads to convergence from different sides: consistent mass
matrix overestimates the natural frequencies, while the lumped mass matrix underesti-
mates them. Concerning accuracy: clearly, for quite reasonable engineering tolerance of
5% error, it takes 32 elements for either formulation of the mass matrix to compute all
five natural frequencies within the tolerance.

Fig. 3.2. Convergence of the first five natural frequencies of vibration; left: consistent mass
matrix, right: lumped mass matrix. Vertical axis: normalized error (ωh − ω)/ω.

3.4 Virtual work principle

4

The boundary conditions for the model of a taut wire

In this chapter we will explore the effect the boundary conditions have on the solution,
both its existence and its computability with the Galerkin model.

We will consider only statics, so that the balance equation (1.1) drops the inertial
term

P
∂2w

∂x2
+ q = 0 , (4.1)

and furthermore we will assume that the transverse load q is a constant. With a definition
k = −q/P , the task is to integrate

∂2w

∂x2
= k = constant , (4.2)

which is easily accomplished as

w(x) = k
x2

2
+ Cx + D , (4.3)

where C and D are integration constants to be determined from the boundary condition.
As already mentioned (Section 1.4), there is only one condition on the boundary

(which for the problem of the wire consists of two disjoint sets, each consisting of a single
point at the either end) that we can use to determine the solution. Since the balance
equation is of second order, and the unknown is a single function, a single boundary
condition is all that is needed (with caveats, however). A simple explanation for this
need in one dimension is that a second order equation needs two integration constants;
we will talk about this issue in higher dimensional domains when we deal with the heat
conduction equation and also, in a lot more detail, in the part dedicated to the elasticity
problem.

The boundary condition may be of two distinct types, either one of the two we intro-
duced earlier: either prescribed deflection (essential boundary condition), or prescribed
slope (derivative of the deflection, which is a natural boundary condition). Since we may
prescribe only one boundary condition, but the boundary consists of two disjoint sets,
we may in fact prescribe one or the other type at either of the two endpoints. It does
matter which type of boundary condition is applied, and the details are discussed in this
chapter.

4.1 Essential and natural boundary conditions at separate
end-points

This selection of boundary condition specifications has been treated in the previous few
chapters. The natural condition may be expressed in terms of end-point forces. At x = L

26 4 The boundary conditions for the model of a taut wire

the relation is equation (1.3), and it may be derived in the same way at x = 0 as

P
∂w

∂x
(0) + F0 = 0 . (4.4)

The Galerkin algebraic equations for an essential boundary condition at x = 0 and a
natural boundary condition at x = L is given by equation (2.29), with proper allowance
made for vanishing accelerations, and when the points of application of these boundary
conditions are switched, the changes are limited to the boundary term and the conditions
for the test and trial functions only

Nj(0)F0 −
N∑

i=1

Kjiwi +
∫ L

0

Njq dx = 0, j = 1, ..., N − 1 , (4.5)

where
Nj(x = L) = 0, Nj ∈ C0, j = 1, ..., N − 1
wN = w̄L .

(4.6)

After the solution for the deflection has been obtained, the slope at the end with the
essential boundary condition may be computed, yielding the associated reaction force.
For instance, for the problem (4.5), (4.6), the analytical solution of (4.3), with the
boundary conditions

∂w

∂x
(0) = −F0

P
= w̄′0, w(L) = w̄L ,

is
w(x) =

k

2
(x2 − L2) + w̄′0(x− L) + w̄L .

This yields the reaction force FL = P (kL + w̄′0).

4.2 Essential boundary conditions only

The boundary conditions are in this case the deflections given at both ends,

w(0) = w̄0, w(L) = w̄L ,

which may be substituted into (4.3) for x = 0 and x = L to yield two equations for C
and D. Upon substitution, the slopes at the end points are available as

∂w

∂x
(0) =

w̄L − w̄0

L
− k

L

2
,

∂w

∂x
(L) =

w̄L − w̄0

L
+ k

L

2
.

From the slopes, the forces F0 and FL are available from (4.4) and (1.3). The physical
meaning of these two forces is that of reactions at the supports.

The algebraic equation for this type of boundary conditions becomes

−
N∑

i=1

Kjiwi +
∫ L

0

Njq dx = 0, j = 2, ..., N − 1 , (4.7)

where
Nj(x = 0) = 0, Nj(x = L) = 0, Nj ∈ C0, j = 1, ..., N − 1
w1 = w̄0, wN = w̄L .

(4.8)

Note that the degrees of freedom to be computed are only at the interior nodes.

4.4 Overspecified boundary conditions 27

4.3 Natural boundary conditions only

The boundary conditions are in this case the slopes given at both ends,

∂w

∂x
(0) = w̄′0, ,

∂w

∂x
(L) = w̄′L, ,

Integrating (4.2) once yields for the slope

∂w

∂x
(x) = kx + C ,

which may be used in conjunction with the boundary conditions to express the constant
C as either of the two expressions

C = w̄′0 , or C = w̄′L − kL .

But clearly, this is only possible if

w̄′0 = w̄′L − kL ,

which may be interpreted as a condition under which a solution exists: if the two slopes
are linked by the previous equation, solution exists; otherwise no solution exists, because
the boundary conditions are contradictory.

If the solution exists, and the two slopes are not independent, the boundary conditions
are really not going to be sufficient to determine two constants of integration, but only
one. Correspondingly, the deflection of the wire is then

w(x) = k
x2

2
+ w̄′0x + D ,

where the constant D remains undetermined.
An initial boundary value problem with natural boundary conditions only is called

pure-traction problem , or Neumann problem. We could see that the solution would
exist only under certain conditions. In this case, the condition is one of static equilibrium:
the end-point forces must balance the transverse load. Provided equilibrium may be
established, the solution still remains non-unique, as it is possible to translate the wire
perpendicularly to its axis without affecting the equilibrium. In terms of the linear algebra
of the solution this is manifested by a singular stiffness matrix. An obvious computational
treatment is to force the displacement at one node to be some known a value, for instance
zero. Adding this “superfluous boundary condition” makes the problem solvable uniquely.
(We might wish to consider that one boundary condition specification was in fact missing
because of the linear dependence between the slopes; so in this way we are really just
filling a void.) Another possibility is to add an artificial spring at one node.

4.4 Overspecified boundary conditions

The boundary condition application consisted so far of one and only one condition spec-
ification at each of the two endpoints (i.e. at the boundary). In this section we will
attempt to apply two boundary conditions at one end and none at the other. Since this
will turn out to be too much prescribed information at one point, will call this the case
of over-specified boundary conditions.

For instance, we could prescribe two pieces of information at x = 0

28 4 The boundary conditions for the model of a taut wire

w(0) = w̄0 ,
∂w

∂x
(0) = w̄′0 , (4.9)

Integrating (4.2) once yields for the slope

∂w

∂x
(x) = kx + C ,

which may be used in conjunction with the natural boundary condition to express the
constant C as

C = w̄′0 .

Integrating again yields

w(x) = k
x2

2
+ w̄′0x + w0 ,

where all the constants are determined from the two boundary conditions at a single
endpoint. Using this expression, we can calculate the deflection and slope at x = L. The
interesting thing is that the slope is in general nonzero

∂w

∂x
(L) = kL + w̄′0 6= 0 ,

which means that even though we did not assume this, there must be an applied force
FL at the end where no boundary conditions have been specified. For the same reasons,
it is not possible to prescribe either deflection or slope at x = L while the boundary
condition (4.9) is in force. Any mismatch between the prescribed values and the calculated
values would make the existence of the solution an impossibility (the solution must satisfy
the balance equation and all boundary conditions).

But the preceding discussion was based on the analytical integration of the balance
equation. Is this way of prescribing boundary conditions compatible with the Galerkin
technique? For the moment, we will go back all the way to the weighted residual equa-
tion (2.11), but we will keep all the boundary terms (and drop the inertial terms –
statics)

ηj(L)FL − ηj(0)F0 −
∫ L

0

∂ηj

∂x
P

∂w

∂x
dx +

∫ L

0

ηjq dx = 0, j = 1, ..., N . (4.10)

The functions ηj and w need to be just sufficiently smooth to make the integrals exist.
But now we introduce the boundary condition (4.9). As discussed below equation (2.10),
the condition w(x = 0) = w̄0 could be used to eliminate the associated reaction, F0, by
setting ηj(0) for all j. The resulting weighted residual formulation is

ηj(L)FL −
∫ L

0

∂ηj

∂x
P

∂w

∂x
dx +

∫ L

0

ηjq dx = 0, j = 1, ..., N . (4.11)

where we must place one condition on w

w(x = 0) = w̄0, w ∈ C0 . (4.12)

However, we realize that the prescribed force F0 now no longer affects the solution!
Another difficulty is that FL is not known, and hence there is not enough equations to
solve for wi, i = 2, ..., N and FL. What is needed is an additional equation that would
link together F0 and FL. The equation of global equilibrium is such an equation

FL = F0 − qL ,

4.4 Overspecified boundary conditions 29

and may be added to the equations resulting from (4.11). The global equations are then
of a blocked nature. The Matlab script woverspec 1 generates a numerical solution for
the definition of boundary conditions discussed above. The code snippet below illustrates
the system matrix, A, in line 0034, which clearly displays how it is composed of distinct
blocks

A =




K




0
0
...
1




[
0 · · · 0

]
1




.

0028 K = start (dense sysmat, get(w, ’neqns’));
0029 K = assemble (K, stiffness(feb, geom, w));
0030 % and now the special terms due to the boundary conditions
0032 z = zeros(N-1, 1); zt=z’;
0033 z(end) = 1;
0034 A = [get(K,’mat’),z;zt,1];

The right hand side of the system equations is correspondingly expanded by a single
element at the bottom.

0036 fi = force intensity(struct (’magn’,inline(num2str(q))));
0037 F = start (sysvec, get(w, ’neqns’));
0038 F = assemble (F, body loads(feb, geom, w, fi));
0039 F = assemble (F, nz ebc loads(feb, geom, w));
0040 % and now the special terms
0041 b=get(F,’vec’);
0042 b = [b; -(F 0-q*L)];

Figure 4.1 illustrates the correct solution versus an incorrect solution obtained when
the FL term is simply dropped from (4.11): the denotation “natural” is then fully oper-
ational, since that means that the natural boundary condition FL = 0 is in effect. That
can be verified visually as the slope at the right hand side is apparently approaching
zero.

Fig. 4.1. The wire problem with overspecified boundary conditions.

Clearly, we can see that overspecification of boundary conditions does not fit the
framework of the Galerkin method very well. Special treatment is required. However,

1Folder: SOFEA/examples/taut wire

30 4 The boundary conditions for the model of a taut wire

there is worse news: the existence of the solution has to be demonstrated case-by-case,
it does not follow automatically. The situation is much worse in higher dimensional
problems.

Part II

Thermal analysis

5

Model of Heat Diffusion

5.1 Balance equation

In this section, our goal is to derive the balance equation that governs heat conduction
in solids as a partial differential expression. It will be converted to a residual form, which
will then be treated with the Galerkin method.

To begin with we pick a control volume, and we keep track of the heat energy within
that volume. The control volume may be the whole structure, part of the structure, or
just a very small chunk of material surrounding a given point in space (Figure 5.1). The
amount of heat energy in the control volume U is expressed in terms of volume density
of heat energy, u

U =
∫

V

u dV (5.1)

As the means of change of the heat energy within the control volume we consider

Fig. 5.1. The domain for the heat conduction problem

outflow (inflow) of heat energy via the boundaries, and heat generation (or loss) within
the volume. These quantities will be expressed in terms of rates. Therefore, the amount
of energy flowing out of the control volume through its bounding surface S per unit time
is ∫

S

n · q dS , (5.2)

where n is the outer normal to the surface S, and q is the heat flux (amount of heat
flowing through a unit area per unit time). The amount of energy generated within the
control volume per unit time is ∫

V

Q dV . (5.3)

34 5 Model of Heat Diffusion

where Q is the rate of heat generation per unit volume; for example, heat is released or
consumed by various deformation and chemical processes (as work of viscous stresses,
reaction product of curing concrete or polymer resins, and so on).

Collecting the terms, we can write for the change of the heat energy within the control
volume the rate equation

dU

dt
= −

∫

S

n · q dS +
∫

V

Q dV . (5.4)

Finally, differentiating U with respect to time will be possible if we assume that U =
U(T), i.e. if U is a function of the absolute temperature T . Holding the control volume
fixed in time, the time differentiation may be taken inside the integral over the volume

dU

dt
=

d
dt

∫

V

u dV =
∫

V

du

dt
dV , (5.5)

and with the application of the chain rule, the relationship (5.5) is expressed as

dU

dt
=

∫

V

du

dt
dV =

∫

V

du

dT

∂T

∂t
dV , (5.6)

The quantity cV = du
dT is a characteristic property of a solid material (called specific heat

at constant volume), and needs to be measured. It is typically dependent on temperature,
but we will assume that it is a constant; otherwise it leads to nonlinear models.

Substituting, we write
∫

V

cV
∂T

∂t
dV = −

∫

S

n · q dS +
∫

V

Q dV . (5.7)

This equation consists of volume integrals and a surface integral. If all the integrals were
volume integrals, over the same volume of course, we could proclaim that the integral
statement (sometimes called a global balance equation) would hold provided the inte-
grands satisfied a so-called local balance equation (recall that to get the local balance
equation is our goal). For instance, from the integral statement

∫

V

α
∂M

∂t
dV =

∫

V

µ dV , (5.8)

where α, M , and µ are some functions, one could conclude that

α
∂M

∂t
= µ , (5.9)

which is a local version of (5.8). An argument along these lines could for instance invoke
the assumption that the volume V was arbitrary, and that it could be shrunk around a
given point, which in the limit would allow the volume to be canceled on both sides of
the equation.

To execute this program for equation (5.7), we have to convert the surface integral
to a volume integral. We have the needed tool in the celebrated divergence theorem .

∫

V

divq dV =
∫

S

n · q dS , (5.10)

where the divergence of the flux vector is defined in Cartesian coordinates as

divq =
∂qx

∂x
+

∂qy

∂y
+

∂qz

∂z
.

5.2 Constitutive equation 35

Consequently, equation (5.7) may be rewritten
∫

V

cV
∂T

∂t
dV = −

∫

V

divq dV +
∫

V

Q dV . (5.11)

and grouping the terms as
∫

V

[
cV

∂T

∂t
+ divq −Q

]
dV = 0 . (5.12)

we may conclude that the inside of the bracket has to vanish since the volume could be
entirely arbitrary. Therefore, we arrive at the local balance equation

cV
∂T

∂t
+ divq −Q = 0 . (5.13)

5.2 Constitutive equation

Equation (5.13) contains too many variables: both temperature and heat flux. Since it is a
scalar equation, the logical next step is to express the heat flux in terms of temperature.
That is the contents of the Fourier model: heat flows opposite to the gradient of the
temperature (downhill). In matrix form

q = −κ(gradT)T . (5.14)

The matrix κ is the conductivity matrix of the material. The most common forms of κ
are

κ = κ1 (5.15)

for the so-called thermally isotropic material, and

κ =




κx 0 0
0 κy 0
0 0 κz


 (5.16)

for materials that have three orthogonal directions of different thermal conductivities
(orthotropic material); κ is the isotropic thermal conductivity coefficient, 1 is the identity
matrix, and κx, κy, and κz are the orthotropic thermal conductivities. (Some materials
have preferred directions in which heat would like to flow, for instance along the fibers in
a composite. Visually, we can imagine a corrugated steel roof, with the channels running
not directly downhill, but tilted away from the slope – the water would run preferentially
in the channels, but generally downhill.)

The funny looking transpose of the temperature gradient follows from the definition:
the gradient of the scalar is a row matrix

gradT =
(

∂T
∂x

∂T
∂y

∂T
∂z

)
(5.17)

With the constitutive equation, the balance equation (5.13) is now purely in terms of
the absolute temperature,

cV
∂T

∂t
− div

[
κ(gradT)T

]−Q = 0 . (5.18)

36 5 Model of Heat Diffusion

5.3 Boundary conditions

From now on, V is going to be the volume of the whole solid of interest. The most impor-
tant fact about the boundary conditions is that we need to have a boundary condition
at each point of the surface S. As we expect by now, the model is about temperature.
Correspondingly, the boundary conditions are an expression of our knowledge of the
temperature distribution in the solid.

The simplest boundary condition results if we know the surface temperature along one
part of S at all times. This part of the surface will be called S1 (see Figure 5.2).Therefore,

T (x, t)− T (x, t) = 0, x on S1 . (5.19)

where by x we mean the position vector. This type of condition is known as the primary,
or essential, boundary condition.

The heat flux entering or leaving the solid may also be known (measured by a heat
flux gauge). Generally, we do not know the heat flux along the surface, only the normal
component, which is obtainable from the normal and the heat flux as qn = n·q. Therefore,
along the part of the surface S2 the normal component of the heat flux may be prescribed

n · q − qn = 0, on S2 . (5.20)

All quantities are given at a particular point on the boundary as functions of time,
similarly to the first boundary condition. This type of condition is known as the natural
(or flux) boundary condition.

In the last example of a boundary condition, we will mention the heat transfer driven
by a temperature difference at surface. The normal component of the heat flux is given
as

n · q − h(T − Ta) = 0, on S3 . (5.21)

where Ta is the known temperature of the surrounding medium (ambient temperature),
and h is the heat transfer coefficient.

Fig. 5.2. The subdivision of the surface for the purpose of the boundary condition application

On the sufficiency of boundary conditions.

As pointed out earlier in this section, one boundary condition is needed at each point
on the boundary. The precise mathematical statement of the necessity of having one

5.4 Initial condition 37

boundary condition in place is somewhat involved, but we can build on intuition fairly
easily.

Would it be possible to specify one boundary condition at only a subset of the com-
plete boundary, leaving the behavior of the solution along part of the boundary unspec-
ified? As a thought experiment, we consider a square domain, shown in Figure 5.3, with
no source of heat generation, and zero temperature prescribed on the S1 subset of the
boundary. On the Ŝ part of the boundary we assume nothing is known about the tem-
perature distribution. Is it possible that the temperature field is completely determined
by these boundary conditions?

Fig. 5.3. The square domain with partially undefined boundary condition

If this was true, the variation of temperature along Ŝ wouldn’t affect the solution in
the domain. However, if zero temperature was prescribed all around the circumference of
the square, the solution to this problem would be zero temperature everywhere. Conse-
quently, also the normal component of the flux (in fact all components of the flux) would
vanish everywhere. Evidently, if the temperature along Ŝ was nonzero, it would require
transitioning to zero temperature on S1 (and elsewhere within the domain), hence the
solution within the domain would depend on the temperature along Ŝ; alternatively, if
there was nonzero heat flux along Ŝ, the temperature distribution within the square do-
main would be affected. This is illustrated in Figure 5.4: varying the heat flux along Ŝ
(here shown for two different uniform distributions, positive and negative) changes the
distribution of temperature. Therefore, we must conclude that prescribing one boundary
condition along the entire boundary of the domain is a necessary condition to make the
solution unique.

Is not a sufficient condition, however. In the so-called Neumann problem only flux is
being prescribed along the entire boundary. This is equivalent to the pure-traction prob-
lem of Section 4.3. The solution is not unique, because any temperature distribution of
the form T (x, y)+ T̃ , where T (x, y) satisfies the balance equation and the natural bound-
ary conditions, and T̃ is a constant, is also a solution (the constant term disappears with
differentiation). Typically, the Neumann boundary conditions are supplemented with
temperature being prescribed at one point to remove the constant T̃ from consideration.

5.4 Initial condition

The primary variable in our problem is the temperature, T , and it is present in the
balance equation (5.18) with the first order time derivative. Therefore, we will need one
initial condition,

38 5 Model of Heat Diffusion

Fig. 5.4. The square with variable heat flux along part of its boundary

T (x, 0) = T 0(x) in V . (5.22)

The initial condition must be match with boundary conditions on S1 at time t = 0:

T 0(x) = T (x, 0), x on S1 . (5.23)

5.5 Summary of the PDE model of heat conduction

Figure 5.5 gives a diagrammatic overview of the terminology and the various equations
of the model of heat conduction.

Fig. 5.5. Diagram of the heat conduction model

6

Galerkin method for the model of heat conduction

6.1 Weighted residual formulation

The balance equation (5.18) defines the balance residual as

rB = cV
∂T

∂t
− div

[
κ(gradT)T

]−Q . (6.1)

As explained in Chapter 2, the first step is to write the weighted residual equation
∫

V

η(x)rB(x, t) dV . (6.2)

The first and the third term are kept as they are, but the second term reminds us of
a similar term in equation (2.3): the test function η multiplies an expression that con-
tains the second derivatives of temperature (the div

[
κ(gradT)T

]
term), which was why

Section 2.5 was needed. Balancing the order of differentiation by shifting one derivative
from the temperature to the test function η will be beneficial here too: similarly to Sec-
tion 2.5, we will be able to satisfy the natural boundary conditions without having to
include them as a residual (naturally!). As before, the price to pay is the need to place
some restrictions on the test function.

Integration by parts was used in Section 2.5, and just a little bit more general tool
will work here too. For the moment, it will be convenient to work with the expression

−η div
[
κ(gradT)T

]
= η divq ,

that is, with the flux variable replacing κ(gradT)T .
The integration by parts in the case of a multidimensional integral is generalized in

the divergence theorem (5.10). We may anticipate that η divq is the result of the chain
rule applied to the vector η q. That is indeed the case

div (η q) = η divq + (gradη) q (6.3)

which is easily verified in components.
Therefore, we may start working on the integral

∫

V

η divq dV

where we substitute from (6.3)
∫

V

η divq dV =
∫

V

div (η q) dV −
∫

V

(gradη) q dV (6.4)

40 6 Galerkin method for the model of heat conduction

The divergence theorem may be applied to the first integral on the right
∫

V

η divq dV =
∫

S

η q · n dS −
∫

V

(gradη) q dV (6.5)

But q ·n is known on parts of the boundary – see equations (5.20) and (5.21). Therefore,
we may split the surface integral into one for each sub-surface,

∫

V

η divq dV =
∫

S1

η q·n dS+
∫

S2

η qn dS+
∫

S3

η h(T−Ta) dS−
∫

V

(gradη) q dV (6.6)

We see that the situation is analogous to the one discussed below equation (2.10): The
integral over the part of the surface S1 is troublesome, because q · n is unknown there.
However, we have the option of making η vanish along S1. In this way, we obtain

∫

V

η divq dV =
∫

S2

η qn dS +
∫

S3

η h(T − Ta) dS −
∫

V

(gradη) q dV (6.7)

where η(x) = 0 for x ∈ S1.
Expanding the weighted residual equation (6.2) yields

∫

V

η rB dV =
∫

V

ηcV
∂T

∂t
dV +

∫

V

(gradη) κ(gradT)T dV −
∫

V

ηQ dV

+
∫

S2

η qn dS +
∫

S3

η h(T − Ta) dS = 0, η(x) = 0 for x ∈ S1

(6.8)

6.2 Reducing the model dimension

In this Section we show how the original three-dimensional model can be reduced to
just two active dimensions. For some structures we can make the observation that the
temperature does not vary along one coordinate direction, say along the z direction.
Figure 6.1 shows a disk of thickness t. It is a slice of a structure of an unchanging cross-
section which is very along in the z direction compared to the transverse dimensions
(some authors call this “infinitely long”, evidently with a bagfull of grains of salt). If
the temperature distribution does not depend on the z direction, and if we can neglect
what is happening near the end sections, the component of the temperature gradient
along the z direction will be negligible, ∂T/∂z = 0. This does not necessarily mean that

Fig. 6.1. Diagram of the heat conduction model

6.3 Test and trial functions: basis functions on triangulations 41

the z component of the heat flux is also zero: the partial derivatives ∂T/∂x, and ∂T/∂y
multiply the first two columns in row three of (5.14) to yield

qz = κzx∂T/∂x + κzy∂T/∂y .

However, for the two classes of materials (5.15) and (5.16) the two coefficients κzx and
κzy are identically zero, which means that if the temperature gradient ∂T/∂z is zero, the
heat flux in that direction also vanishes.

Going back to the Figure 6.1: the heat flux through the cross sections is zero, and the
temperature through the thickness of the disk is uniform (i.e. the temperature does not
vary with z). The surface of the three-dimensional solid consists of the two cross sections,
and of the cylindrical surfaces, the inner and the outer. The two cylindrical surfaces may
be associated with boundary condition of any type. The two cross sections are associated
with the boundary condition of zero heat flux, qn = 0 (type S2, equation (5.20))

n · q = ±qz = 0, on the cross sections . (6.9)

Since the temperature does not vary with z, the integrals (6.7) may be simplified by
pre-integrating in the thickness direction. The volume integrals then result in integrals
over the cross-sectional area, Sc, (see Figure 6.2); provided qn and h are independent of
z, the surface integrals result in curve integrals over the contour of the cross-section, Cc.

t

∫

Sc

ηcV
∂T

∂t
dS + t

∫

Sc

(gradη) κ(gradT)T dS − t

∫

Sc

ηQ dS

+t

∫

Cc,2

η qn dC + t

∫

Cc,3

η h(T − Ta) dC = 0, η(x) = 0 for x ∈ Cc,1

(6.10)

Note that the thickness t will cancel, and consequently does not play a role at all. Nev-
ertheless, equation (6.10) still applies to a fully three-dimensional body. Note that (6.10)
does not refer to z, except in the term ∂./∂z. We know that the temperature does not
depend on z, and concerning the gradient of η: we simply assume that η does not depend
on z: η = η(x, y). The last assumption completes the reduction of the problem to two
dimensions: all the functions depend on x and y only.

Fig. 6.2. Diagram of the heat conduction model

6.3 Test and trial functions: basis functions on triangulations

It is time to talk about the test and trial function. They are both functions of x and y
only, η = η(x, y) and T = T (x, y, t) (and for the trial function, time). The only difference

42 6 Galerkin method for the model of heat conduction

between them is the value they assume on part of the boundary (part of the cross-section
contour, for our two-dimensional disk) where the temperature is being prescribed, Cc,1:

T (x, t) = T (x, t), η(x) = 0 x on Cc,1 .

Let us consider first the test function. It needs to be defined as a function of x and
y over arbitrarily shaped domains. The concept of piecewise linear functions defined
over tilings of arbitrary domains into triangles is quite ancient (at least in terms of the
development of computational mechanics)1. The domain of the disk with a hole (shown
in Figure 6.2) is approximated as a collection of triangles (in other words, it is tiled with
triangles, or triangulated), see Figure 6.3. The mesh consisting of triangles is typically
called triangulation, even though sometimes any mesh is called that. The vertices of
the triangulation are called nodes (compare with Section 2.7), while the line segments
connecting the nodes are called edges. Evidently, the triangles are the finite elements.

Fig. 6.3. Mesh of the disk domain

Interpolation on the triangle mesh will be treated as a linear combination of “tents”.
Each individual tent is formed by grabbing one of the nodes (say J) and raising it out
of the plane of the triangulation (traditionally to a unit height). The tent canvas is
stretched over the edges that connect at the node J , and are clamped down by the ring
of the edges that surround node J . The cartoon of one particular basis function tent
is shown in Figure 6.4. For those who do not like tents, the term hat function may be
preferable.

All the triangles that are connected in the node J support the function NJ , which
is another way of saying that the function NJ is nonzero in these triangles; evidently, it
is defined to be zero everywhere else. (If you are inside the “tent”, you are standing on
the support of the function.)

It remains to write down the equations that define the function NJ at any point
within its support. That means writing an expression for each triangle separately. As
discussed in Section 2.8, the alternative viewpoint would rather express all the nonzero
pieces of all the basis functions over a single triangle (element). Referring to Figure 6.4,
there are only three such functions: the three basis functions associated with the nodes
at the corners of the element; all the other basis functions in the mesh are identically

1The so-called “linear triangle” made its first appearance in a lecture by Courant in 1943,
applied to Poisson’s equation, which is a time-independent version of the heat conduction equa-
tion of this chapter. It was then picked up as a structural element in aerospace engineering to
model Delta wing skin panels, as described in the 1956 paper by Turner, Clough, Martin and
Topp. Clough then applied the triangle to problems in civil engineering, and he also coined the
terminology “finite element”.

6.4 Basis functions on the standard triangle 43

Fig. 6.4. Visual representation of one basis function on the mesh of the disk

zero over this element. Thus, we stand before the task of writing down the expressions
for the three basis functions on a single triangle.

6.4 Basis functions on the standard triangle

Each of the three basis functions is zero along one edge of the triangle: again, refer
to Figure 6.4. The task is accomplished most readily when the triangle is in a special
position with respect to the coordinates: the standard triangle; see Figure 6.5. The
basis functions associated with nodes ©2 and ©3 are simply

N2(ξ, η) = ξ , (6.11)

and
N3(ξ, η) = η . (6.12)

As is easily verified, N2 is zero along the edge ©1©3, and assumes value +1 at node ©2;
analogous properties hold for N3. If N1 should be equal to +1 at the origin, it must be
written as

N1(ξ, η) = 1− ξ − η . (6.13)

Clearly, N1 vanishes at the edge opposite node ©1. Thus, we see that the three func-
tions we just formulated satisfy the Kronecker delta property, equation (2.19). As in
Section 2.7 this means the degree of freedom at each node of the triangle is the value of
the interpolated function at the node.

Fig. 6.5. Standard triangle

In this way, we formulate interpolation over the standard triangle. One quantity that
we can interpolate on the standard triangle are the Cartesian coordinates.

x =
3∑

i=1

Ni(ξ, η)xi , (6.14)

44 6 Galerkin method for the model of heat conduction

where the result of the interpolation is a point in the Cartesian coordinates

x =
[

x
y

]
,

and

xi =
[

xi

yi

]
i = 1, 2, 3 ,

are the coordinates of the three points that are being interpolated. Equation (6.14) is a
mapping from the pair ξ, η to the point x, y. Substituting for the basis functions, it may
be written explicitly as

[
x
y

]
=

[
(x2 − x1) (x3 − x1)
(y2 − y1) (y3 − y1)

] [
ξ
η

]
+

[
x1

y1

]
. (6.15)

This matrix equation is accompanied by the picture in Figure 6.15. The two vectors, v
and w, are the two columns of the square matrix in (6.15):

v =
[

(x2 − x1)
(y2 − y1)

]
,

and

w =
[

(x3 − x1)
(y3 − y1)

]
.

If both ξ and η vary between zero and one, equation (6.15) adds the two vectors, ξv and
ηw to the vector [x1, y1]T , and the result then covers the entire parallelogram; on the
other hand, if ξ and η are confined to the interior of the standard triangle, equation (6.15)
covers the area of the hatched triangle. To summarize, equation (6.15) is a map from
the standard triangle to a triangle in the Cartesian coordinates with corners in given
locations.

Fig. 6.6. Interpolating Cartesian coordinates on the standard triangle

Inverting (6.15) to express ξ and η, which could then be substituted into (6.11) –
(6.13) to produce basis functions in terms of x and y, looks appealing but should be
resisted. The reason is that numerical quadrature is available on the standard triangle,
but is much harder on general triangles. This will become especially clear with quadratic
elements later in the book.

However, since equation (6.15) is a invertible map from the standard triangle to a
triangle in the Cartesian coordinates (invertibility follows if the triangle does not have

6.5 Discretizing the weighted residual equation 45

its corners in a single straight-line: why?), we do get an approach to evaluating basis
functions on a general triangle. Given a point x̄, ȳ in the Cartesian coordinates, and
within the bounds of a triangle, we can use the inverse of the map (6.15) to obtain point
ξ̄, η̄ in the standard triangle (path 1 in Figure 6.7). Therefore, we may then evaluate
Ni(ξ̄, η̄), which is the value Ni(x̄, ȳ) (path 2 in Figure 6.7). That seems awkward, but
normally we would want to evaluate the basis functions in order to perform numerical
quadrature, that is at a particular point (quadrature point) within the triangle. In that
case, ξ̄, η̄ would be known (and x̄, ȳ would be unknown), and calculation of the function
value is easy. Evaluation of the derivatives of the basis functions is a little bit more
complex, and will be discussed later in the section on numerical quadrature.

Fig. 6.7. Using the map from the standard triangle to evaluate basis functions over a general
triangle

We understand now that each node in the mesh is associated with a single basis
function. In the following, whenever we will write

Ni = Ni(x, y) ,

it has to be understood that within each triangle in the mesh, x = x(ξ, η), y = y(ξ, η),
where ξ and η are coordinates on the standard triangle.

6.5 Discretizing the weighted residual equation

The trial function will be expressed using the basis functions as (compare with Sec-
tion 2.7)

T (x, y, t) =
N∑

i=1

Ni(x, y)Ti(t)

where the sum ranges over all the basis functions (i.e. over all the nodes in the mesh).
Included are also nodes on the boundary where the temperature is being prescribed,
Cc,1

2. These nodes are on the other hand excluded from the set of possible test functions
(which is expected to vanish along Cc,1), so that we will choose

η(x, y) = Ni(x, y), i excluded when node i ∈ Cc,1

2Apropos boundaries: Figure 6.8 clearly shows that with straight edges we are only approx-
imating any boundaries that are curved. Some error is involved, but fortunately we are able to
control this error by reducing the length of the edges.

46 6 Galerkin method for the model of heat conduction

The nodes whose basis functions are not part of the linear combination for the test
function are shown as empty circles in Figure 6.8.

To simplify, we shall adopt the following notation:

η(x, y) = Nj(x, y), ∀ free j,

where “free j” ranges over the nodes where the temperature is not being prescribed; and

T (x, y, t) =
∑

all i

Ni(x, y)Ti(t)

where “all i” ranges over all the nodes, including those where the temperature is being
prescribed.

As an aside, because the basis on the standard triangle satisfies the Kronecker delta
property (2.19), the values of the degrees of freedom Ti(t) at the nodes “prescribed i”
(the nodes with the empty circles in Figure 6.8) are simply the values of the interpolated
prescribed temperature at the nodes, Ti(t) = T (xi, yi, t).

Fig. 6.8. Interpolating Cartesian coordinates on the standard triangle

The finite element expansions for the trial and test functions are now substituted into
the weighted residual integral (6.10), which upon the cancellation of the thickness t reads

∫

Sc

ηcV
∂T

∂t
dS +

∫

Sc

(gradη) κ(gradT)T dS −
∫

Sc

ηQ dS

+t

∫

Cc,2

η qn dC +
∫

Cc,3

η h(T − Ta) dC = 0, η(x) = 0 for x ∈ Cc,1 .
(6.16)

For clarity, the substitution will be shown term-by-term (henceforth we will omit the
arguments): ∫

Sc

ηcV
∂T

∂t
dS =

∫

Sc

NjcV

∑

all i

Ni
∂Ti

∂t
dS , ∀ free j , (6.17)

which simplifies to ∑

all i

[∫

Sc

NjcV Ni dS

]
∂Ti

∂t
, ∀ free j , (6.18)

The term in the bracket mixes together i and j from two different sets. However, some of
the degrees of freedom ∂Ti/∂t are known. Therefore, separating the known and unknown
may be a good idea:

6.5 Discretizing the weighted residual equation 47

∑

all i

[∫

Sc

NjcV Ni dS

]
∂Ti

∂t
=

∑

free i

[∫

Sc

NjcV Ni dS

]
∂Ti

∂t
+

∑

prescribed i

[∫

Sc

NjcV Ni dS

]
∂T i(t)

∂t
, ∀ free j ,

(6.19)

The first integral on the right hand side of (6.19) suggests defining a matrix

Cji =
∫

Sc

NjcV Ni dS , ∀ free j, i, (6.20)

the capacity matrix. The integral in the second term will be given a different symbol,
since the meaning is different from the first (the latter is a load-like term)

Cji =
∫

Sc

NjcV Ni dS , ∀ free j, ∀ prescribed i. (6.21)

Next, the second term in (6.16):
∫

Sc

(gradη) κ(gradT)T dS =
∫

Sc

(gradNj) κ(grad
∑

all i

NiTi)T dS =

∑

free i

[∫

Sc

(gradNj) κ(gradNi)T dS

]
Ti+

∑

prescribed i

[∫

Sc

(gradNj) κ(gradNi)T dS

]
T i ∀ free j,

(6.22)

and the conductivity matrix may be defined

Kij =
∫

Sc

(gradNj) κ(gradNi)T dS , ∀ free j, i, (6.23)

and the elements to go with the load-like term

Kij =
∫

Sc

(gradNj) κ(gradNi)T dS , ∀ free j, ∀ prescribed i. (6.24)

Next, the load term corresponding to the internal heat generation:

LQ,j =
∫

Sc

NjQ dS , ∀ free j, (6.25)

Finally, the terms corresponding to natural boundary conditions. On the Cc,2 part of the
boundary, only a load term results.

Lq2,j = −
∫

Cc,2

Nj qn dC (6.26)

On the other hand, on the Cc,3 part of the boundary, where the heat flux is proportional
to the difference between the ambient temperature and the surface temperature, we get
a load term

Lq3,j =
∫

Cc,3

Nj hTa dC , ∀ free j, (6.27)

48 6 Galerkin method for the model of heat conduction

and a surface heat transfer matrix :

Hji =
∫

Cc,3

Nj hNi dC , ∀ free j, i, (6.28)

To summarize, using the definitions of the various matrices and load terms, the system
of ordinary differential equations that results from the finite element discretization in
space reads

∑

free i

Cji
∂Ti

∂t
+

∑

free i

KjiTi +
∑

free i

HjiTi

+
∑

prescribed i

Cji
∂T i(t)

∂t
+

∑

prescribed i

KjiT i − LQ,j − Lq2,j − Lq3,j = 0
∀ free j, (6.29)

6.6 Derivatives of the basis functions; Jacobian

The results of this section are much more general than may be expected. While we derive
the formulas from which the derivatives of basis functions may be calculated for the linear
triangles, the same implementation is used for all the so-called isoparametric elements
in the SOFEA toolbox.

To evaluate the conductivity matrix, we need to be able to calculate the derivatives
of the basis functions with respect to x and y. Equations (6.11–6.13) define the functions
over the standard triangle in terms of ξ and η. Therefore, to express ∂Ni/∂x we use the
chain rule

∂Ni

∂x
=

∂Ni

∂ξ

∂ξ

∂x
+

∂Ni

∂η

∂η

∂x
(6.30)

∂Ni

∂y
=

∂Ni

∂ξ

∂ξ

∂y
+

∂Ni

∂η

∂η

∂y
(6.31)

For the purpose of this discussion, the function that is being differentiated does not really
matter. We will replace it with a ♥, while we arrange the above equation into a matrix
expression

[
∂♥
∂x

,
∂♥
∂y

]
=

[
∂♥
∂ξ

,
∂♥
∂η

]



∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y


 . (6.32)

The derivatives are arranged in row matrices is that these objects are gradients of the ♥
function [compare with (5.17)]. The matrix

[
J̃
]

=




∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y


 , (6.33)

is the Jacobian matrix of the mapping ξ = ξ(x, y), η = η(x, y), which is the inverse of
the map x = x(ξ, η), y = y(ξ, η) of equation (6.15). The question is how to evaluate the
partial derivatives of the type ∂ξ/∂x, since the inverse of the map (6.15) is not known
(at least not in general). If we start the chain rule from the other end (switching the role
of the variables), we obtain

6.6 Derivatives of the basis functions; Jacobian 49

[
∂♥
∂ξ

,
∂♥
∂η

]
=

[
∂♥
∂x

,
∂♥
∂y

]



∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η


 (6.34)

and inverting the Jacobian matrix in equation (6.32) we get
[

∂♥
∂ξ

,
∂♥
∂η

]
=

[
∂♥
∂x

,
∂♥
∂y

] [
J̃
]−1

. (6.35)

Comparing (6.34) and (6.35) yields

[J] =




∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η


 =

[
J̃
]−1

, (6.36)

where [J] is the Jacobian matrix of the map (6.15). The elements of [J] are directly
available from the matrix in (6.15). However, even more useful is to start from (6.14),
and by definition the Jacobian matrix is then

[J] =




3∑

i=1

∂Ni

∂ξ
xi ,

3∑

i=1

∂Ni

∂η
xi

3∑

i=1

∂Ni

∂ξ
yi ,

3∑

i=1

∂Ni

∂η
yi




, (6.37)

Note that the Jacobian matrix may be expressed as the product of two matrices:

[J] = [x]T [Nder] , (6.38)

where [x] collects the coordinates of the nodes (three nodes, for the triangle)

[x] =




x1 , y1

x2 , y2

x3 , y3


 , (6.39)

and [Nder] collects in each row the gradient of the basis function with respect to the
parametric coordinates

[Nder] =




∂N1

∂ξ
,

∂N1

∂η

∂N2

∂ξ
,

∂N2

∂η

∂N3

∂ξ
,

∂N3

∂η




, (6.40)

The calculation of the spatial derivatives by an isoparametric geometric cell (recall
that finite elements in SOFEA represent the calculation of basis functions and their deriva-
tives in the gcell class) is a straightforward rewrite of the formulas above. The method
Ndermat spatial takes three arguments: a descendent of the class gcell, and two ar-
rays (6.40) and (6.39). The dimensions of the two arrays are (line 0013): nbfuns= number
of basis functions, and dim= number of space dimensions (= 2 for the triangle).

50 6 Galerkin method for the model of heat conduction

0013 function [Nspatialder,detJ] = Ndermat spatial3 (self, Nder, x)
0014 [nbfuns,dim] = size(Nder);
0015 if (size(Nder) ~= size(x))
0016 error(’Wrong dimensions of arguments!’);
0017 end

The Matlab code on line 0018 reflects literally the formula (6.38).

0018 J = x’ * Nder;% Compute the Jacobian matrix
0019 detJ = det(J);% Compute the Jacobian

The Jacobian (determinant of the Jacobian matrix) should be positive. An error is re-
ported when the Jacobian is non-positive; the generic case is treated in line 0023, which
literally transcribes equation (6.32).

0020 if (detJ <= 0) % trouble
0021 error(’Non-positive Jacobian’);
0022 else % the generic case
0023 Nspatialder = Nder * inv(J);
0024 end
0025 return;
0026 end

Since the Jacobian is needed both to evaluate the derivatives of the basis functions, and
to numerically integrate, it makes sense to compute it only once. Therefore, the method
Ndermat spatial discussed in Section 6.6 returns both the array of derivatives and the
Jacobian.

To round off the discussion in this section, we need to present the code that evaluates
the basis functions (6.11–6.13) and the derivatives of the basis functions with respect to
the parametric coordinates ξ, η. For the linear triangle (class gcell T3) the two methods
are delightfully simple: method Nmat computes a column array of basis function values, Nj

in row j, given the parametric coordinates ξ ← param coords(1), η ← param coords(2).

0008 function val = Nmat4(self,param coords)
0009 val = [(1 - param coords(1) - param coords(2));...
0010 param coords(1); ...
0011 param coords(2)];
0012 return;
0013 end

The method Nder param returns an array with three rows (one for each basis function),
with the gradient of the basis function j with respect to ξ, η in row j.

0010 function val = Nder param5(self, param coords)
0011 val = [-1 -1; ...
0012 +1 0; ...
0013 0 +1];
0014 return;
0015 end

3Folder: SOFEA/classes/gcell/@gcell
4Folder: SOFEA/classes/gcell/@gcell_T3
5Folder: SOFEA/classes/gcell/@gcell_T3

6.7 Numerical integration 51

6.7 Numerical integration

Stepping closely along the lines of the discussion in Section 2.8, we formulate the numer-
ical integration procedure for the linear triangle. We begin by highlighting the role of the
Jacobian matrix.

Consider a map from ξ, η to x, y: a slight generalization of (6.14) in that the map is
not necessarily linear (see Figure 6.9)

[
x
y

]
=

[
x(ξ, η)
y(ξ, η)

]
. (6.41)

The parallelogram (rectangle) generated by the vectors [dξ, 0]T and [0,dη]T (given in
components in the Cartesian coordinate system ξ, η), has the area of (× is the cross
product symbol) [

dξ
0

]
×

[
0
dη

]
= dξdη .

Remember, this is happening in two dimensions: the cross product is a scalar.

Fig. 6.9. Mapping of areas for a general map between coordinates

The two vectors [dξ, 0]T and [0, dη]T are mapped by the map (6.41) to vectors

[
dξ
0

]
−→ dξ




∂x

∂ξ

∂y

∂ξ


 ,

[
0
dη

]
−→ dη




∂x

∂η

∂y

∂η


 , (6.42)

where the square brackets hold components in the standard Cartesian basis. Note that
these vectors are tangent to the coordinate curves, which consist of the points in the
physical space x, y that are maps of the curves ξ = const and η = const. The area of the
hatched parallelogram in Figure 6.9 is

dξ




∂x

∂ξ

∂y

∂ξ


× dη




∂x

∂η

∂y

∂η


 = dξdη




∂x

∂ξ

∂y

∂ξ


×




∂x

∂η

∂y

∂η


 . (6.43)

52 6 Galerkin method for the model of heat conduction

Compare this equation with (6.36): the two vectors in the cross product are the columns
of the Jacobian matrix from (6.36). In fact, the cross product of the columns is the
determinant of the Jacobian matrix (or, as the determinant is known, the Jacobian).
Therefore, the map (6.41) maps areas as

dξdη −→ dξdη det [J] . (6.44)

As a consequence of (6.44), we have the following change of coordinates in integrals:
∫

S[x,y]

f(x, y)dxdy =
∫

S[ξ,η]

f(ξ, η) det [J(ξ, η)] dξdη . (6.45)

Numerical quadrature rules take advantage of the relative ease with which these rules
may be formulated on standard shapes, triangles, squares, cubes, etc. Thus, the integral
on the left of (6.45) will be approximated as

∫

S[x,y]

f(x, y)dxdy ≈
M∑

k=1

f(ξk, ηk) det [J(ξk, ηk)] Wk . (6.46)

We will introduce two integration rules for the standard triangle, one-point and three-
point quadrature, but many other rules are available: a number of authors have compiled
tables, see for instance Hughes’ book [Hug00]. The 1-point rule will be able to integrate
linear polynomials in ξ, η exactly, and the 3-point does the job for up to quadratic
polynomials in ξ, η. Table 6.1 gives the coordinates of the integration points, and their
weights.

Rule Coordinates ξj , ηj Weights Wj Integrates exactly

1-point 1/3, 1/3 1/2 linear polynomial

3-point
2/3, 1/6
1/6, 2/3
1/6, 1/6

1/6
1/6
1/6

quadratic polynomial

Table 6.1. Numerical integration rules on the standard triangle

6.8 Conductivity matrix

As already discussed in Chapter 3, all the problem dependent code is concentrated in a
descendent of the feblock class. In particular, the two-dimensional heat diffusion model
of this chapter is implemented in the feblock diffusion finite element block class.

The conductivity and other matrices are computed by evaluating the contributions
from each element separately, storing these contributions element-by-element in a cell
array, and then finally assembling all the element contributions into the overall system
matrix. Thus, the method conductivity returns the array ems of element matrix objects
(class elemat), each of which represents the conductivity matrix of a single element.

The method begins by retrieving some information from the parent class, such as
gcells (cell array of the geometric cells), integration rule, and the material mat.

0009 function ems = conductivity6(self, geom, theta)

6Folder: SOFEA/classes/feblock/@feblock_diffusion

6.8 Conductivity matrix 53

0010 gcells = get(self.feblock,’gcells’);
0011 ngcells = length(gcells);
0012 nfens = get(gcells(1),’nfens’);
0013 dim = get(geom,’dim’);
0014 % Pre-allocate the element matrices
0015 ems(1:ngcells) = deal(elemat);
0016 % Integration rule
0017 integration rule = get(self.feblock, ’integration rule’);
0018 pc = get(integration rule, ’param coords’);
0019 w = get(integration rule, ’weights’);
0020 npts per gcell = get(integration rule, ’npts’);
0021 % Material
0022 mat = get(self.feblock, ’mater’);
0023 kappa = get(mat,’conductivity’);

The loop over all the geometric cells starts with the retrieval of the connectivity (i.e. the
numbers of the nodes which are connected together by the cell), and of the array of the
node coordinates, x (compare with (6.39)). Then, the element conductivity matrix Ke is
initialized to zero, and the loop over all the quadrature points may begin.

0024 % Now loop over all gcells in the block
0025 for i=1:ngcells
0026 conn = get(gcells(i), ’conn’); % connectivity
0027 x = gather(geom,conn,’values’,’noreshape’);% node coord
0028 Ke = zeros(nfens); % element matrix

The loop over the integration points starts with calculation of the gradients of the basis
functions with respect to the parametric coordinates, see array (6.40). Then compute the
spatial derivatives of the basis functions, Nspder, and the Jacobian, detJ.

0029 % Loop over all integration points
0030 for j=1:npts per gcell
0031 Nder = Ndermat param (gcells(i), pc(j,:));
0032 [Nspder,detJ] = Ndermat spatial(gcells(i), Nder, x);

Fig. 6.10. Directions of material orthotropy

54 6 Galerkin method for the model of heat conduction

Often for orthotropic materials the axes of orthotropy vary from point-to-point. In that
case it makes sense to describe the material properties in local Cartesian coordinates, and
then allow the finite element block to define a transformation matrix between the local
coordinate directions and the global Cartesian basis: refer to Figure 6.10. The attribute
of a material parameter is thus the material conductivity in the rotated basis, ex, ey

[κ] =
[

κx 0
0 κy

]
(6.47)

which is rotated using the transformation matrix

[Rm] =
[
[ex] [ey]

]
(6.48)

whose columns are the components of the basis vectors ex, ey in the global Cartesian
coordinates. in The material conductivity matrix in the global basis is then expressed
using the ordinary transformation rule

[κ] = [Rm][κ][Rm]T (6.49)

Compute the local material directions.

0033 Rm=material directions(self,...
0034 map two xyz(gcells(i), pc(j,:),x),x’*Nder);

Now exercise the integration rule.

0035 Ke = Ke + Nspder*Rm*kappa*Rm’*Nspder’ * detJ * w(j);

Finally, the computed element conductivity matrix Ke is stored in the ems(i) object,
both the matrix itself and the equation numbers that go with each column and each row.

0037 ems(i)=set(ems(i), ’mat’, Ke);
0038 ems(i)=set(ems(i), ’eqnums’,gather(temp,conn,’eqnums’));

6.9 Surface heat transfer matrix and load

While in the preceding section the required integrals were over the area of the domain
Sc, the surface heat transfer matrix (6.28) and the surface heats transfer load (6.27) (and
also the prescribed heat flux load (6.26)) require integration over the bounding curve,
Cc,3 (or Cc,2). Therefore, since the area integrals are being performed over the area of
the triangles in the mesh, the curve integrals will be evaluated over the edges of these
triangles.

Evaluating the basis functions (6.11–6.13) along the edges of the standard triangle,
we may observe that the basis function associated with the opposite vertex is identically
zero, and the other two at the end-points of the edge vary linearly along the edge. In fact,
completely in agreement with the basis functions (2.20) defined on the line element L2.
Therefore, integrating an expression along the edge of the triangle T3 that connects nodes
i, j yields exactly the same result as integrating along the line element L2 that connects
nodes i, j. However, the two approaches are not the same thing: if, for the purpose of
numerical integration, we use the element L2, the design of the numerical integration
code will be reusable: the same piece of code may be used to integrate quantities along
a curve which is tiled with finite element edges with linear variation of basis functions –
the triangle T3, the quadrilateral Q4, the hexahedron H8, the tetrahedron T4.

Let us take for instance equation (6.26). The goal is to evaluate an integral of the
form

6.9 Surface heat transfer matrix and load 55

Fig. 6.11. Mapping of the standard interval to a Cartesian space

∫

C

f(p) dC (6.50)

where we will assume that the curve C may be “embedded” in a three-dimensional, two-
dimensional, or one-dimensional Euclidean space (i.e. it may be a spatial curve, plane
curve, or just an interval on the real line). Correspondingly, the point on the curve p will
have appropriate number of components. To perform the integral, the elementary length
dC is needed.

The point p on the curve will be assumed to be the result of the mapping the standard
interval −1 ≤ ξ ≤ +1 (compare with the 1-D map (2.23), and refer to Figure 6.11, where
the map is two-dimensional)

p = g(ξ) . (6.51)

For two closely spaced points on the curve, p(ξ) and p(ξ +∆ξ), where ∆ξ is the distance
between the two points in the standard interval, the second point may be obtained from
the first using the first two terms of the Taylor series as

p(ξ + ∆ξ) = p(ξ) +
∂p(ξ + ε∆ξ)

∂ξ
∆ξ 0 ≤ ε ≤ 1. (6.52)

The two points may be connected with a vector approximately tracking the curve (see
Figure 6.12),

p(ξ + ∆ξ)− p(ξ) =
∂p(ξ + ε∆ξ)

∂ξ
∆ξ ,

whose length (squared) is

(∆C)2 =
(

∂p(ξ + ε∆ξ)
∂ξ

∆ξ

)
·
(

∂p(ξ + ε∆ξ)
∂ξ

∆ξ

)
=

∣∣∣∣
∣∣∣∣
∂p(ξ + ε∆ξ)

∂ξ

∣∣∣∣
∣∣∣∣
2

(∆ξ)2 .

Skipping over the details, we may conclude that for infinitesimally short intervals, ∆ξ →
dξ, the following relationship is obtained

dC =
∣∣∣∣
∣∣∣∣
∂p(ξ)

∂ξ

∣∣∣∣
∣∣∣∣ dξ , (6.53)

where ∂p(ξ)
∂ξ is the vector tangent to the curve at ξ, and

∣∣∣
∣∣∣∂p(ξ)

∂ξ

∣∣∣
∣∣∣ is the Jacobian to be

used in the change-of-variables device for the curve integral.

56 6 Galerkin method for the model of heat conduction

Fig. 6.12. Length of a curve

Let us now specialize these developments to the L2 element: the map (6.54) reads

p = g(ξ) =
2∑

i=1

Ni(ξ)xi . (6.54)

where Ni are given by (2.25). Therefore, the tangent vector (see (6.53)) reads

∂p(ξ)
∂ξ

=
x2 − x1

2

and the Jacobian is h/2, where h = ||x2 − x1|| is the length of the element.
Of course, for general elements with n nodes, the implementation confused the tangent

as
∂p(ξ)

∂ξ
= x’*Nder ,

using the following two matrices ,

[x] =




x1 , y1

x2 , y2

..., ...
xn , yn


 , (6.55)

where the number of columns is equal to the number of spatial dimensions, 1, 2 (which is
assumed in (6.55)), or 3, and [Nder] collects in each row the gradient of the basis function
with respect to the parametric coordinate

[Nder] =




∂N1

∂ξ

∂N2

∂ξ

...

∂Nn

∂ξ




, (6.56)

These matrices should be compared with those defined for the triangle T3, equa-
tions (6.39) and (6.40). The only difference is the number of space dimensions, the
number of basis functions, and the number of parametric dimensions; all of these are
taken account of by the Matlab code automatically.

The method surface transfer loads is a rewrite of the above formulas. The setup
is straightforward and is omitted.

6.9 Surface heat transfer matrix and load 57

0009 function evs = surface transfer loads7 (self, geom, temp, amb)
...

The main work is done in this loop: the interpolated values of the nodal ambient temper-
atures are retrieved from the field amb, and He is computed as the heat surface transfer
matrix for the element. Note the calculation of the Jacobian: it is in evaluated from the
matrix of tangent vectors x’*Nder.

0021 % surface transfer coefficient
0022 h = self.surface transfer;
0023 % Now loop over all gcells in the block
0024 for i=1:ngcells
0025 conn = get(gcells(i), ’conn’); % connectivity
0026 pT = gather(amb, conn, ’prescribed values’);
0027 if norm (pT) ~= 0
0028 x = gather(geom, conn, ’values’, ’noreshape’); % node coord
0029 He = zeros(nfens); % element matrix
0030 % Loop over all integration points
0031 for j=1:npts per gcell
0032 N = Nmat(gcells(i), pc(j,:));
0033 Nder = Ndermat param (gcells(i), pc(j,:));
0034 detJ = Jacobian(gcells(i),x’*Nder);
0035 He = He + h*N*N’ * detJ * w(j);
0036 end

And the load vector is calculated and stored to be returned from this method.

0037 evs(i) = set(evs(i), ’vec’, He*pT);
0038 evs(i) = set(evs(i), ’eqnums’, ...
0039 gather(temp, conn, ’eqnums’));

7Folder: SOFEA/classes/feblock/@feblock diffusion

7

Steady-state heat diffusion solutions

7.1 Steady-state diffusion equation

The ordinary differential equations that result from discretization in space, equations (6.29),
lead to steady-state solutions when ∂Ti(t)/∂t = 0, and ∂T i(t)/∂t = 0. The latter are a
sine qua non condition, while the former follows when all the transients in the solution
decay (in infinite time, in general). Substituting into (6.29), we obtain

∑

free i

KjiTi +
∑

free i

HjiTi = −
∑

prescribed i

KjiT i + LQ,j + Lq2,j + Lq3,j ∀ free j, (7.1)

which is a system of linear equations for the unknown nodal temperatures. The nodal
temperatures are now just numbers, not functions.

7.2 Thick-walled tube

The first example is a thick-walled rectangular tube, with the outside temperature being
prescribed as zero, and the interior surface (perfectly) insulated. The material is isotropic.
As shown in Figure 7.1, the planes of symmetry may be used to reduce the size of the
problem. Therefore, only one quarter is discretized, and perfect insulation is applied at
the symmetry planes (no heat flow through the symmetry planes). There is a distributed
heat source in the material (for instance, heat released by curing cement paste).

Fig. 7.1. Heat diffusion in a thick-walled rectangular tube

60 7 Steady-state heat diffusion solutions

The Matlab script is lshape11. The first few lines define some ancillary variables, and
then the two-dimensional mesh generator of triangle meshes is invoked. The generator is
thoroughly described in the user’s guide targe2 users guide.pdf2, but we will describe
a little bit the Matlab interface. The first argument is a cell array, each element a string
(character array), with one command for the mesh generator. Thus, the first six strings
define curves that bound the domain (straight-line segments), the line 0011 defines a
subregion (chunk of area to be covered with triangles), and the last line defines the mesh
size. The second argument to targe2 mesher is the thickness of the slab (of no interest
here).

0001 kappa=[0.2 0; 0 0.2]; % conductivity matrix
0002 Q=0.01100; % uniform heat source
0003 num integ pts=1; % 1-point quadrature
0004 [fens,gcells] = targe2 mesher({...textcolorcomment
0005 [’curve 1 line 20 0 48 0’],...
0006 [’curve 2 line 48 0 48 48’],...
0007 [’curve 3 line 48 48 0 48’],...
0008 [’curve 4 line 0 48 0 13’],...
0009 [’curve 5 line 0 13 20 13’],...
0010 [’curve 6 line 20 13 20 0’],...
0011 ’subregion 1 property 1 boundary 1 2 3 4 5 6’,...
0012 [’m-ctl-point constant 3.5’]
0013 }, 1.0);

Next, the material object appropriate for heat diffusion is created, and supplied the
material conductivity matrix κ, and the heat source Q. The finite element block of class
feblock diffusion is created, with attributes: the material, the array of geometric cells,
and an integration rule (class tri rule is used for triangles).

0014 mater=mater diffusion (struct(’conductivity’,kappa,’source’,Q));
0015 feb = feblock diffusion (struct (’mater’,mater,...
0016 ’gcells’,gcells,...
0017 ’integration rule’,tri rule(num integ pts)));

Two fields are created: geom represents the geometry (i.e. the locations of the nodes), and
it is therefore initialized from the finite element node array, fens; and theta represents
the temperatures at the nodes, and it is initially undefined, except for the number of
nodes nfens.

0018 geom = field(struct(’name’,[’geom’], ’dim’, 2, ’fens’,fens));
0019 theta=field(struct(’name’,[’theta’], ’dim’, 1, ’nfens’,...
0020 get(geom,’nfens’)));

The essential boundary conditions are next applied to the temperature field. The utility
function fenode select is used to select nodes from the fens array based on their
location: nodes which fall into given bounding boxes are selected ([xlo xhi ylo yhi] =[48
48 0 48] and so on for the other box); to avoid problems with precision, the boxes are
for the purpose of the “in”-test inflated by 0.01. The array prescribed is filled with
ones to indicate that all degrees of freedom are to be prescribed, the components to be
prescribed are passed as an empty array (line 0026), which simply means all components
are meant. The values to which the temperatures are being prescribed are all zeros. The
data defining the essential boundary conditions are set in the field, and then applied (line
0029). The free node parameters are then assigned global equation numbers.

1Folder: SOFEA/examples/heat diffusion
2Folder: SOFEA/meshes/targe2

7.3 Orthotropic insert 61

0021 fenids=[fenode select(fens,struct(’box’,[48 48 0 48],...
0022 ’inflate’, 0.01)),...
0023 fenode select(fens,struct(’box’,[0 48 48 48],...
0024 ’inflate’, 0.01))];
0025 prescribed=ones(length(fenids),1);
0026 comp=[];
0027 val=zeros(length(fenids),1);
0028 theta = set ebc(theta, fenids, prescribed, comp, val);
0029 theta = apply ebc (theta);
0030 theta = numbereqns (theta);

The conductivity matrix is sparse (the linear system to be solved is going to be moderately
large, and the efficiency afforded by a sparse matrix is not to be sneezed at), and it is
assembled from element conductivity matrices in line 0032. The heat load vector is
assembled from element load vectors, and the solution of the linear system of equations
is scattered into the theta field.

0031 K = start (sparse sysmat, get(theta, ’neqns’));
0032 K = assemble (K, conductivity(feb, geom, theta));
0033 F = start (sysvec, get(theta, ’neqns’));
0034 F = assemble (F, source loads(feb, geom, theta));
0035 theta = scatter sysvec(theta, get(K,’mat’)\get(F,’vec’));
The last fragment of code takes care of the graphic presentation of the results. The field
colorfield holds one color (a triple of floating-point numbers) per node, and those
colors are obtained from the temperature field by mapping node temperatures to colors
(line 0042). The geometric cells of individual finite elements are plotted twice. Once as
a raised colored surface (line 0047), and the second time as a wireframe in the x, y plane
(line 0049). The resulting graphic is shown in Figure 7.2.

0038 gv=graphic viewer;
0039 gv=reset (gv,[]);
0040 T=get(theta,’values’);
0041 dcm=data colormap(struct(’range’,[min(T),max(T)],’colormap’,jet));
0042 colorfield=field(struct (’name’, [’colorfield’], ’data’,...
0043 map data(dcm, T)));
0044 geomT=field(struct (’name’, [’geomT’], ...
0045 ’data’,[get(geom,’values’), get(theta,’values’)]));
0046 for i=1:length (gcells)
0047 draw(gcells(i), gv, struct (’x’,geomT, ’u’,0*geomT,...
0048 ’colorfield’,colorfield, ’shrink’,0.9));
0049 draw(gcells(i), gv, struct (’x’,geom, ’u’,0*geom, ...
0050 ’facecolor’,’none’));
0051 end

7.3 Orthotropic insert

The next example introduces nonzero essential boundary conditions, and orthotropic
material properties. A square block of isotropic material is insulated on the vertical
edges, and two different temperatures our applied on the horizontal edges. There is a
square insert of orthotropic material within the larger square. The orientation of the
material axes is indicated in Figure ??. Physically the insert could be made of parallel

62 7 Steady-state heat diffusion solutions

Fig. 7.2. Heat diffusion in a thick-walled rectangular tube: graphic presentation of results

fibers (for instance carbon), embedded in a polymer matrix. The fibers conduct heat
well, while in the transverse direction the polymer matrix hampers heat conduction. The

Fig. 7.3. Heat diffusion in inhomogeneous domain with orthotropic material properties

problem is solved with script squareinsquare3. The domain consists of two materials,
and consequently we define two material conductivity matrices: the inner material has
strongly orthotropic properties; the outer material is isotropic. The rotation matrix that
defines the local material properties of the insert is setup in line 0005.

0001 kappainner=[2.25 0; 0 0.06]; % orthotropic conductivity matrix
0002 kappaouter=[0.25 0; 0 0.25]; % isotropic conductivity matrix
0003 alpha =-45;% local material orientation angle
0004 ca=cos(2*pi/360*alpha); sa=sin(2*pi/360*alpha);
0005 Rm = [ca, -sa;sa, ca];% local material directions

The mesh generator defines the eight boundary segments, and then sets up two subre-
gions: note that the two subregions are assigned different numerical identifiers (1 and 2)
to distinguish elements belonging to different subregions.

0007 [fens,gcells, groups] = targe2 mesher({...
0008 [’curve 1 line -48 -48 48 -48’],...
0009 [’curve 2 line 48 -48 48 48’],...

3Folder: SOFEA/examples/heat diffusion

7.3 Orthotropic insert 63

0010 [’curve 3 line 48 48 -48 48’],...
0011 [’curve 4 line -48 48 -48 -48’],...
0012 [’curve 5 line 0 -31 31 0’],...
0013 [’curve 6 line 31 0 0 31’],...
0014 [’curve 7 line 0 31 -31 0’],...
0015 [’curve 8 line -31 0 0 -31’],...
0016 [’subregion 1 property 1 ’ ...
0017 ’ boundary 1 2 3 4 -8 -7 -6 -5’],...
0018 [’subregion 2 property 2 ’...
0019 ’ boundary 5 6 7 8’],...
0020 [’m-ctl-point constant 4.75’]
0021 }, 1.0);

The inner subregion consists of the geometric cells gcells(groups{2}) (groups{2} is a
list of indexes of the cells that belong to the subregion 2). Note that the local material
directions matrix is being supplied to the finite element block constructor (line 0027).

0023 materinner=mater diffusion(struct(’conductivity’,kappainner,...
0024 ’source’,0));
0025 febinner = feblock diffusion(struct (’mater’,materinner,...
0026 ’gcells’,gcells(groups{2}),...
0027 ’integration rule’,tri rule(num integ pts),’Rm’,Rm));
0028 materouter=mater diffusion(struct(’conductivity’,kappaouter,...
0029 ’source’,0));
0030 febouter = feblock diffusion(struct (’mater’,materouter,...
0031 ’gcells’,gcells(groups{1}),...
0032 ’integration rule’,tri rule(num integ pts)));

The boundary conditions are straightforward, but notice that the two horizontal edges
are being assigned different, nonzero, temperatures.

0035 fenids=[fenode select(fens,struct(’box’,[-48 48 -48 -48],...
0036 ’inflate’, 0.01))];
0037 prescribed=ones(length(fenids),1);
0038 comp=[];
0039 val=zeros(length(fenids),1)+20;% ambient temperature
0040 theta = set ebc(theta, fenids, prescribed, comp, val);
0041 fenids=[fenode select(fens,struct(’box’,[-48 48 48 48],...
0042 ’inflate’, 0.01))];
0043 prescribed=ones(length(fenids),1);
0044 comp=[];
0045 val=zeros(length(fenids),1)+57;% hot inner surface
0046 theta = set ebc(theta, fenids, prescribed, comp, val);
0047 theta = apply ebc (theta);

When assembling the conductivity matrix, the contributions from the two blocks are
assembled separately. The thermal loads corresponding to nonzero essential boundary
conditions (conductivity only: recall that this is steady-state) are assembled only for the
outer subregion block, since there are no boundary conditions on the boundary of the
inner block.

0049 K = start (sparse sysmat, get(theta, ’neqns’));
0050 K = assemble (K, conductivity(febinner, geom, theta));
0051 K = assemble (K, conductivity(febouter, geom, theta));
0052 F = start (sysvec, get(theta, ’neqns’));

64 7 Steady-state heat diffusion solutions

0053 F = assemble (F, nz ebc loads conductivity(febouter, geom, theta));

The results are presented in Figure 7.4. The distorting effect of the insert is notewor-
thy: in one direction the insert acts as a heat sink/source, in the perpendicular direction
it is an insulator.

Fig. 7.4. Heat diffusion in inhomogeneous domain with orthotropic material properties: tem-
perature distribution. Notice the distorting effect of the insert

7.4 The T4 NAFEMS Benchmark

This problem is one of the NAFEMS (National Agency for Finite Element Methods and
Standards (UK)) benchmark tests for thermal analyses. It consists of 2d region 0.6 meter
wide by 1 meter high, with a fixed temperature of 100◦C100 on the lower boundary,
perfect insulator on the left boundary, and a heat transfer at 750W/m2◦C on the other
two boundaries (see Figure 7.5). The material in the region has a thermal conductivity
of 52W/m◦C. The problem is to calculate the steady-state temperature distribution.
A complete description of this problem is given in the paper by Cameron, Casey, and
Simpson [CCS].

The SOFEAsolution is in the Matlab script t4nafems4. Note that also

0001 kappa=[52 0; 0 52]; % conductivity matrix
0002 Q=0.0; % uniform heat source
0003 h=750;
0004 num integ pts=1; % 1-point quadrature
0005 [fens,gcells,groups,edge gcells,edge groups]=targe2 mesher({...
0006 [’curve 1 line 0 0 0.6 0’],...
0007 [’curve 2 line 0.6 0 0.6 0.2’],...
0008 [’curve 3 line 0.6 0.2 0.6 1.0’],...
0009 [’curve 4 line 0.6 1.0 0 1.0’],...
0010 [’curve 5 line 0 1.0 0 0’],...
0011 ’subregion 1 property 1 boundary 1 2 3 4 5’,...

4Folder: SOFEA/examples/heat diffusion

7.4 The T4 NAFEMS Benchmark 65

Fig. 7.5. The T4 NAFEMS benchmark geometry and boundary conditions.

0012 [’m-ctl-point constant 0.05’]
0013 }, 1.0);
...

Nota bene that two blocks are being created: the first for the triangular elements in
the interior of the domain, and the second, edgefeb, for the edge elements (line segment
elements with two nodes) along the two boundary edges of the domain with the convective
boundary condition.

0018 edgefeb = feblock diffusion (struct (’mater’,mater,...
0019 ’gcells’,edge gcells([edge groups{[2, 3, 4]}]),...
0020 ’integration rule’,gauss rule(1,num integ pts),...
0021 ’surface transfer’, h));
...

Create a field to represent the prescribed ambient temperature along the boundary. The
interior values are never used, only the ones on the boundary. They happen to be all
equal to zero, but we will not ignore them in the interest of clarity.

0025 amb = clone(theta, [’amb’]);
0026 fenids=[
0027 fenode select(fens,struct(’box’,[0.6 0.6 0 1],...
0028 ’inflate’, 0.01)),...
0029 fenode select(fens,struct(’box’,[0 1 1 1],...
0030 ’inflate’, 0.01))] ;
0031 prescribed=ones(length(fenids),1);
0032 comp=[];
0033 val=zeros(length(fenids),1)+0.0;
0034 amb = set ebc(amb, fenids, prescribed, comp, val);
0035 amb = apply ebc (amb);

The essential boundary condition on the temperature field is applied.

0036 fenids=[

66 7 Steady-state heat diffusion solutions

0037 fenode select(fens,struct(’box’,[0. 0.6 0 0],...
0038 ’inflate’, 0.01))] ;
0039 prescribed=ones(length(fenids),1);
0040 comp=[];
0041 val=zeros(length(fenids),1)+100.0;
0042 theta = set ebc(theta, fenids, prescribed, comp, val);
0043 theta = apply ebc (theta);
0044 theta = numbereqns (theta);

The system matrix and the system load vector are assembled, including the surface heats
transfer contribution (line 0047), and the surface heat transfer load (line 0051). Note that
these are computed on the edge element block edgefeb. The contribution of the nonzero
prescribed temperature is also added in.

0045 K = start (sparse sysmat, get(theta, ’neqns’));
0046 K = assemble (K, conductivity(feb, geom, theta));
0047 K = assemble (K, surface transfer(edgefeb, geom, theta));
0048 F = start (sysvec, get(theta, ’neqns’));
0049 F = assemble(F, source loads(feb, geom, theta));
0050 F = assemble(F, nz ebc loads conductivity(feb, geom, theta));
0051 F = assemble(F, surface transfer loads(edgefeb,geom,theta,amb));

After the solution, the temperature at the node x = 0.6, y = 0.2 (label A in Figure 7.6),
is retrieved with gather and printed. The calculated value of 18.2481◦C agrees well with
the reference solution of 18.3◦C. The singularity near the corner where the two kinds of
boundary conditions meet (prescribed temperature with convective surface heat transfer)
is clearly visible.

0052 theta = scatter sysvec(theta, get(K,’mat’)\get(F,’vec’));
0053 gather(theta,fenode select(fens,...
0054 struct(’box’,[0.6 0.6 0.2 0.2],’inflate’, 0.01)),’values’)

7.4 The T4 NAFEMS Benchmark 67

Fig. 7.6. Temperature distribution for the T4 NAFEMS benchmark.

8

Transient heat diffusion solutions

8.1 Discretization in time for transient heat diffusion

The ordinary differential equations (6.29) need to be numerically integrated in time as
analytical solutions are not possible in general. Hughes (2000) describes a finite difference
method, the generalized trapezoidal method , including its accuracy and stability
properties (Chapter 8, Reference [Hug00]). To unclutter the equations, we will use a
matrix notation, with the following definitions:

K̃ = [Kji + Hji], free j, i, (8.1)

for the effective conductivity matrix, which bundles the bulk conductivity with the surface
heat transfer matrix,

K = [Kji], free j, prescribed i, (8.2)

for the rectangular conductivity matrix that relates the prescribed temperatures to the
heat fluxes,

C = [Cji], free j, i, (8.3)

for the capacity matrix,

C = [Cji], free j, prescribed i, (8.4)

for the rectangular capacity matrix that relates the prescribed temperature rates to the
heat fluxes, and

L = [LQ,j + Lq2,j + Lq3,j], free j . (8.5)

The free temperatures and their rates are collected in column matrices

T = [Tj], Ṫ =
[
∂Ti

∂t

]
, free j . (8.6)

and the prescribed temperatures and their rates

T = [T j], Ṫ =
[
∂T i

∂t

]
, prescribed j . (8.7)

Therefore, equation (6.29) may be recast as

CṪ + K̃T + CṪ + KT −L = 0 . (8.8)

70 8 Transient heat diffusion solutions

The generalized trapezoidal method proposes to express the relationship between the
temperatures and the rates of temperatures at two different time instants, tn and tn+1,
as

θṪ n+1 + (1− θ)Ṫ n =
T n+1 − T n

∆t
, (8.9)

where a quantity expressed at time tn is given a subscript n, and ∆t = tn+1 − tn. The
free parameter θ is used to control accuracy and stability of the scheme.

Equation (8.9) is applied to the time stepping of (8.8) by writing (8.8) at the two
time instants, tn and tn+1, and then mixing together these two equations. Thus, we add
together

θ
[
CṪ n+1 + K̃T n+1 + CṪ n+1 + KT n+1 −Ln+1

]
= 0 , (8.10)

and
(1− θ)

[
CṪ n + K̃T n + CṪ n + KT n −Ln

]
= 0 , (8.11)

and if we assume that equation (8.9) applies not only to the free temperatures, but also
to the prescribed temperatures, the mixture of rates (left-hand side of (8.9)) may be
replaced with the difference of the temperatures (right hand side of (8.9)). The resulting
equation refers only to temperatures at two times, and may be solved to yield T n+1,
provided T n is known.

[
1

∆t
C + θK̃

]
T n+1 =

[
1

∆t
C − (1− θ)K̃

]
T n + θLn+1 + (1− θ)Ln

−
[

1
∆t

C + θK

]
T n+1 +

[
1

∆t
C − (1− θ)K

]
T n

(8.12)

The form of equation (8.12) is pleasingly symmetric, fully reflective of the blocked nature
of these equations. However, for implementation the following form is going to be more
profitable:

[
1

∆t
C + θK̃

]
T n+1 =

[
1

∆t
C − (1− θ)K̃

]
T n + θLn+1 + (1− θ)Ln

−C
T n+1 − T n

∆t
−K

[
θT n+1 + (1− θ)T n

] (8.13)

The last line in this equation indicates how the contributions from prescribed tempera-
tures (and hence also prescribed temperature rates) may be calculated: the term

−C
T n+1 − T n

∆t

introduces the contributions of the temperature rates, since the fraction on the right is
an approximation of the temperature rate, and the term

−K
[
θT n+1 + (1− θ)T n

]

contributes the effect of prescribed temperatures (in the form of a mixture of tempera-
tures at time n and n + 1).

Now to the question of how to choose the value of θ: upon closer inspection of equa-
tion (8.9) we may conclude that the two choices, θ = 0 and θ = 1, will lead to Euler
methods – the forward (explicit) Euler for the former, and the backward (implicit)
Euler for the latter. The value of θ = 1/2 is known as the Crank-Nicholson method.
The explicit Euler method has the limitation of conditional stability, which leads to severe
restrictions on the time step. On the other hand, the backward Euler and the Crank-
Nicholson are for equations (8.13) unconditionally stable. While the Crank-Nicholson is
nominally more accurate than the backward Euler, the latter is often given preference
because it tends to eliminate oscillations in the solution.

8.2 Transient diffusion: The T3 NAFEMS Benchmark 71

8.2 Transient diffusion: The T3 NAFEMS Benchmark

Fig. 8.1. Heat diffusion through a plate (one-dimensional problem), with time-dependent
boundary conditions

This test is recommended by the National Agency for Finite Element Methods and
Standards (UK), and it is surprisingly exacting. The domain shown in Figure 8.1. One
face is held at 0◦C, the other face experiences sinusoidal variations in temperature. The
temperature at t = 32 seconds 0.02 m under the heated face is sought. It is assumed
that the plate is very large compared to its thickness, and the problem may therefore
be reduced to one dimension, along the thickness. The implementation of transient heat
conduction in SOFEAis in fact dimension independent, and we simply take care to define
the various objects properly for a 1-D problem and the rest follows.

The solution is presented in the Matlab script t3nafems1. First, the various param-
eters are defined. Note that the backward Euler method (θ = 1) is selected for the time
discretization.

0001 kappa=[35.0]; % conductivity matrix
0002 cm = 440.5;% specific heat per unit mass
0003 rho=7200;% mass density
0004 cv =cm* rho;% specific heat per unit volume
0005 Q=0; % uniform heat source
0006 Tampl=100;
0007 Tamb=0;
0008 Tbar =@(t)(Tampl*sin(pi*t/40)+ Tamb);%hot face temperature
0009 num integ pts=2; % quadrature
0010 L=0.1;% thickness
0011 dt=0.05; % time step
0012 tend= 32; % length of the time interval
0013 t=0;
0014 theta = 1.0; % generalized trapezoidal method
0015 online graphics= ~true;% plot the solution as it is computed?
0016 n=100*5;% needs to be multiple of five

1Folder: SOFEA/examples/diffusion

72 8 Transient heat diffusion solutions

The mesh is created by block1d2, a simple utility which produces a uniformly spaced
mesh on the interval 0 ≤ x ≤ L. Note that not only the essential boundary conditions
are applied to the temperature field, but also the initial condition (which happens to be
0◦C).

0017 [fens,gcells] = block1d(L,n,1.0); % Mesh
0018 mater = mater diffusion(struct(’conductivity’,kappa,...
0019 ’specific heat’,cv,’rho’,rho,’source’,Q));
0020 feb = feblock diffusion (struct (...
0021 ’mater’,mater,...
0022 ’gcells’,gcells,...
0023 ’integration rule’,gauss rule(1,num integ pts)));
0024 geom = field(struct (’name’,[’geom’], ’dim’, 1, ’fens’,fens));
0025 tempn = field(struct (’name’,[’temp’], ’dim’, 1,...
0026 ’nfens’,get(geom,’nfens’)));
0027 tempn = set ebc(tempn, 1, 1, 1, Tbar(t));
0028 tempn = set ebc(tempn, n+1, 1, 1, Tamb);
0029 tempn = apply ebc (tempn);
0030 tempn = numbereqns (tempn);
0031 tempn = scatter sysvec(tempn,gather sysvec(tempn)*0+Tamb);

The conductivity and capacity matrix are time independent; we compute them once, and
henceforth work only with the arrays Km and Cm.

0032 K = start (dense sysmat, get(tempn, ’neqns’));
0033 K = assemble (K, conductivity(feb, geom, tempn));
0034 Km = get(K,’mat’);
0035 C = start (dense sysmat, get(tempn, ’neqns’));
0036 C = assemble (C, capacity(feb, geom, tempn));
0037 Cm = get(C,’mat’);

The time stepping begins. First, the temperature boundary conditions are time-dependent,
which means they have to be set for each pass through the time loop (i.e. for each time
instant).

0038 Tfifth = [];
0039 while t<tend+0.1*dt % Time stepping
...
0046 tempn1 = tempn;
0047 tempn1 = set ebc(tempn1, 1, 1, 1, Tbar(t+dt));
0048 tempn1 = set ebc(tempn1, n+1, 1, 1, Tamb);
0049 tempn1 = apply ebc (tempn1);

The thermal loads corresponding to nonzero temperatures and temperature rates are
applied next. We may compare the fields that are being passed on lines 0052 and 0054
with (8.13) and the discussion below that equation: The Matlab code is a literal tran-
scription of the formulas. Note that we are directly working with objects of the class
field, using operator overload (adding and multiplying fields).

0050 F = start (sysvec, get(tempn, ’neqns’));
0051 F = assemble (F, nz ebc loads conductivity(feb, geom, ...
0052 theta*tempn1 + (1-theta)*tempn));
0053 F = assemble (F, nz ebc loads capacity(feb, geom, ...
0054 (tempn1-tempn)*(1/dt)));

2Folder: SOFEA/meshes

8.3 Transient cooling in a shrink-fitting application 73

0055 Tn=gather sysvec(tempn);
0056 Tfifth = [Tfifth Tn(n/5+1)];

The individual objects in this system of linear equations for Tn1 are again directly rec-
ognizable in formula (8.13).

0057 Tn1 = (1/dt*Cm+theta*Km) \ ((1/dt*Cm-(1-theta)*Km)*Tn+...
0058 get(F,’vec’));
0059 tempn = scatter sysvec(tempn1,Tn1);
0060 t=t+dt;
0061 end

The results are summarized in Figure 8.2. The reference solution is 36.6◦C at the time
t = 32 seconds, and the curve shown in the figure has been obtained with 500 elements
through the thickness (yielding 36.16◦C). The solution with 15 elements is seen to be
in considerable error. This is somewhat surprising, but a closer look at the behavior of
the solution during the time interval of interest shows significant temperature gradients
near the hot surface, which perhaps explains why it is so expensive to get an accurate
solution.

Fig. 8.2. Heat diffusion through a plate (one-dimensional problem): temperature 0.02 m under
the heated face

8.3 Transient cooling in a shrink-fitting application

Shrink fitting is a common manufacturing process used to assemble two parts: Figure 8.3.
In our case, the cold part is maintained at −10◦C prior to the assembly, while the hot
part is at 84◦C. The temperature of the ambient air is 17◦C. The task is to determine
how long it will take before the temperature of the hot part drops below 70◦C (which is
given as a manufacturing constraint).

The problem is solved by the script shrinkfit3. Let us jump directly into the mesh
generation: Figure 8.3 shows the two regions, and the boundary edges (note the numbers
next to the edges). The mesh is relatively coarse considering the thickness of some of the
geometry – only around three elements through the thickness of the hot part. Even so
the mesh has almost 2300 triangular elements, and the transient solution takes a couple
of minutes.

3Folder: SOFEA/examples/diffusion

74 8 Transient heat diffusion solutions

Fig. 8.3. Transient cooling of a shrink-fitted assembly: schematic

0017 [fens,gcells,groups,edge gcells,edge groups]=targe2 mesher({...
0018 ’curve 1 line 0 0 50 0’,...
0019 ’curve 2 arc 50 0 80 0 center 65 -0.001 ’,...
0020 ’curve 3 line 80 0 110 0’,...
0021 ’curve 4 line 110 0 110 50’,...
0022 ’curve 5 line 110 50 65 50 ’,...
0023 ’curve 6 arc 65 50 65 70 center 65.001 60 ’,...
0024 ’curve 7 line 65 70 110 70’,...
0025 ’curve 8 line 110 70 110 85’,...
0026 ’curve 9 arc 110 85 65 120 center 110 120 ’,...
0027 ’curve 10 line 65 120 0 120’,...
0028 ’curve 11 line 0 120 0 85’,...
0029 ’curve 12 arc 0 85 0 35 center -0.001 60 rev’,...
0030 ’curve 13 line 0 35 0 0’,...
0031 ’curve 14 line 110, 50, 160, 50’,...
0032 ’curve 15 line 160, 50, 160, 70’,...
0033 ’curve 16 line 160, 70, 110, 70’,...
0034 [’subregion 1 property 1 boundary ’...
0035 ’ 1 2 3 4 5 6 7 8 9 10 11 12 13’],...
0036 [’subregion 2 property 2 boundary ’...
0037 ’ -5 -6 -7 14 15 16’],...
0038 [’m-ctl-point constant 3’]
0039 }, 1.0);

For the edges that separate the metal from the air, elements to be used in the surface
heat transfer needs to be generated (finite element block efeb). Note that the interior
edges are omitted.

0043 feb steel = feblock diffusion (struct (’mater’,mater steel,...
...
0049 feb tungsten = feblock diffusion (struct (’mater’,mater tungsten,...
...
0052 edge gcells=edge gcells([edge groups{[(1:4) (8:16)]}]);
0053 efeb = feblock diffusion (struct (’mater’,mater steel,...
0054 ’gcells’,edge gcells,...
0055 ’integration rule’,gauss rule(1,num integ pts),...
0056 ’surface transfer’, h));

8.3 Transient cooling in a shrink-fitting application 75

The ambient temperature is defined in the field amb. The temperature is applied at the
nodes associated with the boundary edges in the loop (line 0063).

0060 amb = clone(tempn, [’amb’]);
0061 for i= 1:length(edge gcells)
0062 conn = get(edge gcells(i),’conn’);
0063 amb = set ebc(amb, conn, conn*0+1, [], conn*0+Ta);
0064 end
0065 amb = apply ebc (amb);

The time stepping loop is almost identical to the example in Section 8.2, except the
thermal load vector is based on the convective surface heat transfer.

0115 F=assemble(F, surface transfer loads(efeb,geom,tempn,amb));

The evolution of the lowest and highest temperature in the entire assembly is shown in
Figure 8.4: the highest temperature drops below 70◦C after around 13 seconds. Obviously,
we are not addressing the issue of accuracy, neither in the resolution afforded by the
mesh, nor in the selection of the time step. However, the time measurements in an actual
manufacturing process are not likely to be accurate to more than half a second.

Fig. 8.4. Transient cooling of a shrink-fitted assembly: time evolution of the lowest and highest
temperature in the assembly

9

Expanding the library of element types

The linear triangle T3 is not particularly accurate, but for the linear heat diffusion
problem it is quite adequate. Nevertheless, we will introduce another couple of elements
to expand the scope of the approximation methods discussed so far. This is desirable
from a couple of different viewpoints. Firstly, with the linear triangle we have been
able to construct basis functions which allow for linear variations in temperature to be
represented exactly. Hence, if the exact solution is a constant gradient of temperature,
the approximate solution does not involve any discretization error. Unfortunately, the
usefulness of this is limited, since constant gradients of temperature are not commonly
encountered in applications. If the basis functions can represent higher-order polynomials,
for instance quadratic, the resulting method will be able to represent more complex
gradients of temperature: linear, in the case of the quadratic variation of temperature. To
oversimplify a little bit, the more complex the temperature variations that are reproduced
without error, the higher the overall accuracy of the scheme.

Secondly, introducing different element types may enable us to play games with dif-
ferent quadrature schemes. One view of the finite element method could put the basis
function above all: the elements are there only to integrate all the expressions that in-
volved the basis functions and their derivatives as accurately as possible (exactly?).
However,

9.1 Quadratic triangle T6

The triangle T6 makes it possible to design basis functions that can reproduce quadratic
variations of the temperature. More precisely, it will do that in the terms of the coordi-
nates on the standard triangle. As we shall see, the map from the standard triangle will
also allow for quadratic temperature variation in the physical space, but more generally
it will lead to rational expressions.

The first task will be to formulate the basis functions on the standard triangle, Fig-
ure 9.1. To be able to write down a polynomial for a particular basis function that is
quadratic in ξ, η, six coefficients will be needed. To determine these coefficients, we will
make use of the common device of equipping the basis functions with the Kronecker delta
property (2.19). Let us start with the basis function N2 = a0 +a1ξ +a2η +a3ξη +a4ξ

2 +
a5η

2: writing
N2(ξk, ηk) = δ2k, for k = 1, , 6

at all six nodes (see Table 9.1), provides us with six equations from which the six coeffi-
cients may be determined. That is however tedious and boring: let us use commonsense
and guesswork instead. Drawing the standard triangle plane while looking along the η

78 9 Expanding the library of element types

Fig. 9.1. Standard quadratic triangle.

axis we see that three and two nodes respectively align, which obviously makes it possible
to make the function N2 equal to zero in these two locations, and equal to one at node
2 with a Lagrange polynomial

N2 =
(ξ − 0)(ξ − 1/2)
(1− 0)(1− 1/2)

= ξ(2ξ − 1)

Similarly, in the other direction we have for N3 = η(2η − 1).

Fig. 9.2. Standard quadratic triangle: one-dimensional view of basis function N2.

To approach the construction of the other basis functions, we note that both N2

and N3 may be written as the normalized product of planes: for N2 the two planes are
p̂2(ξ, η) = ξ and p̃2(ξ, η) = ξ − 1/2, and N2 is written as

N2 =
p̂2(ξ, η)p̃2(ξ, η)
p̂2(1, 0)p̃2(1, 0)

= ξ(2ξ − 1) .

Similarly for N3 and N1: the recipe is to find two planes that go through three nodes and
two nodes respectively (but not through the node at which the function is supposed to
be equal to one), and normalize their product. For N1 the planes are p̂1(ξ, η) = 1− ξ− η
(this is the same N1 as in (6.13)) and p̃1(ξ, η) = 1− 2ξ − 2η (compare with Figure 9.3)

N1 = (1− ξ − η)(1− 2ξ − 2η) .

For the mid-edge nodes, 4, 5, 6, we find planes that pass through two triples of nodes.
For instance, for node 6 (see Figure 9.3), the two planes are p̂6(ξ, η) = 1 − ξ − η and
p̃6(ξ, η) = η (same as N3 as in (6.12)

N6 = 4(1− ξ − η)η .

9.3 Point element P1 79

Coordinate Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

ξ 0 1 0 1/2 1/2 0
η 0 0 1 0 1/2 1/2

Table 9.1. Standard quadratic triangle: locations of the nodes

Fig. 9.3. Standard quadratic triangle: Basis functions N2, N1, and N6.

9.2 Quadratic 1-D element L3

9.3 Point element P1

Looking at the classes/gcell folder, one may notice the gcell X manifold class folders
with X= 0, 1, 2, 3. All SOFEA geometric cells are of certain so-called manifold dimension:
solids are of manifold dimension 3, surfaces are of dimension 2, while curves and points
are of dimensions 1 and 0. Since we commonly solve heat diffusion (and other problems)
in domains that are solids, surfaces, and curves, we also have to deal with integration
over the boundaries of these domains; these are, correspondingly, surfaces, curves, and
points.

When the heat diffusion problem was being formulated in two-dimensional domains
in Section 6, the discrete domain consisted of triangles (elements T3), and the discrete
boundary consisted of line segments (elements L2). Analogously, when the heat diffusion
is solved in a one-dimensional domain (interval of the real line) which is covered by
elements L2, the boundary consists of two points: hence the need for elements of type
P1.

Evaluating the integrals of the surface heat transfer matrix (6.28) and the surface
heats transfer load (6.27) (and also the prescribed heat flux load (6.26)) over the boundary
on interval on the real line simply means taking the values of the integrants at the end
points. In terms of a quadrature formula applied at the boundary point a (analogous
to (2.24)),

f(a) ≈ f(ξ1)J(ξ1)W1

which is going to give the expected results with ξ1 = 0, f(ξ1) = f(a), W1 = 1, and
the Jacobian J(ξ1) = 1. The quadrature rule with these properties is point rule, and
a sample script to use this type of evaluation of boundary integrals for one-dimensional
heat diffusion problems is transcool1.

Programming remark : With the introduction of the element P1, a closure is achieved:
the same code will now work for heat diffusion problems solved on one-dimensional,

1Folder: SOFEA/examples/diffusion

80 9 Expanding the library of element types

two-dimensional, and three-dimensional domains. The programming principles of object-
oriented design that are in action here are polymorphism (the methods operate on objects
in different types uniformly), and dynamic dispatch (an appropriate method is selected
based on the class of the object on which it is invoked).

9.4 Measuring (integrating) over domains

The uniform treatment of the manifold dimension of the domain allows us to produce
dimension-independent code. Therefore, integration of any scalar function over any do-
main or subdomain is carried out by a single method of the class feblock. Consider as
an example the geometry of a cylinder, the volume tiled with tetrahedra, the bound-
ing surface covered with triangles, the edges of the cylindrical faces approximated with
straight two-node segments, and one node at each vertex of the mesh. We may integrate
over the volume of the 3-D mesh to find and approximation of the volume of the original
cylinder; or over the length of a single edge to approximate the circumference; or over
the area of one circular face to find an approximation of the cross-sectional area; or to
count all the nodes on the cylindrical surface when we integrate over all the vertices of
the triangles on that surface.

Fig. 9.4. Geometry of a cylinder.

The method measure of the class feblock evaluates the integral
∫

Vn

f(x) dVn , (9.1)

where Vn is the volume of an n-dimensional manifold (n = 0, 1, 2, 3). The method takes
as arguments the geometry field (evidently, the volume of any discrete manifold is going
to depend on the locations of its vertices), and a function handle.

0013 function result = measure2 (self, geom, varargin)
0014 gcells =self.gcells;
0015 ngcells = length(self.gcells);
0016 % Integration rule
0017 integration rule = get(self, ’integration rule’);

2Folder: SOFEA/classes/feblock/@feblock

9.4 Measuring (integrating) over domains 81

0018 pc = get(integration rule, ’param coords’);
0019 w = get(integration rule, ’weights’);
0020 npts per gcell = get(integration rule, ’npts’);

When the function handle is not supplied, it is assumed that the function to be integrated
over the manifold is f(x) = +1; otherwise, it can be for instance the location-dependent
mass density. There are a number of uses to which this method could be applied: as an
example consider the calculation of the moments of inertia, or calculation of the centroid.

0021 if nargin >=3
0022 fh =varargin{1};
0023 else
0024 fh =@(x) (1);
0025 end

Loop over all geometric cells: collect the geometry from the supplied field.

0026 result = 0;
0027 % Now loop over all gcells in the block
0028 for i=1:ngcells
0029 conn = get(gcells(i), ’conn’); % connectivity
0030 x = gather(geom, conn, ’values’, ’noreshape’);

Each type of a geometric cell must provide functions for calculating the basis functions
and the derivatives of the basis functions with respect to the parametric coordinates.

0031 % Loop over all integration points
0032 for j=1:npts per gcell
0033 N = Nmat(gcells(i), pc(j,:));
0034 Nder = Ndermat param (gcells(i), pc(j,:));

Finally, evaluate the Jacobian, and accumulate the result using the numerical quadrature
rule. It needs to be realized that again the function Jacobian is dispatched dynamically,
to be treated differently in dependence on the dimension of the manifold. The second
argument to Jacobian is an array of the tangent vectors to the parametric coordinates
as columns.

0035 detJ = Jacobian3(gcells(i),x’*Nder);
0036 result = result ...
0037 + fh(map to xyz(gcells(i),pc,x))*detJ*w(j);
0038 end
0039 end
0040 end

As an example, here is the Jacobian method for a two-dimensional manifold (a sur-
face). The number of space dimensions of the space sdim in which the manifold is embed-
ded could be 2 (the manifold is just a piece of the Euclidean plane), or 3 (the manifold
is then a piece of surface). The number of tangents must be 2 (compare with (6.42), and
refer to Figure 9.5): they are

∂x(ξ, η)
∂ξ

, and
∂x(ξ, η)

∂η
, .

The Jacobian is the length of the cross product of the two tangents (refer to the Fig-
ure 6.9). Here, the cross product is expressed through a skew-symmetric matrix.

3Folder: SOFEA/classes/gcell/@gcell n manifold, n = 0, 1, 2, 3

82 9 Expanding the library of element types

0010 function detJ = Jacobian4(self, tangents)
0011 [sdim, ntan] = size(tangents);
0012 if ntan==2 % 2-D gcell
0013 if sdim==ntan
0014 detJ = det(tangents);% Compute the Jacobian
0015 else
0016 detJ = norm(skewmat(tangents(1))*tangents(2));
0017 end
0018 else
0019 error(’Got an incorrect size of tangents’);
0020 end
0021 end

Fig. 9.5. Surface with the coordinate curves and tangents

9.5 On the simplex elements

The point P1, the segment L2, the triangle T3, and the tetrahedron T4, are all examples of
the so-called simplex elements. By definition, an n-dimensional simplex is the convex hull
of n+1 points (vertices) in the n-dimensional space. Tiling domains with simplex elements
is attractive, because a number of mathematical properties guarantees the success of
automatic tools for mesh generation. This is to be contrasted with the generation of
quadrilaterals in two dimensions, and of bricks (shapes bounded by six quadrilateral
faces) in three dimensions: not an easy task, where mesh generators often fail to produce
good-quality meshes, or where they often just fail.

While the simplex elements perform adequately in the heat conduction models, in
other types of analyses their inherent simplicity tends to work against them. For instance,
as we shall see in linear elasticity the response of meshes composed of simplex elements
is quite poorly represented – they are “too stiff”.

4Folder: SOFEA/classes/gcell/@gcell 2_manifold

9.7 Tetrahedron T4 83

9.6 Quadrilateral Q4

9.7 Tetrahedron T4

The tetrahedron with four nodes at the corners (element T4) is a straightforward ex-
tension of the triangle T3. The standard tetrahedron is shown in Figure 9.6. The basis
functions in the parametric coordinates are designed to be linear functions of ξ, η, ζ, and
there are four corners at which to use the Kronecker delta property. It is straightforward
to deduce that

N1(ξ, η, ζ) = 1− ξ − η − ζ , N2(ξ, η, ζ) = ξ , N3(ξ, η, ζ) = η , N4(ξ, η, ζ) = ζ . (9.2)

Fig. 9.6. Standard tetrahedron

Rule Coordinates ξj , ηj , ζj Weights Wj Integrates exactly

1-point 1/4, 1/4, 1/4 1/6 linear polynomial

4-point

0.1381966, 0.1381966, 0.1381966
0.5854102, 0.1381966, 0.1381966
0.1381966, 0.5854102, 0.1381966
0.1381966, 0.1381966, 0.5854102

0.0416
0.0416
0.0416
0.0416

quadratic polynomial

Table 9.2. Numerical integration rules on the standard tetrahedron

The four basis functions of the tetrahedron each vanish along the opposite face (basis
function Ni on the face opposite node i and so on). The remaining three vary along
this face exactly as if it was a triangle T3. The situation is entirely analogous to the
one discussed in Section 6.9 for the triangle T3 and the line segment L2. Therefore,
evaluation of the surface heat transfer contributions is simply performed using geometric
cells of type T3.

The script helixcooled5 illustrates a solution with a full 3-D geometry discretized
with the T4 tetrahedra. The problem is to determine steady state surface temperature for
a helical spring, with variable cross-section– see Figure 9.7. The thick end is maintained
at constant temperature, and on the rest of the surface there’s convection cooling.

The mesh is a simple regular block tiled with tetrahedra, but it is then shaped by
moving nodes to different locations using the utility transform apply, first by changing
its cross-section, and then by shifting all nodes in the y-direction. Finally, the shape is
twisted into a helix using transform 2 helix.

5Folder: SOFEA/examples/diffusion

84 9 Expanding the library of element types

Fig. 9.7. The cooling of a helical spring.

0008 [fens,gcells] = t4block(Angle,Width,Height, 50, 6, 4);
0009 Radius = 1.2;
0010 fens=transform apply(fens,...

@(x,data)(x.*[1,(1-x(1)/Angle/1.2),1]),[]);
0011 fens=transform apply(fens,@(x,data)(x+ [0,Radius,0]),[]);
0012 climbPerRevolution= 1.3;
0013 fens = transform 2 helix(fens,climbPerRevolution);

The surface mesh consists of triangles T3, and is extracted from the tetrahedral mesh
using the utility mesh bdry. The surface mesh is immediately drawn with drawmesh.

0014 bgcells=mesh bdry(gcells);
0015 drawmesh({fens,bgcells},’gcells’,’facecolor’,’red’)
Next, the finite element blocks for the tetrahedral elements in the volume and the trian-
gular elements on the surface are created. Note that the two blocks use different quadra-
ture rules, tet rule for the tetrahedra, and tri rule for the triangles; both use just one
integration point.

0017 feb = feblock diffusion (struct (’mater’,mater,...
0018 ’gcells’,gcells,...
0019 ’integration rule’,tet rule(num integ pts)));
0020 bfeb = feblock diffusion (struct (’mater’,mater,...
0021 ’gcells’,bgcells,...
0022 ’integration rule’,tri rule(num integ pts),...
0023 ’surface transfer’, h));

From this point on, the script does not depend on the element types, be it the calculation
of the system matrices, or graphics output.

10

Convergence and error control

10.1 First look at errors

Fig. 10.1. The effect of a reentrant corner on the flux.

Fig. 10.2. The effect of a reentrant corner on the flux: close-up.

86 10 Convergence and error control

10.2 Richardson extrapolation

Richardson extrapolation is a way of extracting an asymptotic estimate of some quantity
of interest from a series of computed values for it. If we assume that the error in the
quantity q may be expanded in a Taylor series at mesh size h = 0, we may write the
error in the remainder form as

Eq(h) = (10.1)

10.3 The T4 NAFEMS Benchmark revisited

This problem has been discussed in Section 7.4. Cameron, Casey, and Simpson [CCS] cite
the reference value for the temperature at the point indicated in Figure 7.5 of 18.3◦C.
However, more recent investigations of this benchmark indicate that value of 18.25◦C
should be expected [IL05]. Let us check these numbers.

Two models will be used, the first using elements T3, and the second using the more
accurate quadratic elements T6.

18.25396

Fig. 10.3. T4 NAFEMS Benchmark: solution with quadratic elements, initial and final mesh.

Fig. 10.4. T4 NAFEMS Benchmark: solution with quadratic elements, initial and final mesh.

10.4 Shrink fitting revisited 87

10.4 Shrink fitting revisited

Figure 10.5 shows the temperature distribution at three time instants. The extremely
high gradient at the beginning is evident, but in fact high temperature gradients exist
even at the end of the process.

Fig. 10.5. Transient cooling of a shrink-fitted assembly; left to right: temperature distribution
for time t = 0, 2, 13

As you recall, the heat flux is derived from the temperature (equation (5.14)). The
finite element approximation with the triangles (T3) and with the line elements (L2) will
be able to reproduce linearly varying temperatures, hence constant temperature gradients
(i.e. heat flux). Therefore, we will conclude that where the heat flux changes, the finite
element approximation will be in error. To control the error, we can reduce the element
dimensions. Doing so in areas of steep changes in the heat flux, while keeping areas with
approximately uniform heat flux tiled with coarse elements, is known as adaptive mesh
control .

Figure 10.6 shows the heat flux on two meshes as arrows centered at the barycenters
of the elements (barycenter here means average of the vertex locations). The first mesh
is quite coarse (script shrinkfitad11), but it is possible to identify regions in which the
gradient changes strongly (next to the tungsten inset); the adaptive mesh is generated
to reflect the demand for finer (smaller) elements (script shrinkfitad22).

Fig. 10.6. Transient cooling of a shrink-fitted assembly; left: coarse mesh, right: adaptive mesh.
Heat flux for time t = 2

The temperature evolution obtained with the two meshes, the coarse one, and the
adaptively refined one, is illustrated in Figure 10.7, and the higher-quality of the adap-

1Folder: SOFEA/examples/diffusion
2Folder: SOFEA/examples/diffusion

88 10 Convergence and error control

tive results should be noted: especially striking is the spurious oscillation of the lowest
temperature for the coarse mesh.

Fig. 10.7. Transient cooling of a shrink-fitted assembly: time evolution of the lowest and highest
temperature in the assembly. Comparing temperatures obtained with a coarse model (dashed
lines) and with an adaptively refined model (solid lines).

Part III

Stress analysis

11

Model of elastodynamics

11.1 Balance of linear momentum

From elementary dynamics we can apply Newton’s equation of motion for a particle,
v̇ = mF , where v̇ is the particle acceleration, m is the particle mass, and F is the
applied force. The complicating circumstance is that a deformable body can be thought
of as a collection (of infinitely many) particles, all interacting through contact. Evidently,
our goal is to formulate a continuum model rather than deal with the discrete collection
of particles.

Let us consider a body with some distributed force on parts of the boundary (the
reactions must be included) and distributed force in the volume (for instance, gravity-
induced load). For simplicity, we draw a sketch in two dimensions, but obviously we
are thinking of a three-dimensional body; see Figure 11.1. The distributed force on the
boundary is therefore in units force/length2, and units of the distributed force in the
volume are force/length3. The distributed force on the boundary is customarily called
the traction .

Fig. 11.1. A continuous body with applied distributed force on the boundary, and within the
volume (on the left). The same body cut up into many small volumes (particles), with their
interaction represented by distributed forces along the cuts (on the right).

The continuous body will be now divided into many very small (infinitesimally small)
volumes, which we may consider “particles”. The interaction between the particles is
occurring through contact forces (tractions) along the cuts between the particles. As-
suming we know these forces, the Newton’s equation may be applied to each separately.
However, we will apply this equation in the form of the change of linear momentum

92 11 Model of elastodynamics

d
dt

(mv) = F ,

from which the previous form of the equation of motion may be obtained provided m
does not change. In our case, this will be true because each small volume holds a certain
amount of material and does not exchange material with any other volume, so of the
mass of each volume is conserved.

As a consequence of the above, we may write for each small particle volume j the
change of its linear momentum

d
dt

(mjvj) = F j (11.1)

where we may write for the mass of the particle mj = ρVj , with Vj the volume of the
particle, and ρ the mass density, xj the velocity, all at some point within the volume of
the particle (we are using the mean-value theorem to express integrals over the volume of
the particle!). The force F j includes the body force b and the tractions t on the surface
of the particle volume

F j = bVj +
∫

Sint

tdS +
∫

Sext

tdS (11.2)

where the surface integral is split into two parts (see Figure 11.2): the interior surfaces
Sint, where two particle volumes are separated, and the exterior surfaces Sext.

Fig. 11.2. Isolated particle volume.

Now we will collect the contributions of equation (11.1) by summing over all the
particles

N∑

j=1

d
dt

(mjvj) =
N∑

j=1

F j (11.3)

which may be rewritten of the limit of infinitely many particles as integrals

d
dt

∫

m

vdm =
∫

V

bdV +
∫

Sext

tdS +
∞∑

j=1

∫

Sint,j

tdS , (11.4)

where the last term (the sum) is over all the shared surfaces that separate the particle
volumes. Using Newton’s third law of action and reaction, we may conclude that whenever
two particle volumes share a piece of their boundary, the traction at the material point A
on the surface of particle 1 is equal in magnitude but opposite to the traction at the same
material point (the one that has been split by the cut separating the two particles) at

11.2 Stress 93

the corresponding point A on the surface of particle 2. Since the sum is over all the pairs
of such surfaces, the last term in the equation (11.5) cancels, and the final statement of
the balance of linear momentum of the material in the volume V reads

d
dt

∫

m

v dm =
∫

V

b dV +
∫

S

t dS , (11.5)

where m is the total mass of the material inside the volume V , and S is the bounding
surface of the volume V . While the surface S and the volume V change with deforma-
tion, and hence are time-dependent, the total mass of the material m does not change
(the same particles that were inside the volume before deformation are there during the
deformation).

11.2 Stress

The traction vector t may be written in terms of components in a standard Cartesian
basis as t = tnn + t1e1 + t2e2, where tn is the normal component, and tk are the shear
components. The Cartesian basis is defined at the given point on the surface by first tak-
ing the (outer, unit) surface normal as the third basis vector, and then picking arbitrary
orthogonal directions in the tangent plane– see Figure 11.3. The normal component is
obtained as

tn = n · t .

The shear part of the traction ts is obtained by subtracting the normal part of the
traction from the traction vector t

ts = t− tnn .

Fig. 11.3. Components of traction.

The task before us now is to relate the traction on the surface to the deformation of
the material just below the surface. The deformation will be measured by strains, and the
response of the material to the strains will be related to to the tractions on the surface
(and any body loads, if present) through the mathematical device of the stress.

First, inspect Figure 11.4: it is possible to define such a Cartesian coordinate system
in the vicinity of a given point that the coordinate planes will cut out a (curvilinear)
tetrahedron from the solid. Our plan is to make this tetrahedron very small indeed, but
still containing the given point on the surface. An enlarged image of such a tetrahedron

94 11 Model of elastodynamics

is shown on the right, and we see how the curved edges may be approximated by straight
lines in the limit of very small tetrahedron. The goal is to relate the traction at the given
point to the tractions on the internal cut planes, because these tractions are representative
of the deformation of the material in the volume.

Fig. 11.4. Relating the components of traction to stress.

In anticipation of the definition of stress, the traction components on the three flat
cut planes, with normals pointing against the three Cartesian basis vectors, are called σx,
σy, σz (the normal components), and τxy, τyx, τxz, τzx, τyz, τzy, for the shear components
on all three planes. The areas of the triangular faces of the tetrahedron are related as
Ax = nxA, and so forth, where nx, ny, nz are the components of the unit normal, and Ax

is the area perpendicular to the x-axis and so on; this can be deduced from the volume
of the tetrahedron in Figure 11.5.

Fig. 11.5. Components of traction.

When we write the conditions of equilibrium in all three directions (the volume forces
do not play a role; why?), the following three equations result

tx = σxnx + τxyny + τxznz

ty = τyxnx + σyny + τyznz (11.6)
tz = τzxnx + τzyny + σznz

This equation relates the components of the traction on the surface with the components
of the traction on the special surfaces – coordinate planes – inside the volume. The

11.2 Stress 95

components of the traction on the internal surfaces are called normal stresses (σx,
σy, σz), and shear stresses (τxy, τyx, τxz, τzx, τyz, τzy). The form of equation (11.6)
suggests the matrix expression


tx
ty
tz


 =




σx τxy τxz

τyx σy τyz

τzx τzy σz







nx

ny

nz


 , (11.7)

where all matrices hold components in the Cartesian basis. A component-free version
would read

t = Σ · n ,

where Σ would be defined as a Cartesian tensor, the Cauchy stress tensor . The
traction vector and the normal would then also become tensors. However, in this book
the tensor notation is avoided, and with a few exceptions tensors will not be needed.
The two exceptions that may be mentioned here, are coordinate transformations and
the calculation of the principal stresses which are the eigenvalues of the matrix of
the stress components. The principal direction components and the principle stress σ are
solved for from the two equations


σx τxy τxz

τyx σy τyz

τzx τzy σz







nx

ny

nz


 = σ




nx

ny

nz


 , (11.8)

and

det







σx τxy τxz

τyx σy τyz

τzx τzy σz


− σ




1 0 0
0 1 0
0 0 1





 = 0 . (11.9)

Balance of angular momentum and stress symmetry.

It would appear that there are nine components of the stress that need to be related
to the deformation, but it is straightforward to show that in the matrix (11.7) the off-
diagonal elements must be equal: Consider a rectangular volume of material (again, for
convenience the drawing in Figure 11.6 is of a two-dimensional nature, but the argument
applies to three dimensions). When the balance of angular momentum is written for
the rotation about the axis perpendicular to the plane of the paper, the normal stresses
and any body forces will turn out to be negligible compared to to the effect of the shear
stresses, and from the resultant equation we obtain the symmetries

τxy = τyx , τxz = τzx , τyz = τzy . (11.10)

Consequently, there is only six components of the stress that are independent. It will
be convenient to manipulate these six components as a vector (as opposed to a tensor)

[σ] = [σx, σy, σz, τxy, τxz, τyz]T . (11.11)

Equation (11.6) may be rewritten in terms of the stress vector σ as

t = Pnσ , (11.12)

where the matrix “normal” operator is defined as

Pn =




nx 0 0 ny nz 0
0 ny 0 nx 0 nz

0 0 nz 0 nx ny


 . (11.13)

Equation (11.13) may be used in a variety of ways: any of the three quantities may be
given, which would then for another quantity being fixed produce the third as the result.
Most useful are the two possibilities: t given, produce the stress vector in dependence on
the normal; and σ given, produce the surface tractions for various normals.

96 11 Model of elastodynamics

Fig. 11.6. Components of traction.

11.3 Local equilibrium: change of linear momentum

In complete analogy to the model of heat conduction, the global balance equation (11.5)
(in this case, balance of linear momentum, for the heat conduction it was balance of
heat energy (5.4)) needs to be converted to a local form. The local form would express
dynamic equilibrium of an infinitesimal particle as an equation that holds at a point.

There are three terms in the global balance (11.5), and to produce the local form
we’ll have to convert all three integrals to volume integrals. The first one involves the
time derivative of the integral

d
dt

∫

m

v dm

However, that causes no difficulties since the mass m inside the volume V does not change
with time. Therefore,

d
dt

∫

m

v dm =
∫

m

dv

dt
dm . (11.14)

Introducing the mass density ρ (which as mass per unit volume depends on the defor-
mation, and hence varies with time), we may write dm = ρdV and

∫

m

dv

dt
dm =

∫

V

dv

dt
ρ dV . (11.15)

11.4 Local equilibrium: divergence of stress

The divergence theorem may be now applied to the third term in (11.5), that is to the
surface integral. However, introducing the abstract symbol for the divergence of stress
generates more questions than answers. We will get to the form of the divergence theorem
that will work for us in this book in a roundabout way.

Consider a small volume (parallelepiped) with faces parallel to coordinate planes of
the global Cartesian basis (Figure 11.7, and refer also to Figure 11.1); for simplicity,
the box is drawn as two-dimensional, and it is drawn twice so that we can display the
normal and the shear stresses separately. The center of the box is at x, y, z, and the stress
components may be expanded into a truncated Taylor series. For instance,

σx(x + ξ∆x, y + η∆y, z + ζ∆z) ≈ σx(x, y, z) +
∂σx(x, y, z)

∂x
ξ∆x

+
∂σx(x, y, z)

∂y
η∆y +

∂σx(x, y, z)
∂z

ζ∆z

11.4 Local equilibrium: divergence of stress 97

Fig. 11.7. Components of traction.

where −1 ≤ ξ ≤ +1, −1 ≤ η ≤ +1, and −1 ≤ ζ ≤ +1.
As you can see, the box is loaded only by the tractions on its boundary, there are no

body loads. Equilibrium in the x-direction requires integration of the stress σx over the
particle sides of the box, τxy over the horizontal sides, and τxz over the faces parallel to
the plane of the paper. For instance, integrating σx over the side at ξ = 1 leads to

∆y∆z

∫ +1

−1

∫ +1

−1

σx(x + ∆x, y + η∆y, z + ζ∆z) dηdζ ≈

∆y∆z

∫ +1

−1

∫ +1

−1

[
σx(x, y, z) +

∂σx(x, y, z)
∂x

∆x

+
∂σx(x, y, z)

∂y
η∆y +

∂σx(x, y, z)
∂z

ζ∆z

]
dηdζ

The terms with η and ζ integrate to zero, and the result is

4∆y∆z

[
σx(x, y, z) +

∂σx(x, y, z)
∂x

∆x

]

Next, integrating σx over the side at ξ = −1 leads to

∆y∆z

∫ +1

−1

∫ +1

−1

−σx(x + ∆x, y + η∆y, z + ζ∆z) dηdζ ≈

∆y∆z

∫ +1

−1

∫ +1

−1

[
−σx(x, y, z) +

∂σx(x, y, z)
∂x

∆x

−∂σx(x, y, z)
∂y

η∆y − ∂σx(x, y, z)
∂z

ζ∆z

]
dηdζ

The terms with η and ζ integrate to zero, and the result is

4∆y∆z

[
−σx(x, y, z) +

∂σx(x, y, z)
∂x

∆x

]

Adding together gives the total contribution of the stress σx as

8∆x∆y∆z
∂σx(x, y, z)

∂x
= ∆V

∂σx(x, y, z)
∂x

,

98 11 Model of elastodynamics

with the elementary volume ∆V = 8∆x∆y∆z. The same exercise is now repeated for
the stress components τxy and τxz, giving the total force on the elementary volume in
the x-direction

∆b∗x = ∆V

[
∂σx(x, y, z)

∂x
+

∂τxy(x, y, z)
∂y

+
∂τxz(x, y, z)

∂z

]
, (11.16)

and analogously in the other two directions

∆b∗y = ∆V

[
∂τyx(x, y, z)

∂x
+

∂σy(x, y, z)
∂y

+
∂τyz(x, y, z)

∂z

]
, (11.17)

and

∆b∗z = ∆V

[
∂τzx(x, y, z)

∂x
+

∂τzy(x, y, z)
∂y

+
∂σz(x, y, z)

∂z

]
. (11.18)

Now the same argument that was established around equation (11.2) will be pursued:
put together the total force on the body by collecting the contributions from all the
elementary volumes. This can be done in two ways:

1. Add up all the tractions on the bounding faces of the elementary volumes. The
tractions on the shared faces (internal surfaces) will cancel; only the tractions on the
exterior surface will be left: ∫

S

t dS

2. Add up all the resultant forces (11.16-11.18), which in the limit will become a volume
integral ∫

V

b∗ dV

where the imaginary force b∗ has components on the Cartesian basis

[b∗] =




∂σx(x, y, z)
∂x

+
∂τxy(x, y, z)

∂y
+

∂τxz(x, y, z)
∂z

∂τyx(x, y, z)
∂x

+
∂σy(x, y, z)

∂y
+

∂τyz(x, y, z)
∂z

∂τzx(x, y, z)
∂x

+
∂τzy(x, y, z)

∂y
+

∂σz(x, y, z)
∂z




(11.19)

and may be recognized as the stress divergence.

These two forces must be equal, and we have the following form of the divergence theorem∫

V

b∗ dV =
∫

S

t dS .

Using the template of the “normal” operator (11.13), we may write the stress divergence
as

b∗ = BT σ (11.20)
where the stress-divergence operator BT is defined as

BT =




∂/∂x 0 0 ∂/∂y ∂/∂z 0
0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y


 . (11.21)

This operator (un-transposed) will make its appearance shortly yet again as the symmetric-
gradient operator to produce strains out of displacements. Using the definitions of these
useful operators, the divergence theorem may be written in terms of stress as∫

V

BT σ dV =
∫

S

Pnσ dS . (11.22)

11.6 Strains and displacements 99

11.5 Local equilibrium: all together

Putting the three integrals from (11.5) into the volume-integral form leads to a pointwise
expression of local equilibrium (following exactly the same argument as in Section 5.1):

∫

V

ρ
dv

dt
dV =

∫

V

b dV +
∫

V

BT σ dV ⇒ ρ
dv

dt
= b + BT σ . (11.23)

This is a statement of dynamic equilibrium of a point particle: On the left-hand side
we have the inertial force (mass times acceleration), on the right hand side is the body
load and the force generated by a stress gradient across the particle. Analogously to
the heat conduction problem, this local balance equation contains too many variables.
The stress plays the role of the heat flux, and it also will be replaced by reference to
measurable variables – the strains.

11.6 Strains and displacements

The measurable quantities in this problem are the strains (the relative deformation).
The strains are divided into two groups, based on the effect the strains display when
expressed in Cartesian coordinates: the normal strains (stretches), and the shear strains.

The strains are an expression of local variations in the positions of points after defor-
mation. The deformation (motion) is expressed as displacements. The displacement u
is expressed in the Cartesian coordinates by components, and connects the locations of
a given material point (particle) A before deformation and after deformation

[u(A, t)] =




x(A, t)
y(A, t)
z(A, t)


−




x(A, 0)
y(A, 0)
z(A, 0)


 .E (11.24)

Fig. 11.8. Material curves, and tangents to material curves. Left: before deformation, right:
after deformation.

It will be useful to approach the meaning of strains from the point of view of what
happens to tangents to material curves. A material curve consists of the same material

100 11 Model of elastodynamics

points (particles) during the deformation of the material. A visual picture may be useful:
recall that some specimens have a grid etched upon them before they are being mechan-
ically tested (deformed). The etching curves that go in one direction may be thought of
as points whose one coordinate changes and the other is being held fixed. Figure 11.8
shows a blob of material with two material curves before and after deformation. Before
deformation, the curve that is horizontal consists of points P such that the coordinates
are

[P] =
[

x
y = constant

]

and the curve that is vertical consists of points M such that

[M] =
[

x = constant
y

]

The parameter that varies along the curve through the point P is x. Therefore, the
tangent vector to this curve is

∂

∂x
[P] =

[
1
0

]
. (11.25)

The parameter that varies along the curve through the point M is y. Therefore, the
tangent vector to this curve is

∂

∂y
[M] =

[
0
1

]
. (11.26)

The tangent vectors (11.25) and (11.28) are of course just the basis vectors of the Carte-
sian coordinates.

After deformation, the curve that used to be horizontal consists of points P such that

[P] =
[

x + ux

(y = constant) + uy

]

and the curve that is vertical consists of points M such that

[M] =
[

(x = constant) + ux

y + uy

]

Since these are material curves, they are still parameterized by the same parameters as
before deformation. Consequently, for the originally horizontal curve we have the tangent
vector after deformation

∂

∂x
[P] =




1 +
∂ux

∂x

∂uy

∂x


 . (11.27)

The parameter that varies along the curve through the point M is y. Therefore, the
tangent vector to this curve is

∂

∂y
[M] =




∂ux

∂y

1 +
∂uy

∂y


 . (11.28)

The stretches measure the relative change in length of the tangent vectors at the
same point before and after deformation. For instance, the tangent vector (11.25) is of
unit length before deformation, and the vector (11.27) is of length

11.7 Constitutive equation 101

√
(1 +

∂ux

∂x
)2 + (

∂uy

∂x
)2 =

√
1 + 2

∂ux

∂x
+ (

∂ux

∂x
)2 + (

∂uy

∂x
)2 .

If we now make the assumption that the derivatives of the displacement components are
very small in magnitude,

|∂uk

∂j
| ¿ 1, k, j = x, y, z , (11.29)

the length of the tangent vector may be expressed as
√

1 + 2
∂ux

∂x
+ (

∂ux

∂x
)2 + (

∂uy

∂x
)2 ≈ 1 +

∂ux

∂x
,

and the relative change in length (the stretch in the x direction) is

1 + ∂ux

∂x − 1
1

= εx .

The shears measure the change in angle between originally perpendicular directions
of pairs of the Cartesian axes. Therefore, we could measure the change in the angle
between the tangents of two intersecting material curves before and after deformation.
For the two curves in Figure 11.8, the initial angle is π/2; the cosine of the angle after
the deformation is

∂

∂x
[P]T

∂

∂y
[M] = (1 +

∂ux

∂x
)
∂ux

∂y
+

∂uy

∂x
(1 +

∂uy

∂y
)

which, again using the assumption (11.29), gives for the change of angle

∂ux

∂y
+

∂uy

∂x
= γxy .

In this way we define all six strain components: three stretches, and three shears. In
fact, we could have defined nine strains (components of the strain tensor), which would
correspond to the nine components of the Cauchy stress tensor. However, we will stick
to the vector representation in this book.

The six strain components are a mixture of the derivatives of the displacement com-
ponents, and may be expressed in an operator equation, using the definition (11.20)

ε = Bu , (11.30)

where B is now called the symmetric gradient operator.

11.7 Constitutive equation

The stress may now be replaced in the balance equation (11.23) by reference to the
primary variable, the displacement. However, first we need to discuss the link between the
measurable quantities, the strains, and the mathematical device in the balance equation,
the stress. As for the thermal model, this link is the constitutive equation.

Since the angular momentum balance (11.10) reduces the number of stress compo-
nents to six, correspondingly there is six components of strain. Therefore, the energy of
deformation may be defined as the work of each stress component on the corresponding
strain component. Let us consider some pre-existing stressed state in a very small neigh-
borhood of a given point. So that we don’t have to specify the volume, we will refer to

102 11 Model of elastodynamics

energy density (the energy in a certain volume may be obtained by integrating the
energy density over this volume). The state of stress is described by the stress vector
σ. Let us superimpose an infinitesimal strain variation dε upon the extant strains. The
density of the work of the current stress on the strain change is expressed as

dεT σ . (11.31)

The constitutive equation that will be of interest in this book is the model of linear
elasticity . It is expressed as a linear relationship between the strain and the stress, and
since these are vectors, the linear relationship is expressed as a matrix product

σ = Dε , (11.32)

where D is a constant 6× 6 matrix of the elastic coefficients (also known as the elastici-
ties); D may be also referred to as the material stiffness matrix. Clearly, when there
is no strain, the stress is zero. Let us now increase strain from zero to its final value, ε,
by scaling with a number 0 ≤ θ ≤ 1

ε̂ = θε ,

and furthermore use the linear elasticity (11.32). The expression for the change of the
energy of deformation density (11.33) will become

dε̂T σ̂ = dε̂T Dε̂ = dθεT Dθε . (11.33)

The deformation process starts at θ = 0 and reaches its final stage at θ = 1. In this
process, the total energy density stored in the material is

φ(ε) =
∫ 1

0

dθεT Dθε =
1
2
εT Dε . (11.34)

Mathematically, the expression 1
2εT Dε is known as a quadratic form. One interesting

the property of the quadratic form is that the unsymmetrical part of the matrix D does
not contribute to the energy:

1
2
εT Dε =

(
1
2
εT Dε

)T

=
1
2
εT DT ε ⇒ 1

2
εT (D −DT)ε = 0 .

Because the energy of deformation is a fundamental quantity, from physical principles,
and from the point of view of mathematical modeling, this is a very good reason for
postulating a priori the symmetry of the material stiffness, D = DT .

General anisotropic material.

Because of the symmetry of the material stiffness, the number of elastic coefficients is
only 21 for the most general elastic material: the general anisotropic material.

Orthotropic material.

If a material has only three planes of symmetry, it is the general orthotropic material.

11.9 Boundary conditions 103

11.8 Initial conditions

11.9 Boundary conditions

Similarly to the heat conduction problem, at each point on the bounding surface a bound-
ary condition is required. The boundary conditions may be in terms of the primary
variable, the displacement, or in terms of the flux variable, the stress. For heat conduc-
tion, the boundary condition in terms of flux referred to the normal flux only, since the
flux parallel to the surface is essentially uncontrollable. Similarly, for elasticity the flux
boundary condition will not attempt to prescribe all six components of stress, but rather
the “projection” of stress, the traction.

A complicating circumstance is that the primary variable and the traction both have
three components. Therefore, the surface of the solid needs to be considered three times
as to the appropriate boundary condition, once for each component.

Selection of the appropriate boundary conditions is critical to successful modeling.
Typically, the boundary conditions that are applied to our models are only approxima-
tions of the physical reality.

Fig. 11.9. Example of boundary conditions: a dam with the tunnel.

Thus, the first guidelines for the application of boundary conditions will be based on
physical considerations. For instance, Figure 11.9 shows the cross-section of a dam, and of
interest is the stress near point C in the corner of the tunnel. Therefore, we could decide
to neglect the deformation of the soil near the base of the dam, and prescribe along the
surface A zero magnitude for all displacement components. In reality, this is not strictly
true, and a so-called modeling error is being introduced by making this choice. In a
careful analysis, the influence of this error would be assessed, for instance by varying the
boundary condition, or including the soil in the analysis.

On the surfaces exposed to the water behind the dam, including the one with point
A, the structure is loaded by water pressure, which is a special kind of traction: using an
ad hoc Cartesian coordinate system as indicated in the figure, the traction components
are

tx̄ = 0, tȳ = p, tz̄ = 0

where p is the water pressure at the particular location.

104 11 Model of elastodynamics

All the other surfaces in the model that show up as curves, are assigned so-called
traction-free boundary condition: there are no known loads applied there. Assuming
the model is two-dimensional, of the so-called plane strain type, the remaining surfaces
are parallel to the plane of the paper, and are assigned zero displacement normal to the
paper, and zero shear components of traction in the plane of the paper. This type of
model is discussed later in the textbook.

Let us now discuss the associated variable (so-called work-conjugate variable)– trac-
tion – along the surfaces where we prescribed displacements, for instance at point A.
The physical meaning of such tractions, which are generated in the soil by the stress in
the bulk of the dam near the surface, is clear: they are the reactions. They are initially
unknown, but as soon as the displacements are available from the solution, the reactions
may be calculated.

The work-conjugate variable along the traction-free surfaces is displacement, which
is initially unknown, but which will be produced during the solution process. Similarly,
displacement is unknown on the surfaces exposed to the water behind the dam.

Fig. 11.10. Example of boundary conditions: silo with a granular material.

Another example: silo filled with some granular material. The granular material in-
teracts with the wall of the silo, and at difference with the water pressure loads, the
granular material can also produce shear forces along the walls.

11.10 Comparing the Thermal and Deformation models

d
dt

∫

m

v dm =
∫

V

b dV +
∫

S

Σ · n dS . (11.35)

d
dt

∫

V

u dV =
∫

V

Q dV −
∫

S

q · n dS . (11.36)

11.10 Comparing the Thermal and Deformation models 105

Fig. 11.11. Example of boundary conditions: rigid punch.

Fig. 11.12. Example of boundary conditions: dog bone specimen under tension.

Fig. 11.13. Example of boundary conditions: plate with unknown boundary conditions.

References

Gra91. Graff, KF: Wave motion in elastic solids. Dover publications, New York (1991)
Hug00. Hughes, TJR: The finite element method. Linear static and dynamic finite element

analysis. Dover publications, New York (2000).
This book is a must-read for anyone serious about learning finite element analysis
properly. Meticulously written, and brimming with insights. Quite mathematical.

CC2005. Chapra, SC and RP Canale: Numerical Methods for Engineers. McGraw-Hill (2005)
CCS. A.D. CAMERON, J.A. CASEY, G.B. SIMPSON: Benchmark Tests for Thermal Anal-

yses, NAFEMS Documentation.
IL05. http://www.infolytica.com/en/coolstuff/ex0047/

Index

Jacobian, 81

adaptive mesh control, 87
anisotropic material, 102
argument

passed by value, 21

balance equation, 3
global, 34
local, 34

balance of angular momentum, 95
balance of linear momentum, 93
balance residual, 7
barycenter, 87
basis function

derivative, 50
triangle T3, 43
triangle T6, 78

basis functions, 11
boundary condition

essential, 5, 36
natural, 5, 36
overspecified, 27
sufficient, 37

boundary conditions, 4
Bubnov-Galerkin method, 7

capacity matrix, 47
Cauchy stress tensor, 95
chain rule, 16
change of coordinates in integrals, 52
circular frequency, 22
class
body load, 21
dense sysmat, 21
elemat, 52
feblock diffusion, 52, 60
feblock, 20, 52, 80
field, 20, 72
gcell T3, 50
gcell, 49

sysvec, 21
tet rule, 84
tri rule, 60, 84
fenode, 20

Clough, 42
conductivity matrix, 47
connectivity, 20
consistent mass matrix, 23
constructor, 20
control volume, 33
convergence, 23
convex hull, 82
Courant, 42
Crank-Nicholson method, 70
cross product, 51, 81
curved boundary

approximation, 45

degree of freedom, 14
diagonal mass matrix, 16
Dirac delta function, 9
displacement, 99
divergence theorem, 34, 96, 98
dynamic dispatch, 80
dynamic equilibrium, 99

eigenmode, 22
eigenvalue, 95
elastic coefficients, 102
energy of deformation, 101
error

heat flux, 87
essential boundary condition, 5, 25, 36

finite difference
backward Euler, 70
forward Euler, 70

finite element, 12
edge, 42
isoparametric, 48
L2, 12

110 Index

node, 12, 42
T3, 50
T6, 77

finite element mesh, 12
flux boundary condition, 36
flux variable, 103
free vibration, 22

Galerkin method, 7
generalized eigenvalue problem, 22
generalized trapezoidal method, 69, 70
geometric cells, 20

hat function, 42
heat

conduction, 33
diffusion, 33

heat energy, 33
heat flux, 33

inertial force, 99
initial boundary value problem, 6
initial conditions, 6
integration by parts, 10
integration rule

tetrahedron, 83
triangle, 52, 78

interpolation, 11
isoparametric element, 48
isotropic material, 35

Jacobian, 52
Jacobian determinant, 15
Jacobian matrix, 48, 51

Kronecker delta, 13, 77

Lagrange interpolation polynomial, 13
linear elasticity, 102
linear momentum, 91
lumped mass matrix, 23

manifold dimension, 79, 80
map

of areas, 52
of points, 51
of vectors, 51

mass density, 96
mass matrix, 12

consistent, 23
lumped, 23

material curve, 99
material point, 99
material stiffness, 102
Matlab script
helixcooled, 83
lshape1, 60

shrinkfit, 73
squareinsquare, 62
t3nafems, 71
t4nafems, 64
transcool, 79
woverspec, 29
wvib, 22

method
backward Euler, 70
Crank-Nicholson, 70
forward Euler, 70

modeling error, 103
motion, 99

natural boundary condition, 5, 25, 36
natural frequency, 22
Neumann problem, 27, 37
Newmark explicit algorithm, 17
Newton’s equation of motion, 91
Newton’s law, 3
node, 12
normal strain, 99
normal stresses, 95
numerical quadrature, 14

point, 79
triangles, 52

ordinary differential equations, 12
orthotropic material, 35, 102
outer normal, 33

parametric coordinates, 15
particle, 91
piecewise linear, 9
piecewise linear approximation, 12
plane strain, 104
polymorphism, 80
pressure, 103
primary variable, 103
principal direction, 95
principal stress, 95
pure-traction problem, 27, 37

quadratic form, 102
quadrature point, 14

rate of heat generation, 34
reaction, 26
reactions, 104
reduction

dimension, 40
residual, 7, 10
Richardson extrapolation, 86

shear strain, 99
shear stresses, 95
simplex element, 82

Index 111

Simpson’s 1/3 rule, 14

singular stiffness matrix, 27

skew-symmetric matrix, 81

smoothness, 10

sparse matrix, 12

specific heat, 34

standard interval, 15, 55

standard tetrahedron, 83

standard triangle, 43, 77

static equilibrium, 19

stiffness matrix, 12

strain tensor, 101

strains, 93

stress, 93

normal, 95

shear, 95

stress divergence, 98

stress-divergence operator, 98

stretch, 99

surface heat transfer matrix, 48

symmetric gradient operator, 101

symmetric matrix, 12

tangent to material curve, 99
tangent vector, 51, 55, 81
taut string, 3
temperature gradient, 35
tensor, 95
tent, 42
test function, 8
thermal conductivity, 35
traction, 91
traction-free, 104
transformation matrix, 54
trial function, 9, 11
trial-and-test approximate method, 9
triangulation, 42

utility
drawmesh, 84
mesh bdry, 84
transform apply, 83

weighted residual method, 8
work, 101
work-conjugate, 104

